| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divsdird | Structured version Visualization version GIF version | ||
| Description: Distribution of surreal division over addition. (Contributed by Scott Fenton, 13-Aug-2025.) |
| Ref | Expression |
|---|---|
| divsdird.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| divsdird.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| divsdird.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| divsdird.4 | ⊢ (𝜑 → 𝐶 ≠ 0s ) |
| Ref | Expression |
|---|---|
| divsdird | ⊢ (𝜑 → ((𝐴 +s 𝐵) /su 𝐶) = ((𝐴 /su 𝐶) +s (𝐵 /su 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divsdird.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 2 | divsdird.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 3 | 1sno 27807 | . . . . 5 ⊢ 1s ∈ No | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → 1s ∈ No ) |
| 5 | divsdird.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 6 | divsdird.4 | . . . 4 ⊢ (𝜑 → 𝐶 ≠ 0s ) | |
| 7 | 4, 5, 6 | divscld 28183 | . . 3 ⊢ (𝜑 → ( 1s /su 𝐶) ∈ No ) |
| 8 | 1, 2, 7 | addsdird 28118 | . 2 ⊢ (𝜑 → ((𝐴 +s 𝐵) ·s ( 1s /su 𝐶)) = ((𝐴 ·s ( 1s /su 𝐶)) +s (𝐵 ·s ( 1s /su 𝐶)))) |
| 9 | 1, 2 | addscld 27948 | . . 3 ⊢ (𝜑 → (𝐴 +s 𝐵) ∈ No ) |
| 10 | 9, 5, 6 | divsrecd 28193 | . 2 ⊢ (𝜑 → ((𝐴 +s 𝐵) /su 𝐶) = ((𝐴 +s 𝐵) ·s ( 1s /su 𝐶))) |
| 11 | 1, 5, 6 | divsrecd 28193 | . . 3 ⊢ (𝜑 → (𝐴 /su 𝐶) = (𝐴 ·s ( 1s /su 𝐶))) |
| 12 | 2, 5, 6 | divsrecd 28193 | . . 3 ⊢ (𝜑 → (𝐵 /su 𝐶) = (𝐵 ·s ( 1s /su 𝐶))) |
| 13 | 11, 12 | oveq12d 7430 | . 2 ⊢ (𝜑 → ((𝐴 /su 𝐶) +s (𝐵 /su 𝐶)) = ((𝐴 ·s ( 1s /su 𝐶)) +s (𝐵 ·s ( 1s /su 𝐶)))) |
| 14 | 8, 10, 13 | 3eqtr4d 2779 | 1 ⊢ (𝜑 → ((𝐴 +s 𝐵) /su 𝐶) = ((𝐴 /su 𝐶) +s (𝐵 /su 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 (class class class)co 7412 No csur 27619 0s c0s 27802 1s c1s 27803 +s cadds 27927 ·s cmuls 28067 /su cdivs 28148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-dc 10467 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-ot 4615 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-nadd 8685 df-no 27622 df-slt 27623 df-bday 27624 df-sle 27725 df-sslt 27761 df-scut 27763 df-0s 27804 df-1s 27805 df-made 27821 df-old 27822 df-left 27824 df-right 27825 df-norec 27906 df-norec2 27917 df-adds 27928 df-negs 27988 df-subs 27989 df-muls 28068 df-divs 28149 |
| This theorem is referenced by: addhalfcut 28354 pw2cut 28355 |
| Copyright terms: Public domain | W3C validator |