| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addsdird | Structured version Visualization version GIF version | ||
| Description: Distributive law for surreal numbers. Part of theorem 7 of [Conway] p. 19. (Contributed by Scott Fenton, 9-Mar-2025.) |
| Ref | Expression |
|---|---|
| addsdid.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| addsdid.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| addsdid.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| Ref | Expression |
|---|---|
| addsdird | ⊢ (𝜑 → ((𝐴 +s 𝐵) ·s 𝐶) = ((𝐴 ·s 𝐶) +s (𝐵 ·s 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addsdid.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 2 | addsdid.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 3 | addsdid.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 4 | 1, 2, 3 | addsdid 28093 | . 2 ⊢ (𝜑 → (𝐶 ·s (𝐴 +s 𝐵)) = ((𝐶 ·s 𝐴) +s (𝐶 ·s 𝐵))) |
| 5 | 2, 3 | addscld 27921 | . . 3 ⊢ (𝜑 → (𝐴 +s 𝐵) ∈ No ) |
| 6 | 5, 1 | mulscomd 28077 | . 2 ⊢ (𝜑 → ((𝐴 +s 𝐵) ·s 𝐶) = (𝐶 ·s (𝐴 +s 𝐵))) |
| 7 | 2, 1 | mulscomd 28077 | . . 3 ⊢ (𝜑 → (𝐴 ·s 𝐶) = (𝐶 ·s 𝐴)) |
| 8 | 3, 1 | mulscomd 28077 | . . 3 ⊢ (𝜑 → (𝐵 ·s 𝐶) = (𝐶 ·s 𝐵)) |
| 9 | 7, 8 | oveq12d 7364 | . 2 ⊢ (𝜑 → ((𝐴 ·s 𝐶) +s (𝐵 ·s 𝐶)) = ((𝐶 ·s 𝐴) +s (𝐶 ·s 𝐵))) |
| 10 | 4, 6, 9 | 3eqtr4d 2776 | 1 ⊢ (𝜑 → ((𝐴 +s 𝐵) ·s 𝐶) = ((𝐴 ·s 𝐶) +s (𝐵 ·s 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 No csur 27576 +s cadds 27900 ·s cmuls 28043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-ot 4585 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-1o 8385 df-2o 8386 df-nadd 8581 df-no 27579 df-slt 27580 df-bday 27581 df-sle 27682 df-sslt 27719 df-scut 27721 df-0s 27766 df-made 27786 df-old 27787 df-left 27789 df-right 27790 df-norec 27879 df-norec2 27890 df-adds 27901 df-negs 27961 df-subs 27962 df-muls 28044 |
| This theorem is referenced by: mulnegs1d 28097 mulsasslem3 28102 divsdird 28171 zsoring 28330 no2times 28338 pw2divsdird 28369 |
| Copyright terms: Public domain | W3C validator |