| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divsdird | Structured version Visualization version GIF version | ||
| Description: Distribution of surreal division over addition. (Contributed by Scott Fenton, 13-Aug-2025.) |
| Ref | Expression |
|---|---|
| divsdird.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| divsdird.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| divsdird.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| divsdird.4 | ⊢ (𝜑 → 𝐶 ≠ 0s ) |
| Ref | Expression |
|---|---|
| divsdird | ⊢ (𝜑 → ((𝐴 +s 𝐵) /su 𝐶) = ((𝐴 /su 𝐶) +s (𝐵 /su 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divsdird.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 2 | divsdird.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 3 | 1sno 27746 | . . . . 5 ⊢ 1s ∈ No | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → 1s ∈ No ) |
| 5 | divsdird.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 6 | divsdird.4 | . . . 4 ⊢ (𝜑 → 𝐶 ≠ 0s ) | |
| 7 | 4, 5, 6 | divscld 28133 | . . 3 ⊢ (𝜑 → ( 1s /su 𝐶) ∈ No ) |
| 8 | 1, 2, 7 | addsdird 28067 | . 2 ⊢ (𝜑 → ((𝐴 +s 𝐵) ·s ( 1s /su 𝐶)) = ((𝐴 ·s ( 1s /su 𝐶)) +s (𝐵 ·s ( 1s /su 𝐶)))) |
| 9 | 1, 2 | addscld 27894 | . . 3 ⊢ (𝜑 → (𝐴 +s 𝐵) ∈ No ) |
| 10 | 9, 5, 6 | divsrecd 28143 | . 2 ⊢ (𝜑 → ((𝐴 +s 𝐵) /su 𝐶) = ((𝐴 +s 𝐵) ·s ( 1s /su 𝐶))) |
| 11 | 1, 5, 6 | divsrecd 28143 | . . 3 ⊢ (𝜑 → (𝐴 /su 𝐶) = (𝐴 ·s ( 1s /su 𝐶))) |
| 12 | 2, 5, 6 | divsrecd 28143 | . . 3 ⊢ (𝜑 → (𝐵 /su 𝐶) = (𝐵 ·s ( 1s /su 𝐶))) |
| 13 | 11, 12 | oveq12d 7412 | . 2 ⊢ (𝜑 → ((𝐴 /su 𝐶) +s (𝐵 /su 𝐶)) = ((𝐴 ·s ( 1s /su 𝐶)) +s (𝐵 ·s ( 1s /su 𝐶)))) |
| 14 | 8, 10, 13 | 3eqtr4d 2775 | 1 ⊢ (𝜑 → ((𝐴 +s 𝐵) /su 𝐶) = ((𝐴 /su 𝐶) +s (𝐵 /su 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 (class class class)co 7394 No csur 27558 0s c0s 27741 1s c1s 27742 +s cadds 27873 ·s cmuls 28016 /su cdivs 28097 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-dc 10417 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-ot 4606 df-uni 4880 df-int 4919 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-2o 8444 df-oadd 8447 df-nadd 8641 df-no 27561 df-slt 27562 df-bday 27563 df-sle 27664 df-sslt 27700 df-scut 27702 df-0s 27743 df-1s 27744 df-made 27762 df-old 27763 df-left 27765 df-right 27766 df-norec 27852 df-norec2 27863 df-adds 27874 df-negs 27934 df-subs 27935 df-muls 28017 df-divs 28098 |
| This theorem is referenced by: addhalfcut 28341 pw2cut 28342 |
| Copyright terms: Public domain | W3C validator |