MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zsoring Structured version   Visualization version   GIF version

Theorem zsoring 28336
Description: The surreal integers form an ordered ring. Note that we have to restrict the operations here since No is a proper class. (Contributed by Scott Fenton, 23-Dec-2025.)
Hypotheses
Ref Expression
zsoring.1 s = (Base‘𝐾)
zsoring.2 ( +s ↾ (ℤs × ℤs)) = (+g𝐾)
zsoring.3 ( ·s ↾ (ℤs × ℤs)) = (.r𝐾)
zsoring.4 ( ≤s ∩ (ℤs × ℤs)) = (le‘𝐾)
zsoring.5 0s = (0g𝐾)
Assertion
Ref Expression
zsoring 𝐾 ∈ oRing

Proof of Theorem zsoring
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zsoring.1 . . . 4 s = (Base‘𝐾)
2 zsoring.2 . . . 4 ( +s ↾ (ℤs × ℤs)) = (+g𝐾)
3 ovres 7535 . . . . 5 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → (𝑥( +s ↾ (ℤs × ℤs))𝑦) = (𝑥 +s 𝑦))
4 zaddscl 28322 . . . . 5 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → (𝑥 +s 𝑦) ∈ ℤs)
53, 4eqeltrd 2828 . . . 4 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → (𝑥( +s ↾ (ℤs × ℤs))𝑦) ∈ ℤs)
6 zno 28310 . . . . . 6 (𝑥 ∈ ℤs𝑥 No )
7 zno 28310 . . . . . 6 (𝑦 ∈ ℤs𝑦 No )
8 zno 28310 . . . . . 6 (𝑧 ∈ ℤs𝑧 No )
9 addsass 27952 . . . . . 6 ((𝑥 No 𝑦 No 𝑧 No ) → ((𝑥 +s 𝑦) +s 𝑧) = (𝑥 +s (𝑦 +s 𝑧)))
106, 7, 8, 9syl3an 1160 . . . . 5 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥 +s 𝑦) +s 𝑧) = (𝑥 +s (𝑦 +s 𝑧)))
1133adant3 1132 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( +s ↾ (ℤs × ℤs))𝑦) = (𝑥 +s 𝑦))
1211oveq1d 7384 . . . . . 6 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( +s ↾ (ℤs × ℤs))𝑦)( +s ↾ (ℤs × ℤs))𝑧) = ((𝑥 +s 𝑦)( +s ↾ (ℤs × ℤs))𝑧))
1343adant3 1132 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥 +s 𝑦) ∈ ℤs)
14 simp3 1138 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → 𝑧 ∈ ℤs)
1513, 14ovresd 7536 . . . . . 6 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥 +s 𝑦)( +s ↾ (ℤs × ℤs))𝑧) = ((𝑥 +s 𝑦) +s 𝑧))
1612, 15eqtrd 2764 . . . . 5 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( +s ↾ (ℤs × ℤs))𝑦)( +s ↾ (ℤs × ℤs))𝑧) = ((𝑥 +s 𝑦) +s 𝑧))
17 ovres 7535 . . . . . . . 8 ((𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑦( +s ↾ (ℤs × ℤs))𝑧) = (𝑦 +s 𝑧))
18173adant1 1130 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑦( +s ↾ (ℤs × ℤs))𝑧) = (𝑦 +s 𝑧))
1918oveq2d 7385 . . . . . 6 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( +s ↾ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧)) = (𝑥( +s ↾ (ℤs × ℤs))(𝑦 +s 𝑧)))
20 simp1 1136 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → 𝑥 ∈ ℤs)
21 zaddscl 28322 . . . . . . . 8 ((𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑦 +s 𝑧) ∈ ℤs)
22213adant1 1130 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑦 +s 𝑧) ∈ ℤs)
2320, 22ovresd 7536 . . . . . 6 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( +s ↾ (ℤs × ℤs))(𝑦 +s 𝑧)) = (𝑥 +s (𝑦 +s 𝑧)))
2419, 23eqtrd 2764 . . . . 5 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( +s ↾ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧)) = (𝑥 +s (𝑦 +s 𝑧)))
2510, 16, 243eqtr4d 2774 . . . 4 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( +s ↾ (ℤs × ℤs))𝑦)( +s ↾ (ℤs × ℤs))𝑧) = (𝑥( +s ↾ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧)))
26 0zs 28316 . . . 4 0s ∈ ℤs
27 ovres 7535 . . . . . 6 (( 0s ∈ ℤs𝑥 ∈ ℤs) → ( 0s ( +s ↾ (ℤs × ℤs))𝑥) = ( 0s +s 𝑥))
2826, 27mpan 690 . . . . 5 (𝑥 ∈ ℤs → ( 0s ( +s ↾ (ℤs × ℤs))𝑥) = ( 0s +s 𝑥))
29 addslid 27915 . . . . . 6 (𝑥 No → ( 0s +s 𝑥) = 𝑥)
306, 29syl 17 . . . . 5 (𝑥 ∈ ℤs → ( 0s +s 𝑥) = 𝑥)
3128, 30eqtrd 2764 . . . 4 (𝑥 ∈ ℤs → ( 0s ( +s ↾ (ℤs × ℤs))𝑥) = 𝑥)
32 znegscl 28320 . . . 4 (𝑥 ∈ ℤs → ( -us𝑥) ∈ ℤs)
33 id 22 . . . . . 6 (𝑥 ∈ ℤs𝑥 ∈ ℤs)
3432, 33ovresd 7536 . . . . 5 (𝑥 ∈ ℤs → (( -us𝑥)( +s ↾ (ℤs × ℤs))𝑥) = (( -us𝑥) +s 𝑥))
3532znod 28311 . . . . . 6 (𝑥 ∈ ℤs → ( -us𝑥) ∈ No )
3635, 6addscomd 27914 . . . . 5 (𝑥 ∈ ℤs → (( -us𝑥) +s 𝑥) = (𝑥 +s ( -us𝑥)))
376negsidd 27988 . . . . 5 (𝑥 ∈ ℤs → (𝑥 +s ( -us𝑥)) = 0s )
3834, 36, 373eqtrd 2768 . . . 4 (𝑥 ∈ ℤs → (( -us𝑥)( +s ↾ (ℤs × ℤs))𝑥) = 0s )
391, 2, 5, 25, 26, 31, 32, 38isgrpi 18873 . . 3 𝐾 ∈ Grp
40 ovres 7535 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → (𝑥( ·s ↾ (ℤs × ℤs))𝑦) = (𝑥 ·s 𝑦))
41 simpl 482 . . . . . . . 8 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → 𝑥 ∈ ℤs)
42 simpr 484 . . . . . . . 8 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → 𝑦 ∈ ℤs)
4341, 42zmulscld 28325 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → (𝑥 ·s 𝑦) ∈ ℤs)
4440, 43eqeltrd 2828 . . . . . 6 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → (𝑥( ·s ↾ (ℤs × ℤs))𝑦) ∈ ℤs)
45 mulsass 28109 . . . . . . . . . 10 ((𝑥 No 𝑦 No 𝑧 No ) → ((𝑥 ·s 𝑦) ·s 𝑧) = (𝑥 ·s (𝑦 ·s 𝑧)))
466, 7, 8, 45syl3an 1160 . . . . . . . . 9 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥 ·s 𝑦) ·s 𝑧) = (𝑥 ·s (𝑦 ·s 𝑧)))
47403adant3 1132 . . . . . . . . . . 11 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( ·s ↾ (ℤs × ℤs))𝑦) = (𝑥 ·s 𝑦))
4847oveq1d 7384 . . . . . . . . . 10 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( ·s ↾ (ℤs × ℤs))𝑦)( ·s ↾ (ℤs × ℤs))𝑧) = ((𝑥 ·s 𝑦)( ·s ↾ (ℤs × ℤs))𝑧))
49 simp2 1137 . . . . . . . . . . . 12 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → 𝑦 ∈ ℤs)
5020, 49zmulscld 28325 . . . . . . . . . . 11 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥 ·s 𝑦) ∈ ℤs)
5150, 14ovresd 7536 . . . . . . . . . 10 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥 ·s 𝑦)( ·s ↾ (ℤs × ℤs))𝑧) = ((𝑥 ·s 𝑦) ·s 𝑧))
5248, 51eqtrd 2764 . . . . . . . . 9 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( ·s ↾ (ℤs × ℤs))𝑦)( ·s ↾ (ℤs × ℤs))𝑧) = ((𝑥 ·s 𝑦) ·s 𝑧))
53 ovres 7535 . . . . . . . . . . . 12 ((𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑦( ·s ↾ (ℤs × ℤs))𝑧) = (𝑦 ·s 𝑧))
54533adant1 1130 . . . . . . . . . . 11 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑦( ·s ↾ (ℤs × ℤs))𝑧) = (𝑦 ·s 𝑧))
5554oveq2d 7385 . . . . . . . . . 10 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( ·s ↾ (ℤs × ℤs))(𝑦( ·s ↾ (ℤs × ℤs))𝑧)) = (𝑥( ·s ↾ (ℤs × ℤs))(𝑦 ·s 𝑧)))
5649, 14zmulscld 28325 . . . . . . . . . . 11 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑦 ·s 𝑧) ∈ ℤs)
5720, 56ovresd 7536 . . . . . . . . . 10 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( ·s ↾ (ℤs × ℤs))(𝑦 ·s 𝑧)) = (𝑥 ·s (𝑦 ·s 𝑧)))
5855, 57eqtrd 2764 . . . . . . . . 9 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( ·s ↾ (ℤs × ℤs))(𝑦( ·s ↾ (ℤs × ℤs))𝑧)) = (𝑥 ·s (𝑦 ·s 𝑧)))
5946, 52, 583eqtr4d 2774 . . . . . . . 8 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( ·s ↾ (ℤs × ℤs))𝑦)( ·s ↾ (ℤs × ℤs))𝑧) = (𝑥( ·s ↾ (ℤs × ℤs))(𝑦( ·s ↾ (ℤs × ℤs))𝑧)))
60593expa 1118 . . . . . . 7 (((𝑥 ∈ ℤs𝑦 ∈ ℤs) ∧ 𝑧 ∈ ℤs) → ((𝑥( ·s ↾ (ℤs × ℤs))𝑦)( ·s ↾ (ℤs × ℤs))𝑧) = (𝑥( ·s ↾ (ℤs × ℤs))(𝑦( ·s ↾ (ℤs × ℤs))𝑧)))
6160ralrimiva 3125 . . . . . 6 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → ∀𝑧 ∈ ℤs ((𝑥( ·s ↾ (ℤs × ℤs))𝑦)( ·s ↾ (ℤs × ℤs))𝑧) = (𝑥( ·s ↾ (ℤs × ℤs))(𝑦( ·s ↾ (ℤs × ℤs))𝑧)))
6244, 61jca 511 . . . . 5 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → ((𝑥( ·s ↾ (ℤs × ℤs))𝑦) ∈ ℤs ∧ ∀𝑧 ∈ ℤs ((𝑥( ·s ↾ (ℤs × ℤs))𝑦)( ·s ↾ (ℤs × ℤs))𝑧) = (𝑥( ·s ↾ (ℤs × ℤs))(𝑦( ·s ↾ (ℤs × ℤs))𝑧))))
6362rgen2 3175 . . . 4 𝑥 ∈ ℤs𝑦 ∈ ℤs ((𝑥( ·s ↾ (ℤs × ℤs))𝑦) ∈ ℤs ∧ ∀𝑧 ∈ ℤs ((𝑥( ·s ↾ (ℤs × ℤs))𝑦)( ·s ↾ (ℤs × ℤs))𝑧) = (𝑥( ·s ↾ (ℤs × ℤs))(𝑦( ·s ↾ (ℤs × ℤs))𝑧)))
64 1zs 28319 . . . . 5 1s ∈ ℤs
65 ovres 7535 . . . . . . . . 9 (( 1s ∈ ℤs𝑥 ∈ ℤs) → ( 1s ( ·s ↾ (ℤs × ℤs))𝑥) = ( 1s ·s 𝑥))
6664, 65mpan 690 . . . . . . . 8 (𝑥 ∈ ℤs → ( 1s ( ·s ↾ (ℤs × ℤs))𝑥) = ( 1s ·s 𝑥))
676mulslidd 28086 . . . . . . . 8 (𝑥 ∈ ℤs → ( 1s ·s 𝑥) = 𝑥)
6866, 67eqtrd 2764 . . . . . . 7 (𝑥 ∈ ℤs → ( 1s ( ·s ↾ (ℤs × ℤs))𝑥) = 𝑥)
69 ovres 7535 . . . . . . . . 9 ((𝑥 ∈ ℤs ∧ 1s ∈ ℤs) → (𝑥( ·s ↾ (ℤs × ℤs)) 1s ) = (𝑥 ·s 1s ))
7064, 69mpan2 691 . . . . . . . 8 (𝑥 ∈ ℤs → (𝑥( ·s ↾ (ℤs × ℤs)) 1s ) = (𝑥 ·s 1s ))
716mulsridd 28057 . . . . . . . 8 (𝑥 ∈ ℤs → (𝑥 ·s 1s ) = 𝑥)
7270, 71eqtrd 2764 . . . . . . 7 (𝑥 ∈ ℤs → (𝑥( ·s ↾ (ℤs × ℤs)) 1s ) = 𝑥)
7368, 72jca 511 . . . . . 6 (𝑥 ∈ ℤs → (( 1s ( ·s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( ·s ↾ (ℤs × ℤs)) 1s ) = 𝑥))
7473rgen 3046 . . . . 5 𝑥 ∈ ℤs (( 1s ( ·s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( ·s ↾ (ℤs × ℤs)) 1s ) = 𝑥)
75 oveq1 7376 . . . . . . . 8 (𝑦 = 1s → (𝑦( ·s ↾ (ℤs × ℤs))𝑥) = ( 1s ( ·s ↾ (ℤs × ℤs))𝑥))
7675eqeq1d 2731 . . . . . . 7 (𝑦 = 1s → ((𝑦( ·s ↾ (ℤs × ℤs))𝑥) = 𝑥 ↔ ( 1s ( ·s ↾ (ℤs × ℤs))𝑥) = 𝑥))
7776ovanraleqv 7393 . . . . . 6 (𝑦 = 1s → (∀𝑥 ∈ ℤs ((𝑦( ·s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( ·s ↾ (ℤs × ℤs))𝑦) = 𝑥) ↔ ∀𝑥 ∈ ℤs (( 1s ( ·s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( ·s ↾ (ℤs × ℤs)) 1s ) = 𝑥)))
7877rspcev 3585 . . . . 5 (( 1s ∈ ℤs ∧ ∀𝑥 ∈ ℤs (( 1s ( ·s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( ·s ↾ (ℤs × ℤs)) 1s ) = 𝑥)) → ∃𝑦 ∈ ℤs𝑥 ∈ ℤs ((𝑦( ·s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( ·s ↾ (ℤs × ℤs))𝑦) = 𝑥))
7964, 74, 78mp2an 692 . . . 4 𝑦 ∈ ℤs𝑥 ∈ ℤs ((𝑦( ·s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( ·s ↾ (ℤs × ℤs))𝑦) = 𝑥)
80 eqid 2729 . . . . . 6 (mulGrp‘𝐾) = (mulGrp‘𝐾)
8180, 1mgpbas 20065 . . . . 5 s = (Base‘(mulGrp‘𝐾))
82 zsoring.3 . . . . . 6 ( ·s ↾ (ℤs × ℤs)) = (.r𝐾)
8380, 82mgpplusg 20064 . . . . 5 ( ·s ↾ (ℤs × ℤs)) = (+g‘(mulGrp‘𝐾))
8481, 83ismnd 18646 . . . 4 ((mulGrp‘𝐾) ∈ Mnd ↔ (∀𝑥 ∈ ℤs𝑦 ∈ ℤs ((𝑥( ·s ↾ (ℤs × ℤs))𝑦) ∈ ℤs ∧ ∀𝑧 ∈ ℤs ((𝑥( ·s ↾ (ℤs × ℤs))𝑦)( ·s ↾ (ℤs × ℤs))𝑧) = (𝑥( ·s ↾ (ℤs × ℤs))(𝑦( ·s ↾ (ℤs × ℤs))𝑧))) ∧ ∃𝑦 ∈ ℤs𝑥 ∈ ℤs ((𝑦( ·s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( ·s ↾ (ℤs × ℤs))𝑦) = 𝑥)))
8563, 79, 84mpbir2an 711 . . 3 (mulGrp‘𝐾) ∈ Mnd
86 addsdi 28098 . . . . . . 7 ((𝑥 No 𝑦 No 𝑧 No ) → (𝑥 ·s (𝑦 +s 𝑧)) = ((𝑥 ·s 𝑦) +s (𝑥 ·s 𝑧)))
876, 7, 8, 86syl3an 1160 . . . . . 6 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥 ·s (𝑦 +s 𝑧)) = ((𝑥 ·s 𝑦) +s (𝑥 ·s 𝑧)))
8818oveq2d 7385 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( ·s ↾ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧)) = (𝑥( ·s ↾ (ℤs × ℤs))(𝑦 +s 𝑧)))
8920, 22ovresd 7536 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( ·s ↾ (ℤs × ℤs))(𝑦 +s 𝑧)) = (𝑥 ·s (𝑦 +s 𝑧)))
9088, 89eqtrd 2764 . . . . . 6 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( ·s ↾ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧)) = (𝑥 ·s (𝑦 +s 𝑧)))
91 ovres 7535 . . . . . . . . 9 ((𝑥 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( ·s ↾ (ℤs × ℤs))𝑧) = (𝑥 ·s 𝑧))
92913adant2 1131 . . . . . . . 8 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( ·s ↾ (ℤs × ℤs))𝑧) = (𝑥 ·s 𝑧))
9347, 92oveq12d 7387 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( ·s ↾ (ℤs × ℤs))𝑦)( +s ↾ (ℤs × ℤs))(𝑥( ·s ↾ (ℤs × ℤs))𝑧)) = ((𝑥 ·s 𝑦)( +s ↾ (ℤs × ℤs))(𝑥 ·s 𝑧)))
9420, 14zmulscld 28325 . . . . . . . 8 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥 ·s 𝑧) ∈ ℤs)
9550, 94ovresd 7536 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥 ·s 𝑦)( +s ↾ (ℤs × ℤs))(𝑥 ·s 𝑧)) = ((𝑥 ·s 𝑦) +s (𝑥 ·s 𝑧)))
9693, 95eqtrd 2764 . . . . . 6 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( ·s ↾ (ℤs × ℤs))𝑦)( +s ↾ (ℤs × ℤs))(𝑥( ·s ↾ (ℤs × ℤs))𝑧)) = ((𝑥 ·s 𝑦) +s (𝑥 ·s 𝑧)))
9787, 90, 963eqtr4d 2774 . . . . 5 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( ·s ↾ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧)) = ((𝑥( ·s ↾ (ℤs × ℤs))𝑦)( +s ↾ (ℤs × ℤs))(𝑥( ·s ↾ (ℤs × ℤs))𝑧)))
9820znod 28311 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → 𝑥 No )
9949znod 28311 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → 𝑦 No )
10014znod 28311 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → 𝑧 No )
10198, 99, 100addsdird 28100 . . . . . 6 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥 +s 𝑦) ·s 𝑧) = ((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑧)))
10211oveq1d 7384 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( +s ↾ (ℤs × ℤs))𝑦)( ·s ↾ (ℤs × ℤs))𝑧) = ((𝑥 +s 𝑦)( ·s ↾ (ℤs × ℤs))𝑧))
10313, 14ovresd 7536 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥 +s 𝑦)( ·s ↾ (ℤs × ℤs))𝑧) = ((𝑥 +s 𝑦) ·s 𝑧))
104102, 103eqtrd 2764 . . . . . 6 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( +s ↾ (ℤs × ℤs))𝑦)( ·s ↾ (ℤs × ℤs))𝑧) = ((𝑥 +s 𝑦) ·s 𝑧))
10592, 54oveq12d 7387 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( ·s ↾ (ℤs × ℤs))𝑧)( +s ↾ (ℤs × ℤs))(𝑦( ·s ↾ (ℤs × ℤs))𝑧)) = ((𝑥 ·s 𝑧)( +s ↾ (ℤs × ℤs))(𝑦 ·s 𝑧)))
10694, 56ovresd 7536 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥 ·s 𝑧)( +s ↾ (ℤs × ℤs))(𝑦 ·s 𝑧)) = ((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑧)))
107105, 106eqtrd 2764 . . . . . 6 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( ·s ↾ (ℤs × ℤs))𝑧)( +s ↾ (ℤs × ℤs))(𝑦( ·s ↾ (ℤs × ℤs))𝑧)) = ((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑧)))
108101, 104, 1073eqtr4d 2774 . . . . 5 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( +s ↾ (ℤs × ℤs))𝑦)( ·s ↾ (ℤs × ℤs))𝑧) = ((𝑥( ·s ↾ (ℤs × ℤs))𝑧)( +s ↾ (ℤs × ℤs))(𝑦( ·s ↾ (ℤs × ℤs))𝑧)))
10997, 108jca 511 . . . 4 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( ·s ↾ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧)) = ((𝑥( ·s ↾ (ℤs × ℤs))𝑦)( +s ↾ (ℤs × ℤs))(𝑥( ·s ↾ (ℤs × ℤs))𝑧)) ∧ ((𝑥( +s ↾ (ℤs × ℤs))𝑦)( ·s ↾ (ℤs × ℤs))𝑧) = ((𝑥( ·s ↾ (ℤs × ℤs))𝑧)( +s ↾ (ℤs × ℤs))(𝑦( ·s ↾ (ℤs × ℤs))𝑧))))
110109rgen3 3180 . . 3 𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs ((𝑥( ·s ↾ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧)) = ((𝑥( ·s ↾ (ℤs × ℤs))𝑦)( +s ↾ (ℤs × ℤs))(𝑥( ·s ↾ (ℤs × ℤs))𝑧)) ∧ ((𝑥( +s ↾ (ℤs × ℤs))𝑦)( ·s ↾ (ℤs × ℤs))𝑧) = ((𝑥( ·s ↾ (ℤs × ℤs))𝑧)( +s ↾ (ℤs × ℤs))(𝑦( ·s ↾ (ℤs × ℤs))𝑧)))
1111, 80, 2, 82isring 20157 . . 3 (𝐾 ∈ Ring ↔ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd ∧ ∀𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs ((𝑥( ·s ↾ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧)) = ((𝑥( ·s ↾ (ℤs × ℤs))𝑦)( +s ↾ (ℤs × ℤs))(𝑥( ·s ↾ (ℤs × ℤs))𝑧)) ∧ ((𝑥( +s ↾ (ℤs × ℤs))𝑦)( ·s ↾ (ℤs × ℤs))𝑧) = ((𝑥( ·s ↾ (ℤs × ℤs))𝑧)( +s ↾ (ℤs × ℤs))(𝑦( ·s ↾ (ℤs × ℤs))𝑧)))))
11239, 85, 110, 111mpbir3an 1342 . 2 𝐾 ∈ Ring
113253expa 1118 . . . . . . . 8 (((𝑥 ∈ ℤs𝑦 ∈ ℤs) ∧ 𝑧 ∈ ℤs) → ((𝑥( +s ↾ (ℤs × ℤs))𝑦)( +s ↾ (ℤs × ℤs))𝑧) = (𝑥( +s ↾ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧)))
114113ralrimiva 3125 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → ∀𝑧 ∈ ℤs ((𝑥( +s ↾ (ℤs × ℤs))𝑦)( +s ↾ (ℤs × ℤs))𝑧) = (𝑥( +s ↾ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧)))
1155, 114jca 511 . . . . . 6 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → ((𝑥( +s ↾ (ℤs × ℤs))𝑦) ∈ ℤs ∧ ∀𝑧 ∈ ℤs ((𝑥( +s ↾ (ℤs × ℤs))𝑦)( +s ↾ (ℤs × ℤs))𝑧) = (𝑥( +s ↾ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧))))
116115rgen2 3175 . . . . 5 𝑥 ∈ ℤs𝑦 ∈ ℤs ((𝑥( +s ↾ (ℤs × ℤs))𝑦) ∈ ℤs ∧ ∀𝑧 ∈ ℤs ((𝑥( +s ↾ (ℤs × ℤs))𝑦)( +s ↾ (ℤs × ℤs))𝑧) = (𝑥( +s ↾ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧)))
117 ovres 7535 . . . . . . . . . 10 ((𝑥 ∈ ℤs ∧ 0s ∈ ℤs) → (𝑥( +s ↾ (ℤs × ℤs)) 0s ) = (𝑥 +s 0s ))
11826, 117mpan2 691 . . . . . . . . 9 (𝑥 ∈ ℤs → (𝑥( +s ↾ (ℤs × ℤs)) 0s ) = (𝑥 +s 0s ))
1196addsridd 27912 . . . . . . . . 9 (𝑥 ∈ ℤs → (𝑥 +s 0s ) = 𝑥)
120118, 119eqtrd 2764 . . . . . . . 8 (𝑥 ∈ ℤs → (𝑥( +s ↾ (ℤs × ℤs)) 0s ) = 𝑥)
12131, 120jca 511 . . . . . . 7 (𝑥 ∈ ℤs → (( 0s ( +s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( +s ↾ (ℤs × ℤs)) 0s ) = 𝑥))
122121rgen 3046 . . . . . 6 𝑥 ∈ ℤs (( 0s ( +s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( +s ↾ (ℤs × ℤs)) 0s ) = 𝑥)
123 oveq1 7376 . . . . . . . . 9 (𝑦 = 0s → (𝑦( +s ↾ (ℤs × ℤs))𝑥) = ( 0s ( +s ↾ (ℤs × ℤs))𝑥))
124123eqeq1d 2731 . . . . . . . 8 (𝑦 = 0s → ((𝑦( +s ↾ (ℤs × ℤs))𝑥) = 𝑥 ↔ ( 0s ( +s ↾ (ℤs × ℤs))𝑥) = 𝑥))
125124ovanraleqv 7393 . . . . . . 7 (𝑦 = 0s → (∀𝑥 ∈ ℤs ((𝑦( +s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( +s ↾ (ℤs × ℤs))𝑦) = 𝑥) ↔ ∀𝑥 ∈ ℤs (( 0s ( +s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( +s ↾ (ℤs × ℤs)) 0s ) = 𝑥)))
126125rspcev 3585 . . . . . 6 (( 0s ∈ ℤs ∧ ∀𝑥 ∈ ℤs (( 0s ( +s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( +s ↾ (ℤs × ℤs)) 0s ) = 𝑥)) → ∃𝑦 ∈ ℤs𝑥 ∈ ℤs ((𝑦( +s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( +s ↾ (ℤs × ℤs))𝑦) = 𝑥))
12726, 122, 126mp2an 692 . . . . 5 𝑦 ∈ ℤs𝑥 ∈ ℤs ((𝑦( +s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( +s ↾ (ℤs × ℤs))𝑦) = 𝑥)
1281, 2ismnd 18646 . . . . 5 (𝐾 ∈ Mnd ↔ (∀𝑥 ∈ ℤs𝑦 ∈ ℤs ((𝑥( +s ↾ (ℤs × ℤs))𝑦) ∈ ℤs ∧ ∀𝑧 ∈ ℤs ((𝑥( +s ↾ (ℤs × ℤs))𝑦)( +s ↾ (ℤs × ℤs))𝑧) = (𝑥( +s ↾ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧))) ∧ ∃𝑦 ∈ ℤs𝑥 ∈ ℤs ((𝑦( +s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( +s ↾ (ℤs × ℤs))𝑦) = 𝑥)))
129116, 127, 128mpbir2an 711 . . . 4 𝐾 ∈ Mnd
13039elexi 3467 . . . . . 6 𝐾 ∈ V
131 slerflex 27708 . . . . . . . . . . 11 (𝑥 No 𝑥 ≤s 𝑥)
1326, 131syl 17 . . . . . . . . . 10 (𝑥 ∈ ℤs𝑥 ≤s 𝑥)
133 brxp 5680 . . . . . . . . . . . 12 (𝑥(ℤs × ℤs)𝑥 ↔ (𝑥 ∈ ℤs𝑥 ∈ ℤs))
134133biimpri 228 . . . . . . . . . . 11 ((𝑥 ∈ ℤs𝑥 ∈ ℤs) → 𝑥(ℤs × ℤs)𝑥)
135134anidms 566 . . . . . . . . . 10 (𝑥 ∈ ℤs𝑥(ℤs × ℤs)𝑥)
136 brin 5154 . . . . . . . . . 10 (𝑥( ≤s ∩ (ℤs × ℤs))𝑥 ↔ (𝑥 ≤s 𝑥𝑥(ℤs × ℤs)𝑥))
137132, 135, 136sylanbrc 583 . . . . . . . . 9 (𝑥 ∈ ℤs𝑥( ≤s ∩ (ℤs × ℤs))𝑥)
1381373ad2ant1 1133 . . . . . . . 8 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → 𝑥( ≤s ∩ (ℤs × ℤs))𝑥)
139 brin 5154 . . . . . . . . . . 11 (𝑥( ≤s ∩ (ℤs × ℤs))𝑦 ↔ (𝑥 ≤s 𝑦𝑥(ℤs × ℤs)𝑦))
140 brxp 5680 . . . . . . . . . . . . . 14 (𝑥(ℤs × ℤs)𝑦 ↔ (𝑥 ∈ ℤs𝑦 ∈ ℤs))
141140biimpri 228 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → 𝑥(ℤs × ℤs)𝑦)
1421413adant3 1132 . . . . . . . . . . . 12 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → 𝑥(ℤs × ℤs)𝑦)
143142biantrud 531 . . . . . . . . . . 11 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥 ≤s 𝑦 ↔ (𝑥 ≤s 𝑦𝑥(ℤs × ℤs)𝑦)))
144139, 143bitr4id 290 . . . . . . . . . 10 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑥 ≤s 𝑦))
145 brin 5154 . . . . . . . . . . . 12 (𝑦( ≤s ∩ (ℤs × ℤs))𝑥 ↔ (𝑦 ≤s 𝑥𝑦(ℤs × ℤs)𝑥))
146 brxp 5680 . . . . . . . . . . . . . . 15 (𝑦(ℤs × ℤs)𝑥 ↔ (𝑦 ∈ ℤs𝑥 ∈ ℤs))
147146biimpri 228 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℤs𝑥 ∈ ℤs) → 𝑦(ℤs × ℤs)𝑥)
148147ancoms 458 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → 𝑦(ℤs × ℤs)𝑥)
149148biantrud 531 . . . . . . . . . . . 12 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → (𝑦 ≤s 𝑥 ↔ (𝑦 ≤s 𝑥𝑦(ℤs × ℤs)𝑥)))
150145, 149bitr4id 290 . . . . . . . . . . 11 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → (𝑦( ≤s ∩ (ℤs × ℤs))𝑥𝑦 ≤s 𝑥))
1511503adant3 1132 . . . . . . . . . 10 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑦( ≤s ∩ (ℤs × ℤs))𝑥𝑦 ≤s 𝑥))
152144, 151anbi12d 632 . . . . . . . . 9 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑦( ≤s ∩ (ℤs × ℤs))𝑥) ↔ (𝑥 ≤s 𝑦𝑦 ≤s 𝑥)))
153 sletri3 27700 . . . . . . . . . . . 12 ((𝑥 No 𝑦 No ) → (𝑥 = 𝑦 ↔ (𝑥 ≤s 𝑦𝑦 ≤s 𝑥)))
1546, 7, 153syl2an 596 . . . . . . . . . . 11 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → (𝑥 = 𝑦 ↔ (𝑥 ≤s 𝑦𝑦 ≤s 𝑥)))
1551543adant3 1132 . . . . . . . . . 10 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥 = 𝑦 ↔ (𝑥 ≤s 𝑦𝑦 ≤s 𝑥)))
156155biimprd 248 . . . . . . . . 9 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥 ≤s 𝑦𝑦 ≤s 𝑥) → 𝑥 = 𝑦))
157152, 156sylbid 240 . . . . . . . 8 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑦( ≤s ∩ (ℤs × ℤs))𝑥) → 𝑥 = 𝑦))
158 sletr 27703 . . . . . . . . . 10 ((𝑥 No 𝑦 No 𝑧 No ) → ((𝑥 ≤s 𝑦𝑦 ≤s 𝑧) → 𝑥 ≤s 𝑧))
1596, 7, 8, 158syl3an 1160 . . . . . . . . 9 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥 ≤s 𝑦𝑦 ≤s 𝑧) → 𝑥 ≤s 𝑧))
160141biantrud 531 . . . . . . . . . . . 12 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → (𝑥 ≤s 𝑦 ↔ (𝑥 ≤s 𝑦𝑥(ℤs × ℤs)𝑦)))
161139, 160bitr4id 290 . . . . . . . . . . 11 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → (𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑥 ≤s 𝑦))
1621613adant3 1132 . . . . . . . . . 10 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑥 ≤s 𝑦))
163 brin 5154 . . . . . . . . . . 11 (𝑦( ≤s ∩ (ℤs × ℤs))𝑧 ↔ (𝑦 ≤s 𝑧𝑦(ℤs × ℤs)𝑧))
164 brxp 5680 . . . . . . . . . . . . . 14 (𝑦(ℤs × ℤs)𝑧 ↔ (𝑦 ∈ ℤs𝑧 ∈ ℤs))
165164biimpri 228 . . . . . . . . . . . . 13 ((𝑦 ∈ ℤs𝑧 ∈ ℤs) → 𝑦(ℤs × ℤs)𝑧)
1661653adant1 1130 . . . . . . . . . . . 12 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → 𝑦(ℤs × ℤs)𝑧)
167166biantrud 531 . . . . . . . . . . 11 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑦 ≤s 𝑧 ↔ (𝑦 ≤s 𝑧𝑦(ℤs × ℤs)𝑧)))
168163, 167bitr4id 290 . . . . . . . . . 10 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑦( ≤s ∩ (ℤs × ℤs))𝑧𝑦 ≤s 𝑧))
169162, 168anbi12d 632 . . . . . . . . 9 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑦( ≤s ∩ (ℤs × ℤs))𝑧) ↔ (𝑥 ≤s 𝑦𝑦 ≤s 𝑧)))
170 brin 5154 . . . . . . . . . 10 (𝑥( ≤s ∩ (ℤs × ℤs))𝑧 ↔ (𝑥 ≤s 𝑧𝑥(ℤs × ℤs)𝑧))
171 brxp 5680 . . . . . . . . . . . . 13 (𝑥(ℤs × ℤs)𝑧 ↔ (𝑥 ∈ ℤs𝑧 ∈ ℤs))
172171biimpri 228 . . . . . . . . . . . 12 ((𝑥 ∈ ℤs𝑧 ∈ ℤs) → 𝑥(ℤs × ℤs)𝑧)
1731723adant2 1131 . . . . . . . . . . 11 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → 𝑥(ℤs × ℤs)𝑧)
174173biantrud 531 . . . . . . . . . 10 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥 ≤s 𝑧 ↔ (𝑥 ≤s 𝑧𝑥(ℤs × ℤs)𝑧)))
175170, 174bitr4id 290 . . . . . . . . 9 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( ≤s ∩ (ℤs × ℤs))𝑧𝑥 ≤s 𝑧))
176159, 169, 1753imtr4d 294 . . . . . . . 8 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑦( ≤s ∩ (ℤs × ℤs))𝑧) → 𝑥( ≤s ∩ (ℤs × ℤs))𝑧))
177138, 157, 1763jca 1128 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( ≤s ∩ (ℤs × ℤs))𝑥 ∧ ((𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑦( ≤s ∩ (ℤs × ℤs))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑦( ≤s ∩ (ℤs × ℤs))𝑧) → 𝑥( ≤s ∩ (ℤs × ℤs))𝑧)))
178177rgen3 3180 . . . . . 6 𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs (𝑥( ≤s ∩ (ℤs × ℤs))𝑥 ∧ ((𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑦( ≤s ∩ (ℤs × ℤs))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑦( ≤s ∩ (ℤs × ℤs))𝑧) → 𝑥( ≤s ∩ (ℤs × ℤs))𝑧))
179 zsoring.4 . . . . . . 7 ( ≤s ∩ (ℤs × ℤs)) = (le‘𝐾)
1801, 179ispos 18255 . . . . . 6 (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ ∀𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs (𝑥( ≤s ∩ (ℤs × ℤs))𝑥 ∧ ((𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑦( ≤s ∩ (ℤs × ℤs))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑦( ≤s ∩ (ℤs × ℤs))𝑧) → 𝑥( ≤s ∩ (ℤs × ℤs))𝑧))))
181130, 178, 180mpbir2an 711 . . . . 5 𝐾 ∈ Poset
182 sletric 27709 . . . . . . . 8 ((𝑥 No 𝑦 No ) → (𝑥 ≤s 𝑦𝑦 ≤s 𝑥))
1836, 7, 182syl2an 596 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → (𝑥 ≤s 𝑦𝑦 ≤s 𝑥))
184161, 150orbi12d 918 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → ((𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑦( ≤s ∩ (ℤs × ℤs))𝑥) ↔ (𝑥 ≤s 𝑦𝑦 ≤s 𝑥)))
185183, 184mpbird 257 . . . . . 6 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → (𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑦( ≤s ∩ (ℤs × ℤs))𝑥))
186185rgen2 3175 . . . . 5 𝑥 ∈ ℤs𝑦 ∈ ℤs (𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑦( ≤s ∩ (ℤs × ℤs))𝑥)
1871, 179istos 18357 . . . . 5 (𝐾 ∈ Toset ↔ (𝐾 ∈ Poset ∧ ∀𝑥 ∈ ℤs𝑦 ∈ ℤs (𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑦( ≤s ∩ (ℤs × ℤs))𝑥)))
188181, 186, 187mpbir2an 711 . . . 4 𝐾 ∈ Toset
189 sleadd1 27936 . . . . . . . 8 ((𝑥 No 𝑦 No 𝑧 No ) → (𝑥 ≤s 𝑦 ↔ (𝑥 +s 𝑧) ≤s (𝑦 +s 𝑧)))
1906, 7, 8, 189syl3an 1160 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥 ≤s 𝑦 ↔ (𝑥 +s 𝑧) ≤s (𝑦 +s 𝑧)))
191190biimpd 229 . . . . . 6 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥 ≤s 𝑦 → (𝑥 +s 𝑧) ≤s (𝑦 +s 𝑧)))
19220, 14ovresd 7536 . . . . . . . 8 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( +s ↾ (ℤs × ℤs))𝑧) = (𝑥 +s 𝑧))
19349, 14ovresd 7536 . . . . . . . 8 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑦( +s ↾ (ℤs × ℤs))𝑧) = (𝑦 +s 𝑧))
194192, 193breq12d 5115 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( +s ↾ (ℤs × ℤs))𝑧)( ≤s ∩ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧) ↔ (𝑥 +s 𝑧)( ≤s ∩ (ℤs × ℤs))(𝑦 +s 𝑧)))
195 brin 5154 . . . . . . . 8 ((𝑥 +s 𝑧)( ≤s ∩ (ℤs × ℤs))(𝑦 +s 𝑧) ↔ ((𝑥 +s 𝑧) ≤s (𝑦 +s 𝑧) ∧ (𝑥 +s 𝑧)(ℤs × ℤs)(𝑦 +s 𝑧)))
196 zaddscl 28322 . . . . . . . . . . 11 ((𝑥 ∈ ℤs𝑧 ∈ ℤs) → (𝑥 +s 𝑧) ∈ ℤs)
1971963adant2 1131 . . . . . . . . . 10 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥 +s 𝑧) ∈ ℤs)
198 brxp 5680 . . . . . . . . . 10 ((𝑥 +s 𝑧)(ℤs × ℤs)(𝑦 +s 𝑧) ↔ ((𝑥 +s 𝑧) ∈ ℤs ∧ (𝑦 +s 𝑧) ∈ ℤs))
199197, 22, 198sylanbrc 583 . . . . . . . . 9 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥 +s 𝑧)(ℤs × ℤs)(𝑦 +s 𝑧))
200199biantrud 531 . . . . . . . 8 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥 +s 𝑧) ≤s (𝑦 +s 𝑧) ↔ ((𝑥 +s 𝑧) ≤s (𝑦 +s 𝑧) ∧ (𝑥 +s 𝑧)(ℤs × ℤs)(𝑦 +s 𝑧))))
201195, 200bitr4id 290 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥 +s 𝑧)( ≤s ∩ (ℤs × ℤs))(𝑦 +s 𝑧) ↔ (𝑥 +s 𝑧) ≤s (𝑦 +s 𝑧)))
202194, 201bitrd 279 . . . . . 6 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( +s ↾ (ℤs × ℤs))𝑧)( ≤s ∩ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧) ↔ (𝑥 +s 𝑧) ≤s (𝑦 +s 𝑧)))
203191, 144, 2023imtr4d 294 . . . . 5 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( ≤s ∩ (ℤs × ℤs))𝑦 → (𝑥( +s ↾ (ℤs × ℤs))𝑧)( ≤s ∩ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧)))
204203rgen3 3180 . . . 4 𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs (𝑥( ≤s ∩ (ℤs × ℤs))𝑦 → (𝑥( +s ↾ (ℤs × ℤs))𝑧)( ≤s ∩ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧))
2051, 2, 179isomnd 20037 . . . 4 (𝐾 ∈ oMnd ↔ (𝐾 ∈ Mnd ∧ 𝐾 ∈ Toset ∧ ∀𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs (𝑥( ≤s ∩ (ℤs × ℤs))𝑦 → (𝑥( +s ↾ (ℤs × ℤs))𝑧)( ≤s ∩ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧))))
206129, 188, 204, 205mpbir3an 1342 . . 3 𝐾 ∈ oMnd
207 isogrp 20038 . . 3 (𝐾 ∈ oGrp ↔ (𝐾 ∈ Grp ∧ 𝐾 ∈ oMnd))
20839, 206, 207mpbir2an 711 . 2 𝐾 ∈ oGrp
209 simplr 768 . . . . . . . 8 ((( 0s ≤s 𝑥𝑥 ∈ ℤs) ∧ ( 0s ≤s 𝑦𝑦 ∈ ℤs)) → 𝑥 ∈ ℤs)
210209znod 28311 . . . . . . 7 ((( 0s ≤s 𝑥𝑥 ∈ ℤs) ∧ ( 0s ≤s 𝑦𝑦 ∈ ℤs)) → 𝑥 No )
211 simprr 772 . . . . . . . 8 ((( 0s ≤s 𝑥𝑥 ∈ ℤs) ∧ ( 0s ≤s 𝑦𝑦 ∈ ℤs)) → 𝑦 ∈ ℤs)
212211znod 28311 . . . . . . 7 ((( 0s ≤s 𝑥𝑥 ∈ ℤs) ∧ ( 0s ≤s 𝑦𝑦 ∈ ℤs)) → 𝑦 No )
213 simpll 766 . . . . . . 7 ((( 0s ≤s 𝑥𝑥 ∈ ℤs) ∧ ( 0s ≤s 𝑦𝑦 ∈ ℤs)) → 0s ≤s 𝑥)
214 simprl 770 . . . . . . 7 ((( 0s ≤s 𝑥𝑥 ∈ ℤs) ∧ ( 0s ≤s 𝑦𝑦 ∈ ℤs)) → 0s ≤s 𝑦)
215210, 212, 213, 214mulsge0d 28089 . . . . . 6 ((( 0s ≤s 𝑥𝑥 ∈ ℤs) ∧ ( 0s ≤s 𝑦𝑦 ∈ ℤs)) → 0s ≤s (𝑥 ·s 𝑦))
216209, 211ovresd 7536 . . . . . 6 ((( 0s ≤s 𝑥𝑥 ∈ ℤs) ∧ ( 0s ≤s 𝑦𝑦 ∈ ℤs)) → (𝑥( ·s ↾ (ℤs × ℤs))𝑦) = (𝑥 ·s 𝑦))
217215, 216breqtrrd 5130 . . . . 5 ((( 0s ≤s 𝑥𝑥 ∈ ℤs) ∧ ( 0s ≤s 𝑦𝑦 ∈ ℤs)) → 0s ≤s (𝑥( ·s ↾ (ℤs × ℤs))𝑦))
218209, 211zmulscld 28325 . . . . . 6 ((( 0s ≤s 𝑥𝑥 ∈ ℤs) ∧ ( 0s ≤s 𝑦𝑦 ∈ ℤs)) → (𝑥 ·s 𝑦) ∈ ℤs)
219216, 218eqeltrd 2828 . . . . 5 ((( 0s ≤s 𝑥𝑥 ∈ ℤs) ∧ ( 0s ≤s 𝑦𝑦 ∈ ℤs)) → (𝑥( ·s ↾ (ℤs × ℤs))𝑦) ∈ ℤs)
220217, 219jca 511 . . . 4 ((( 0s ≤s 𝑥𝑥 ∈ ℤs) ∧ ( 0s ≤s 𝑦𝑦 ∈ ℤs)) → ( 0s ≤s (𝑥( ·s ↾ (ℤs × ℤs))𝑦) ∧ (𝑥( ·s ↾ (ℤs × ℤs))𝑦) ∈ ℤs))
221 brin 5154 . . . . . 6 ( 0s ( ≤s ∩ (ℤs × ℤs))𝑥 ↔ ( 0s ≤s 𝑥 ∧ 0s (ℤs × ℤs)𝑥))
222 brxp 5680 . . . . . . . 8 ( 0s (ℤs × ℤs)𝑥 ↔ ( 0s ∈ ℤs𝑥 ∈ ℤs))
22326, 222mpbiran 709 . . . . . . 7 ( 0s (ℤs × ℤs)𝑥𝑥 ∈ ℤs)
224223anbi2i 623 . . . . . 6 (( 0s ≤s 𝑥 ∧ 0s (ℤs × ℤs)𝑥) ↔ ( 0s ≤s 𝑥𝑥 ∈ ℤs))
225221, 224bitri 275 . . . . 5 ( 0s ( ≤s ∩ (ℤs × ℤs))𝑥 ↔ ( 0s ≤s 𝑥𝑥 ∈ ℤs))
226 brin 5154 . . . . . 6 ( 0s ( ≤s ∩ (ℤs × ℤs))𝑦 ↔ ( 0s ≤s 𝑦 ∧ 0s (ℤs × ℤs)𝑦))
227 brxp 5680 . . . . . . . 8 ( 0s (ℤs × ℤs)𝑦 ↔ ( 0s ∈ ℤs𝑦 ∈ ℤs))
22826, 227mpbiran 709 . . . . . . 7 ( 0s (ℤs × ℤs)𝑦𝑦 ∈ ℤs)
229228anbi2i 623 . . . . . 6 (( 0s ≤s 𝑦 ∧ 0s (ℤs × ℤs)𝑦) ↔ ( 0s ≤s 𝑦𝑦 ∈ ℤs))
230226, 229bitri 275 . . . . 5 ( 0s ( ≤s ∩ (ℤs × ℤs))𝑦 ↔ ( 0s ≤s 𝑦𝑦 ∈ ℤs))
231225, 230anbi12i 628 . . . 4 (( 0s ( ≤s ∩ (ℤs × ℤs))𝑥 ∧ 0s ( ≤s ∩ (ℤs × ℤs))𝑦) ↔ (( 0s ≤s 𝑥𝑥 ∈ ℤs) ∧ ( 0s ≤s 𝑦𝑦 ∈ ℤs)))
232 brin 5154 . . . . 5 ( 0s ( ≤s ∩ (ℤs × ℤs))(𝑥( ·s ↾ (ℤs × ℤs))𝑦) ↔ ( 0s ≤s (𝑥( ·s ↾ (ℤs × ℤs))𝑦) ∧ 0s (ℤs × ℤs)(𝑥( ·s ↾ (ℤs × ℤs))𝑦)))
233 brxp 5680 . . . . . . 7 ( 0s (ℤs × ℤs)(𝑥( ·s ↾ (ℤs × ℤs))𝑦) ↔ ( 0s ∈ ℤs ∧ (𝑥( ·s ↾ (ℤs × ℤs))𝑦) ∈ ℤs))
23426, 233mpbiran 709 . . . . . 6 ( 0s (ℤs × ℤs)(𝑥( ·s ↾ (ℤs × ℤs))𝑦) ↔ (𝑥( ·s ↾ (ℤs × ℤs))𝑦) ∈ ℤs)
235234anbi2i 623 . . . . 5 (( 0s ≤s (𝑥( ·s ↾ (ℤs × ℤs))𝑦) ∧ 0s (ℤs × ℤs)(𝑥( ·s ↾ (ℤs × ℤs))𝑦)) ↔ ( 0s ≤s (𝑥( ·s ↾ (ℤs × ℤs))𝑦) ∧ (𝑥( ·s ↾ (ℤs × ℤs))𝑦) ∈ ℤs))
236232, 235bitri 275 . . . 4 ( 0s ( ≤s ∩ (ℤs × ℤs))(𝑥( ·s ↾ (ℤs × ℤs))𝑦) ↔ ( 0s ≤s (𝑥( ·s ↾ (ℤs × ℤs))𝑦) ∧ (𝑥( ·s ↾ (ℤs × ℤs))𝑦) ∈ ℤs))
237220, 231, 2363imtr4i 292 . . 3 (( 0s ( ≤s ∩ (ℤs × ℤs))𝑥 ∧ 0s ( ≤s ∩ (ℤs × ℤs))𝑦) → 0s ( ≤s ∩ (ℤs × ℤs))(𝑥( ·s ↾ (ℤs × ℤs))𝑦))
238237rgen2w 3049 . 2 𝑥 ∈ ℤs𝑦 ∈ ℤs (( 0s ( ≤s ∩ (ℤs × ℤs))𝑥 ∧ 0s ( ≤s ∩ (ℤs × ℤs))𝑦) → 0s ( ≤s ∩ (ℤs × ℤs))(𝑥( ·s ↾ (ℤs × ℤs))𝑦))
239 zsoring.5 . . 3 0s = (0g𝐾)
2401, 239, 82, 179isorng 20781 . 2 (𝐾 ∈ oRing ↔ (𝐾 ∈ Ring ∧ 𝐾 ∈ oGrp ∧ ∀𝑥 ∈ ℤs𝑦 ∈ ℤs (( 0s ( ≤s ∩ (ℤs × ℤs))𝑥 ∧ 0s ( ≤s ∩ (ℤs × ℤs))𝑦) → 0s ( ≤s ∩ (ℤs × ℤs))(𝑥( ·s ↾ (ℤs × ℤs))𝑦))))
241112, 208, 238, 240mpbir3an 1342 1 𝐾 ∈ oRing
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3444  cin 3910   class class class wbr 5102   × cxp 5629  cres 5633  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  .rcmulr 17197  lecple 17203  0gc0g 17378  Posetcpo 18248  Tosetctos 18355  Mndcmnd 18643  Grpcgrp 18847  oMndcomnd 20033  oGrpcogrp 20034  mulGrpcmgp 20060  Ringcrg 20153  oRingcorng 20777   No csur 27584   ≤s csle 27689   0s c0s 27771   1s c1s 27772   +s cadds 27906   -us cnegs 27965   ·s cmuls 28049  sczs 28306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-nadd 8607  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-0g 17380  df-poset 18254  df-toset 18356  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-omnd 20035  df-ogrp 20036  df-mgp 20061  df-ring 20155  df-orng 20779  df-no 27587  df-slt 27588  df-bday 27589  df-sle 27690  df-sslt 27727  df-scut 27729  df-0s 27773  df-1s 27774  df-made 27792  df-old 27793  df-left 27795  df-right 27796  df-norec 27885  df-norec2 27896  df-adds 27907  df-negs 27967  df-subs 27968  df-muls 28050  df-n0s 28248  df-nns 28249  df-zs 28307
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator