MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zsoring Structured version   Visualization version   GIF version

Theorem zsoring 28301
Description: The surreal integers form an ordered ring. Note that we have to restrict the operations here since No is a proper class. (Contributed by Scott Fenton, 23-Dec-2025.)
Hypotheses
Ref Expression
zsoring.1 s = (Base‘𝐾)
zsoring.2 ( +s ↾ (ℤs × ℤs)) = (+g𝐾)
zsoring.3 ( ·s ↾ (ℤs × ℤs)) = (.r𝐾)
zsoring.4 ( ≤s ∩ (ℤs × ℤs)) = (le‘𝐾)
zsoring.5 0s = (0g𝐾)
Assertion
Ref Expression
zsoring 𝐾 ∈ oRing

Proof of Theorem zsoring
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zsoring.1 . . . 4 s = (Base‘𝐾)
2 zsoring.2 . . . 4 ( +s ↾ (ℤs × ℤs)) = (+g𝐾)
3 ovres 7515 . . . . 5 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → (𝑥( +s ↾ (ℤs × ℤs))𝑦) = (𝑥 +s 𝑦))
4 zaddscl 28287 . . . . 5 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → (𝑥 +s 𝑦) ∈ ℤs)
53, 4eqeltrd 2828 . . . 4 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → (𝑥( +s ↾ (ℤs × ℤs))𝑦) ∈ ℤs)
6 zno 28275 . . . . . 6 (𝑥 ∈ ℤs𝑥 No )
7 zno 28275 . . . . . 6 (𝑦 ∈ ℤs𝑦 No )
8 zno 28275 . . . . . 6 (𝑧 ∈ ℤs𝑧 No )
9 addsass 27917 . . . . . 6 ((𝑥 No 𝑦 No 𝑧 No ) → ((𝑥 +s 𝑦) +s 𝑧) = (𝑥 +s (𝑦 +s 𝑧)))
106, 7, 8, 9syl3an 1160 . . . . 5 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥 +s 𝑦) +s 𝑧) = (𝑥 +s (𝑦 +s 𝑧)))
1133adant3 1132 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( +s ↾ (ℤs × ℤs))𝑦) = (𝑥 +s 𝑦))
1211oveq1d 7364 . . . . . 6 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( +s ↾ (ℤs × ℤs))𝑦)( +s ↾ (ℤs × ℤs))𝑧) = ((𝑥 +s 𝑦)( +s ↾ (ℤs × ℤs))𝑧))
1343adant3 1132 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥 +s 𝑦) ∈ ℤs)
14 simp3 1138 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → 𝑧 ∈ ℤs)
1513, 14ovresd 7516 . . . . . 6 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥 +s 𝑦)( +s ↾ (ℤs × ℤs))𝑧) = ((𝑥 +s 𝑦) +s 𝑧))
1612, 15eqtrd 2764 . . . . 5 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( +s ↾ (ℤs × ℤs))𝑦)( +s ↾ (ℤs × ℤs))𝑧) = ((𝑥 +s 𝑦) +s 𝑧))
17 ovres 7515 . . . . . . . 8 ((𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑦( +s ↾ (ℤs × ℤs))𝑧) = (𝑦 +s 𝑧))
18173adant1 1130 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑦( +s ↾ (ℤs × ℤs))𝑧) = (𝑦 +s 𝑧))
1918oveq2d 7365 . . . . . 6 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( +s ↾ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧)) = (𝑥( +s ↾ (ℤs × ℤs))(𝑦 +s 𝑧)))
20 simp1 1136 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → 𝑥 ∈ ℤs)
21 zaddscl 28287 . . . . . . . 8 ((𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑦 +s 𝑧) ∈ ℤs)
22213adant1 1130 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑦 +s 𝑧) ∈ ℤs)
2320, 22ovresd 7516 . . . . . 6 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( +s ↾ (ℤs × ℤs))(𝑦 +s 𝑧)) = (𝑥 +s (𝑦 +s 𝑧)))
2419, 23eqtrd 2764 . . . . 5 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( +s ↾ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧)) = (𝑥 +s (𝑦 +s 𝑧)))
2510, 16, 243eqtr4d 2774 . . . 4 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( +s ↾ (ℤs × ℤs))𝑦)( +s ↾ (ℤs × ℤs))𝑧) = (𝑥( +s ↾ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧)))
26 0zs 28281 . . . 4 0s ∈ ℤs
27 ovres 7515 . . . . . 6 (( 0s ∈ ℤs𝑥 ∈ ℤs) → ( 0s ( +s ↾ (ℤs × ℤs))𝑥) = ( 0s +s 𝑥))
2826, 27mpan 690 . . . . 5 (𝑥 ∈ ℤs → ( 0s ( +s ↾ (ℤs × ℤs))𝑥) = ( 0s +s 𝑥))
29 addslid 27880 . . . . . 6 (𝑥 No → ( 0s +s 𝑥) = 𝑥)
306, 29syl 17 . . . . 5 (𝑥 ∈ ℤs → ( 0s +s 𝑥) = 𝑥)
3128, 30eqtrd 2764 . . . 4 (𝑥 ∈ ℤs → ( 0s ( +s ↾ (ℤs × ℤs))𝑥) = 𝑥)
32 znegscl 28285 . . . 4 (𝑥 ∈ ℤs → ( -us𝑥) ∈ ℤs)
33 id 22 . . . . . 6 (𝑥 ∈ ℤs𝑥 ∈ ℤs)
3432, 33ovresd 7516 . . . . 5 (𝑥 ∈ ℤs → (( -us𝑥)( +s ↾ (ℤs × ℤs))𝑥) = (( -us𝑥) +s 𝑥))
3532znod 28276 . . . . . 6 (𝑥 ∈ ℤs → ( -us𝑥) ∈ No )
3635, 6addscomd 27879 . . . . 5 (𝑥 ∈ ℤs → (( -us𝑥) +s 𝑥) = (𝑥 +s ( -us𝑥)))
376negsidd 27953 . . . . 5 (𝑥 ∈ ℤs → (𝑥 +s ( -us𝑥)) = 0s )
3834, 36, 373eqtrd 2768 . . . 4 (𝑥 ∈ ℤs → (( -us𝑥)( +s ↾ (ℤs × ℤs))𝑥) = 0s )
391, 2, 5, 25, 26, 31, 32, 38isgrpi 18838 . . 3 𝐾 ∈ Grp
40 ovres 7515 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → (𝑥( ·s ↾ (ℤs × ℤs))𝑦) = (𝑥 ·s 𝑦))
41 simpl 482 . . . . . . . 8 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → 𝑥 ∈ ℤs)
42 simpr 484 . . . . . . . 8 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → 𝑦 ∈ ℤs)
4341, 42zmulscld 28290 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → (𝑥 ·s 𝑦) ∈ ℤs)
4440, 43eqeltrd 2828 . . . . . 6 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → (𝑥( ·s ↾ (ℤs × ℤs))𝑦) ∈ ℤs)
45 mulsass 28074 . . . . . . . . . 10 ((𝑥 No 𝑦 No 𝑧 No ) → ((𝑥 ·s 𝑦) ·s 𝑧) = (𝑥 ·s (𝑦 ·s 𝑧)))
466, 7, 8, 45syl3an 1160 . . . . . . . . 9 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥 ·s 𝑦) ·s 𝑧) = (𝑥 ·s (𝑦 ·s 𝑧)))
47403adant3 1132 . . . . . . . . . . 11 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( ·s ↾ (ℤs × ℤs))𝑦) = (𝑥 ·s 𝑦))
4847oveq1d 7364 . . . . . . . . . 10 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( ·s ↾ (ℤs × ℤs))𝑦)( ·s ↾ (ℤs × ℤs))𝑧) = ((𝑥 ·s 𝑦)( ·s ↾ (ℤs × ℤs))𝑧))
49 simp2 1137 . . . . . . . . . . . 12 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → 𝑦 ∈ ℤs)
5020, 49zmulscld 28290 . . . . . . . . . . 11 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥 ·s 𝑦) ∈ ℤs)
5150, 14ovresd 7516 . . . . . . . . . 10 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥 ·s 𝑦)( ·s ↾ (ℤs × ℤs))𝑧) = ((𝑥 ·s 𝑦) ·s 𝑧))
5248, 51eqtrd 2764 . . . . . . . . 9 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( ·s ↾ (ℤs × ℤs))𝑦)( ·s ↾ (ℤs × ℤs))𝑧) = ((𝑥 ·s 𝑦) ·s 𝑧))
53 ovres 7515 . . . . . . . . . . . 12 ((𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑦( ·s ↾ (ℤs × ℤs))𝑧) = (𝑦 ·s 𝑧))
54533adant1 1130 . . . . . . . . . . 11 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑦( ·s ↾ (ℤs × ℤs))𝑧) = (𝑦 ·s 𝑧))
5554oveq2d 7365 . . . . . . . . . 10 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( ·s ↾ (ℤs × ℤs))(𝑦( ·s ↾ (ℤs × ℤs))𝑧)) = (𝑥( ·s ↾ (ℤs × ℤs))(𝑦 ·s 𝑧)))
5649, 14zmulscld 28290 . . . . . . . . . . 11 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑦 ·s 𝑧) ∈ ℤs)
5720, 56ovresd 7516 . . . . . . . . . 10 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( ·s ↾ (ℤs × ℤs))(𝑦 ·s 𝑧)) = (𝑥 ·s (𝑦 ·s 𝑧)))
5855, 57eqtrd 2764 . . . . . . . . 9 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( ·s ↾ (ℤs × ℤs))(𝑦( ·s ↾ (ℤs × ℤs))𝑧)) = (𝑥 ·s (𝑦 ·s 𝑧)))
5946, 52, 583eqtr4d 2774 . . . . . . . 8 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( ·s ↾ (ℤs × ℤs))𝑦)( ·s ↾ (ℤs × ℤs))𝑧) = (𝑥( ·s ↾ (ℤs × ℤs))(𝑦( ·s ↾ (ℤs × ℤs))𝑧)))
60593expa 1118 . . . . . . 7 (((𝑥 ∈ ℤs𝑦 ∈ ℤs) ∧ 𝑧 ∈ ℤs) → ((𝑥( ·s ↾ (ℤs × ℤs))𝑦)( ·s ↾ (ℤs × ℤs))𝑧) = (𝑥( ·s ↾ (ℤs × ℤs))(𝑦( ·s ↾ (ℤs × ℤs))𝑧)))
6160ralrimiva 3121 . . . . . 6 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → ∀𝑧 ∈ ℤs ((𝑥( ·s ↾ (ℤs × ℤs))𝑦)( ·s ↾ (ℤs × ℤs))𝑧) = (𝑥( ·s ↾ (ℤs × ℤs))(𝑦( ·s ↾ (ℤs × ℤs))𝑧)))
6244, 61jca 511 . . . . 5 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → ((𝑥( ·s ↾ (ℤs × ℤs))𝑦) ∈ ℤs ∧ ∀𝑧 ∈ ℤs ((𝑥( ·s ↾ (ℤs × ℤs))𝑦)( ·s ↾ (ℤs × ℤs))𝑧) = (𝑥( ·s ↾ (ℤs × ℤs))(𝑦( ·s ↾ (ℤs × ℤs))𝑧))))
6362rgen2 3169 . . . 4 𝑥 ∈ ℤs𝑦 ∈ ℤs ((𝑥( ·s ↾ (ℤs × ℤs))𝑦) ∈ ℤs ∧ ∀𝑧 ∈ ℤs ((𝑥( ·s ↾ (ℤs × ℤs))𝑦)( ·s ↾ (ℤs × ℤs))𝑧) = (𝑥( ·s ↾ (ℤs × ℤs))(𝑦( ·s ↾ (ℤs × ℤs))𝑧)))
64 1zs 28284 . . . . 5 1s ∈ ℤs
65 ovres 7515 . . . . . . . . 9 (( 1s ∈ ℤs𝑥 ∈ ℤs) → ( 1s ( ·s ↾ (ℤs × ℤs))𝑥) = ( 1s ·s 𝑥))
6664, 65mpan 690 . . . . . . . 8 (𝑥 ∈ ℤs → ( 1s ( ·s ↾ (ℤs × ℤs))𝑥) = ( 1s ·s 𝑥))
676mulslidd 28051 . . . . . . . 8 (𝑥 ∈ ℤs → ( 1s ·s 𝑥) = 𝑥)
6866, 67eqtrd 2764 . . . . . . 7 (𝑥 ∈ ℤs → ( 1s ( ·s ↾ (ℤs × ℤs))𝑥) = 𝑥)
69 ovres 7515 . . . . . . . . 9 ((𝑥 ∈ ℤs ∧ 1s ∈ ℤs) → (𝑥( ·s ↾ (ℤs × ℤs)) 1s ) = (𝑥 ·s 1s ))
7064, 69mpan2 691 . . . . . . . 8 (𝑥 ∈ ℤs → (𝑥( ·s ↾ (ℤs × ℤs)) 1s ) = (𝑥 ·s 1s ))
716mulsridd 28022 . . . . . . . 8 (𝑥 ∈ ℤs → (𝑥 ·s 1s ) = 𝑥)
7270, 71eqtrd 2764 . . . . . . 7 (𝑥 ∈ ℤs → (𝑥( ·s ↾ (ℤs × ℤs)) 1s ) = 𝑥)
7368, 72jca 511 . . . . . 6 (𝑥 ∈ ℤs → (( 1s ( ·s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( ·s ↾ (ℤs × ℤs)) 1s ) = 𝑥))
7473rgen 3046 . . . . 5 𝑥 ∈ ℤs (( 1s ( ·s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( ·s ↾ (ℤs × ℤs)) 1s ) = 𝑥)
75 oveq1 7356 . . . . . . . 8 (𝑦 = 1s → (𝑦( ·s ↾ (ℤs × ℤs))𝑥) = ( 1s ( ·s ↾ (ℤs × ℤs))𝑥))
7675eqeq1d 2731 . . . . . . 7 (𝑦 = 1s → ((𝑦( ·s ↾ (ℤs × ℤs))𝑥) = 𝑥 ↔ ( 1s ( ·s ↾ (ℤs × ℤs))𝑥) = 𝑥))
7776ovanraleqv 7373 . . . . . 6 (𝑦 = 1s → (∀𝑥 ∈ ℤs ((𝑦( ·s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( ·s ↾ (ℤs × ℤs))𝑦) = 𝑥) ↔ ∀𝑥 ∈ ℤs (( 1s ( ·s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( ·s ↾ (ℤs × ℤs)) 1s ) = 𝑥)))
7877rspcev 3577 . . . . 5 (( 1s ∈ ℤs ∧ ∀𝑥 ∈ ℤs (( 1s ( ·s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( ·s ↾ (ℤs × ℤs)) 1s ) = 𝑥)) → ∃𝑦 ∈ ℤs𝑥 ∈ ℤs ((𝑦( ·s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( ·s ↾ (ℤs × ℤs))𝑦) = 𝑥))
7964, 74, 78mp2an 692 . . . 4 𝑦 ∈ ℤs𝑥 ∈ ℤs ((𝑦( ·s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( ·s ↾ (ℤs × ℤs))𝑦) = 𝑥)
80 eqid 2729 . . . . . 6 (mulGrp‘𝐾) = (mulGrp‘𝐾)
8180, 1mgpbas 20030 . . . . 5 s = (Base‘(mulGrp‘𝐾))
82 zsoring.3 . . . . . 6 ( ·s ↾ (ℤs × ℤs)) = (.r𝐾)
8380, 82mgpplusg 20029 . . . . 5 ( ·s ↾ (ℤs × ℤs)) = (+g‘(mulGrp‘𝐾))
8481, 83ismnd 18611 . . . 4 ((mulGrp‘𝐾) ∈ Mnd ↔ (∀𝑥 ∈ ℤs𝑦 ∈ ℤs ((𝑥( ·s ↾ (ℤs × ℤs))𝑦) ∈ ℤs ∧ ∀𝑧 ∈ ℤs ((𝑥( ·s ↾ (ℤs × ℤs))𝑦)( ·s ↾ (ℤs × ℤs))𝑧) = (𝑥( ·s ↾ (ℤs × ℤs))(𝑦( ·s ↾ (ℤs × ℤs))𝑧))) ∧ ∃𝑦 ∈ ℤs𝑥 ∈ ℤs ((𝑦( ·s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( ·s ↾ (ℤs × ℤs))𝑦) = 𝑥)))
8563, 79, 84mpbir2an 711 . . 3 (mulGrp‘𝐾) ∈ Mnd
86 addsdi 28063 . . . . . . 7 ((𝑥 No 𝑦 No 𝑧 No ) → (𝑥 ·s (𝑦 +s 𝑧)) = ((𝑥 ·s 𝑦) +s (𝑥 ·s 𝑧)))
876, 7, 8, 86syl3an 1160 . . . . . 6 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥 ·s (𝑦 +s 𝑧)) = ((𝑥 ·s 𝑦) +s (𝑥 ·s 𝑧)))
8818oveq2d 7365 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( ·s ↾ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧)) = (𝑥( ·s ↾ (ℤs × ℤs))(𝑦 +s 𝑧)))
8920, 22ovresd 7516 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( ·s ↾ (ℤs × ℤs))(𝑦 +s 𝑧)) = (𝑥 ·s (𝑦 +s 𝑧)))
9088, 89eqtrd 2764 . . . . . 6 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( ·s ↾ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧)) = (𝑥 ·s (𝑦 +s 𝑧)))
91 ovres 7515 . . . . . . . . 9 ((𝑥 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( ·s ↾ (ℤs × ℤs))𝑧) = (𝑥 ·s 𝑧))
92913adant2 1131 . . . . . . . 8 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( ·s ↾ (ℤs × ℤs))𝑧) = (𝑥 ·s 𝑧))
9347, 92oveq12d 7367 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( ·s ↾ (ℤs × ℤs))𝑦)( +s ↾ (ℤs × ℤs))(𝑥( ·s ↾ (ℤs × ℤs))𝑧)) = ((𝑥 ·s 𝑦)( +s ↾ (ℤs × ℤs))(𝑥 ·s 𝑧)))
9420, 14zmulscld 28290 . . . . . . . 8 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥 ·s 𝑧) ∈ ℤs)
9550, 94ovresd 7516 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥 ·s 𝑦)( +s ↾ (ℤs × ℤs))(𝑥 ·s 𝑧)) = ((𝑥 ·s 𝑦) +s (𝑥 ·s 𝑧)))
9693, 95eqtrd 2764 . . . . . 6 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( ·s ↾ (ℤs × ℤs))𝑦)( +s ↾ (ℤs × ℤs))(𝑥( ·s ↾ (ℤs × ℤs))𝑧)) = ((𝑥 ·s 𝑦) +s (𝑥 ·s 𝑧)))
9787, 90, 963eqtr4d 2774 . . . . 5 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( ·s ↾ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧)) = ((𝑥( ·s ↾ (ℤs × ℤs))𝑦)( +s ↾ (ℤs × ℤs))(𝑥( ·s ↾ (ℤs × ℤs))𝑧)))
9820znod 28276 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → 𝑥 No )
9949znod 28276 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → 𝑦 No )
10014znod 28276 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → 𝑧 No )
10198, 99, 100addsdird 28065 . . . . . 6 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥 +s 𝑦) ·s 𝑧) = ((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑧)))
10211oveq1d 7364 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( +s ↾ (ℤs × ℤs))𝑦)( ·s ↾ (ℤs × ℤs))𝑧) = ((𝑥 +s 𝑦)( ·s ↾ (ℤs × ℤs))𝑧))
10313, 14ovresd 7516 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥 +s 𝑦)( ·s ↾ (ℤs × ℤs))𝑧) = ((𝑥 +s 𝑦) ·s 𝑧))
104102, 103eqtrd 2764 . . . . . 6 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( +s ↾ (ℤs × ℤs))𝑦)( ·s ↾ (ℤs × ℤs))𝑧) = ((𝑥 +s 𝑦) ·s 𝑧))
10592, 54oveq12d 7367 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( ·s ↾ (ℤs × ℤs))𝑧)( +s ↾ (ℤs × ℤs))(𝑦( ·s ↾ (ℤs × ℤs))𝑧)) = ((𝑥 ·s 𝑧)( +s ↾ (ℤs × ℤs))(𝑦 ·s 𝑧)))
10694, 56ovresd 7516 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥 ·s 𝑧)( +s ↾ (ℤs × ℤs))(𝑦 ·s 𝑧)) = ((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑧)))
107105, 106eqtrd 2764 . . . . . 6 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( ·s ↾ (ℤs × ℤs))𝑧)( +s ↾ (ℤs × ℤs))(𝑦( ·s ↾ (ℤs × ℤs))𝑧)) = ((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑧)))
108101, 104, 1073eqtr4d 2774 . . . . 5 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( +s ↾ (ℤs × ℤs))𝑦)( ·s ↾ (ℤs × ℤs))𝑧) = ((𝑥( ·s ↾ (ℤs × ℤs))𝑧)( +s ↾ (ℤs × ℤs))(𝑦( ·s ↾ (ℤs × ℤs))𝑧)))
10997, 108jca 511 . . . 4 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( ·s ↾ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧)) = ((𝑥( ·s ↾ (ℤs × ℤs))𝑦)( +s ↾ (ℤs × ℤs))(𝑥( ·s ↾ (ℤs × ℤs))𝑧)) ∧ ((𝑥( +s ↾ (ℤs × ℤs))𝑦)( ·s ↾ (ℤs × ℤs))𝑧) = ((𝑥( ·s ↾ (ℤs × ℤs))𝑧)( +s ↾ (ℤs × ℤs))(𝑦( ·s ↾ (ℤs × ℤs))𝑧))))
110109rgen3 3174 . . 3 𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs ((𝑥( ·s ↾ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧)) = ((𝑥( ·s ↾ (ℤs × ℤs))𝑦)( +s ↾ (ℤs × ℤs))(𝑥( ·s ↾ (ℤs × ℤs))𝑧)) ∧ ((𝑥( +s ↾ (ℤs × ℤs))𝑦)( ·s ↾ (ℤs × ℤs))𝑧) = ((𝑥( ·s ↾ (ℤs × ℤs))𝑧)( +s ↾ (ℤs × ℤs))(𝑦( ·s ↾ (ℤs × ℤs))𝑧)))
1111, 80, 2, 82isring 20122 . . 3 (𝐾 ∈ Ring ↔ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd ∧ ∀𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs ((𝑥( ·s ↾ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧)) = ((𝑥( ·s ↾ (ℤs × ℤs))𝑦)( +s ↾ (ℤs × ℤs))(𝑥( ·s ↾ (ℤs × ℤs))𝑧)) ∧ ((𝑥( +s ↾ (ℤs × ℤs))𝑦)( ·s ↾ (ℤs × ℤs))𝑧) = ((𝑥( ·s ↾ (ℤs × ℤs))𝑧)( +s ↾ (ℤs × ℤs))(𝑦( ·s ↾ (ℤs × ℤs))𝑧)))))
11239, 85, 110, 111mpbir3an 1342 . 2 𝐾 ∈ Ring
113253expa 1118 . . . . . . . 8 (((𝑥 ∈ ℤs𝑦 ∈ ℤs) ∧ 𝑧 ∈ ℤs) → ((𝑥( +s ↾ (ℤs × ℤs))𝑦)( +s ↾ (ℤs × ℤs))𝑧) = (𝑥( +s ↾ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧)))
114113ralrimiva 3121 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → ∀𝑧 ∈ ℤs ((𝑥( +s ↾ (ℤs × ℤs))𝑦)( +s ↾ (ℤs × ℤs))𝑧) = (𝑥( +s ↾ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧)))
1155, 114jca 511 . . . . . 6 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → ((𝑥( +s ↾ (ℤs × ℤs))𝑦) ∈ ℤs ∧ ∀𝑧 ∈ ℤs ((𝑥( +s ↾ (ℤs × ℤs))𝑦)( +s ↾ (ℤs × ℤs))𝑧) = (𝑥( +s ↾ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧))))
116115rgen2 3169 . . . . 5 𝑥 ∈ ℤs𝑦 ∈ ℤs ((𝑥( +s ↾ (ℤs × ℤs))𝑦) ∈ ℤs ∧ ∀𝑧 ∈ ℤs ((𝑥( +s ↾ (ℤs × ℤs))𝑦)( +s ↾ (ℤs × ℤs))𝑧) = (𝑥( +s ↾ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧)))
117 ovres 7515 . . . . . . . . . 10 ((𝑥 ∈ ℤs ∧ 0s ∈ ℤs) → (𝑥( +s ↾ (ℤs × ℤs)) 0s ) = (𝑥 +s 0s ))
11826, 117mpan2 691 . . . . . . . . 9 (𝑥 ∈ ℤs → (𝑥( +s ↾ (ℤs × ℤs)) 0s ) = (𝑥 +s 0s ))
1196addsridd 27877 . . . . . . . . 9 (𝑥 ∈ ℤs → (𝑥 +s 0s ) = 𝑥)
120118, 119eqtrd 2764 . . . . . . . 8 (𝑥 ∈ ℤs → (𝑥( +s ↾ (ℤs × ℤs)) 0s ) = 𝑥)
12131, 120jca 511 . . . . . . 7 (𝑥 ∈ ℤs → (( 0s ( +s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( +s ↾ (ℤs × ℤs)) 0s ) = 𝑥))
122121rgen 3046 . . . . . 6 𝑥 ∈ ℤs (( 0s ( +s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( +s ↾ (ℤs × ℤs)) 0s ) = 𝑥)
123 oveq1 7356 . . . . . . . . 9 (𝑦 = 0s → (𝑦( +s ↾ (ℤs × ℤs))𝑥) = ( 0s ( +s ↾ (ℤs × ℤs))𝑥))
124123eqeq1d 2731 . . . . . . . 8 (𝑦 = 0s → ((𝑦( +s ↾ (ℤs × ℤs))𝑥) = 𝑥 ↔ ( 0s ( +s ↾ (ℤs × ℤs))𝑥) = 𝑥))
125124ovanraleqv 7373 . . . . . . 7 (𝑦 = 0s → (∀𝑥 ∈ ℤs ((𝑦( +s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( +s ↾ (ℤs × ℤs))𝑦) = 𝑥) ↔ ∀𝑥 ∈ ℤs (( 0s ( +s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( +s ↾ (ℤs × ℤs)) 0s ) = 𝑥)))
126125rspcev 3577 . . . . . 6 (( 0s ∈ ℤs ∧ ∀𝑥 ∈ ℤs (( 0s ( +s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( +s ↾ (ℤs × ℤs)) 0s ) = 𝑥)) → ∃𝑦 ∈ ℤs𝑥 ∈ ℤs ((𝑦( +s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( +s ↾ (ℤs × ℤs))𝑦) = 𝑥))
12726, 122, 126mp2an 692 . . . . 5 𝑦 ∈ ℤs𝑥 ∈ ℤs ((𝑦( +s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( +s ↾ (ℤs × ℤs))𝑦) = 𝑥)
1281, 2ismnd 18611 . . . . 5 (𝐾 ∈ Mnd ↔ (∀𝑥 ∈ ℤs𝑦 ∈ ℤs ((𝑥( +s ↾ (ℤs × ℤs))𝑦) ∈ ℤs ∧ ∀𝑧 ∈ ℤs ((𝑥( +s ↾ (ℤs × ℤs))𝑦)( +s ↾ (ℤs × ℤs))𝑧) = (𝑥( +s ↾ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧))) ∧ ∃𝑦 ∈ ℤs𝑥 ∈ ℤs ((𝑦( +s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( +s ↾ (ℤs × ℤs))𝑦) = 𝑥)))
129116, 127, 128mpbir2an 711 . . . 4 𝐾 ∈ Mnd
13039elexi 3459 . . . . . 6 𝐾 ∈ V
131 slerflex 27673 . . . . . . . . . . 11 (𝑥 No 𝑥 ≤s 𝑥)
1326, 131syl 17 . . . . . . . . . 10 (𝑥 ∈ ℤs𝑥 ≤s 𝑥)
133 brxp 5668 . . . . . . . . . . . 12 (𝑥(ℤs × ℤs)𝑥 ↔ (𝑥 ∈ ℤs𝑥 ∈ ℤs))
134133biimpri 228 . . . . . . . . . . 11 ((𝑥 ∈ ℤs𝑥 ∈ ℤs) → 𝑥(ℤs × ℤs)𝑥)
135134anidms 566 . . . . . . . . . 10 (𝑥 ∈ ℤs𝑥(ℤs × ℤs)𝑥)
136 brin 5144 . . . . . . . . . 10 (𝑥( ≤s ∩ (ℤs × ℤs))𝑥 ↔ (𝑥 ≤s 𝑥𝑥(ℤs × ℤs)𝑥))
137132, 135, 136sylanbrc 583 . . . . . . . . 9 (𝑥 ∈ ℤs𝑥( ≤s ∩ (ℤs × ℤs))𝑥)
1381373ad2ant1 1133 . . . . . . . 8 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → 𝑥( ≤s ∩ (ℤs × ℤs))𝑥)
139 brin 5144 . . . . . . . . . . 11 (𝑥( ≤s ∩ (ℤs × ℤs))𝑦 ↔ (𝑥 ≤s 𝑦𝑥(ℤs × ℤs)𝑦))
140 brxp 5668 . . . . . . . . . . . . . 14 (𝑥(ℤs × ℤs)𝑦 ↔ (𝑥 ∈ ℤs𝑦 ∈ ℤs))
141140biimpri 228 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → 𝑥(ℤs × ℤs)𝑦)
1421413adant3 1132 . . . . . . . . . . . 12 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → 𝑥(ℤs × ℤs)𝑦)
143142biantrud 531 . . . . . . . . . . 11 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥 ≤s 𝑦 ↔ (𝑥 ≤s 𝑦𝑥(ℤs × ℤs)𝑦)))
144139, 143bitr4id 290 . . . . . . . . . 10 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑥 ≤s 𝑦))
145 brin 5144 . . . . . . . . . . . 12 (𝑦( ≤s ∩ (ℤs × ℤs))𝑥 ↔ (𝑦 ≤s 𝑥𝑦(ℤs × ℤs)𝑥))
146 brxp 5668 . . . . . . . . . . . . . . 15 (𝑦(ℤs × ℤs)𝑥 ↔ (𝑦 ∈ ℤs𝑥 ∈ ℤs))
147146biimpri 228 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℤs𝑥 ∈ ℤs) → 𝑦(ℤs × ℤs)𝑥)
148147ancoms 458 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → 𝑦(ℤs × ℤs)𝑥)
149148biantrud 531 . . . . . . . . . . . 12 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → (𝑦 ≤s 𝑥 ↔ (𝑦 ≤s 𝑥𝑦(ℤs × ℤs)𝑥)))
150145, 149bitr4id 290 . . . . . . . . . . 11 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → (𝑦( ≤s ∩ (ℤs × ℤs))𝑥𝑦 ≤s 𝑥))
1511503adant3 1132 . . . . . . . . . 10 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑦( ≤s ∩ (ℤs × ℤs))𝑥𝑦 ≤s 𝑥))
152144, 151anbi12d 632 . . . . . . . . 9 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑦( ≤s ∩ (ℤs × ℤs))𝑥) ↔ (𝑥 ≤s 𝑦𝑦 ≤s 𝑥)))
153 sletri3 27665 . . . . . . . . . . . 12 ((𝑥 No 𝑦 No ) → (𝑥 = 𝑦 ↔ (𝑥 ≤s 𝑦𝑦 ≤s 𝑥)))
1546, 7, 153syl2an 596 . . . . . . . . . . 11 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → (𝑥 = 𝑦 ↔ (𝑥 ≤s 𝑦𝑦 ≤s 𝑥)))
1551543adant3 1132 . . . . . . . . . 10 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥 = 𝑦 ↔ (𝑥 ≤s 𝑦𝑦 ≤s 𝑥)))
156155biimprd 248 . . . . . . . . 9 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥 ≤s 𝑦𝑦 ≤s 𝑥) → 𝑥 = 𝑦))
157152, 156sylbid 240 . . . . . . . 8 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑦( ≤s ∩ (ℤs × ℤs))𝑥) → 𝑥 = 𝑦))
158 sletr 27668 . . . . . . . . . 10 ((𝑥 No 𝑦 No 𝑧 No ) → ((𝑥 ≤s 𝑦𝑦 ≤s 𝑧) → 𝑥 ≤s 𝑧))
1596, 7, 8, 158syl3an 1160 . . . . . . . . 9 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥 ≤s 𝑦𝑦 ≤s 𝑧) → 𝑥 ≤s 𝑧))
160141biantrud 531 . . . . . . . . . . . 12 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → (𝑥 ≤s 𝑦 ↔ (𝑥 ≤s 𝑦𝑥(ℤs × ℤs)𝑦)))
161139, 160bitr4id 290 . . . . . . . . . . 11 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → (𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑥 ≤s 𝑦))
1621613adant3 1132 . . . . . . . . . 10 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑥 ≤s 𝑦))
163 brin 5144 . . . . . . . . . . 11 (𝑦( ≤s ∩ (ℤs × ℤs))𝑧 ↔ (𝑦 ≤s 𝑧𝑦(ℤs × ℤs)𝑧))
164 brxp 5668 . . . . . . . . . . . . . 14 (𝑦(ℤs × ℤs)𝑧 ↔ (𝑦 ∈ ℤs𝑧 ∈ ℤs))
165164biimpri 228 . . . . . . . . . . . . 13 ((𝑦 ∈ ℤs𝑧 ∈ ℤs) → 𝑦(ℤs × ℤs)𝑧)
1661653adant1 1130 . . . . . . . . . . . 12 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → 𝑦(ℤs × ℤs)𝑧)
167166biantrud 531 . . . . . . . . . . 11 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑦 ≤s 𝑧 ↔ (𝑦 ≤s 𝑧𝑦(ℤs × ℤs)𝑧)))
168163, 167bitr4id 290 . . . . . . . . . 10 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑦( ≤s ∩ (ℤs × ℤs))𝑧𝑦 ≤s 𝑧))
169162, 168anbi12d 632 . . . . . . . . 9 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑦( ≤s ∩ (ℤs × ℤs))𝑧) ↔ (𝑥 ≤s 𝑦𝑦 ≤s 𝑧)))
170 brin 5144 . . . . . . . . . 10 (𝑥( ≤s ∩ (ℤs × ℤs))𝑧 ↔ (𝑥 ≤s 𝑧𝑥(ℤs × ℤs)𝑧))
171 brxp 5668 . . . . . . . . . . . . 13 (𝑥(ℤs × ℤs)𝑧 ↔ (𝑥 ∈ ℤs𝑧 ∈ ℤs))
172171biimpri 228 . . . . . . . . . . . 12 ((𝑥 ∈ ℤs𝑧 ∈ ℤs) → 𝑥(ℤs × ℤs)𝑧)
1731723adant2 1131 . . . . . . . . . . 11 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → 𝑥(ℤs × ℤs)𝑧)
174173biantrud 531 . . . . . . . . . 10 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥 ≤s 𝑧 ↔ (𝑥 ≤s 𝑧𝑥(ℤs × ℤs)𝑧)))
175170, 174bitr4id 290 . . . . . . . . 9 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( ≤s ∩ (ℤs × ℤs))𝑧𝑥 ≤s 𝑧))
176159, 169, 1753imtr4d 294 . . . . . . . 8 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑦( ≤s ∩ (ℤs × ℤs))𝑧) → 𝑥( ≤s ∩ (ℤs × ℤs))𝑧))
177138, 157, 1763jca 1128 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( ≤s ∩ (ℤs × ℤs))𝑥 ∧ ((𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑦( ≤s ∩ (ℤs × ℤs))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑦( ≤s ∩ (ℤs × ℤs))𝑧) → 𝑥( ≤s ∩ (ℤs × ℤs))𝑧)))
178177rgen3 3174 . . . . . 6 𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs (𝑥( ≤s ∩ (ℤs × ℤs))𝑥 ∧ ((𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑦( ≤s ∩ (ℤs × ℤs))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑦( ≤s ∩ (ℤs × ℤs))𝑧) → 𝑥( ≤s ∩ (ℤs × ℤs))𝑧))
179 zsoring.4 . . . . . . 7 ( ≤s ∩ (ℤs × ℤs)) = (le‘𝐾)
1801, 179ispos 18220 . . . . . 6 (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ ∀𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs (𝑥( ≤s ∩ (ℤs × ℤs))𝑥 ∧ ((𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑦( ≤s ∩ (ℤs × ℤs))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑦( ≤s ∩ (ℤs × ℤs))𝑧) → 𝑥( ≤s ∩ (ℤs × ℤs))𝑧))))
181130, 178, 180mpbir2an 711 . . . . 5 𝐾 ∈ Poset
182 sletric 27674 . . . . . . . 8 ((𝑥 No 𝑦 No ) → (𝑥 ≤s 𝑦𝑦 ≤s 𝑥))
1836, 7, 182syl2an 596 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → (𝑥 ≤s 𝑦𝑦 ≤s 𝑥))
184161, 150orbi12d 918 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → ((𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑦( ≤s ∩ (ℤs × ℤs))𝑥) ↔ (𝑥 ≤s 𝑦𝑦 ≤s 𝑥)))
185183, 184mpbird 257 . . . . . 6 ((𝑥 ∈ ℤs𝑦 ∈ ℤs) → (𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑦( ≤s ∩ (ℤs × ℤs))𝑥))
186185rgen2 3169 . . . . 5 𝑥 ∈ ℤs𝑦 ∈ ℤs (𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑦( ≤s ∩ (ℤs × ℤs))𝑥)
1871, 179istos 18322 . . . . 5 (𝐾 ∈ Toset ↔ (𝐾 ∈ Poset ∧ ∀𝑥 ∈ ℤs𝑦 ∈ ℤs (𝑥( ≤s ∩ (ℤs × ℤs))𝑦𝑦( ≤s ∩ (ℤs × ℤs))𝑥)))
188181, 186, 187mpbir2an 711 . . . 4 𝐾 ∈ Toset
189 sleadd1 27901 . . . . . . . 8 ((𝑥 No 𝑦 No 𝑧 No ) → (𝑥 ≤s 𝑦 ↔ (𝑥 +s 𝑧) ≤s (𝑦 +s 𝑧)))
1906, 7, 8, 189syl3an 1160 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥 ≤s 𝑦 ↔ (𝑥 +s 𝑧) ≤s (𝑦 +s 𝑧)))
191190biimpd 229 . . . . . 6 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥 ≤s 𝑦 → (𝑥 +s 𝑧) ≤s (𝑦 +s 𝑧)))
19220, 14ovresd 7516 . . . . . . . 8 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( +s ↾ (ℤs × ℤs))𝑧) = (𝑥 +s 𝑧))
19349, 14ovresd 7516 . . . . . . . 8 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑦( +s ↾ (ℤs × ℤs))𝑧) = (𝑦 +s 𝑧))
194192, 193breq12d 5105 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( +s ↾ (ℤs × ℤs))𝑧)( ≤s ∩ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧) ↔ (𝑥 +s 𝑧)( ≤s ∩ (ℤs × ℤs))(𝑦 +s 𝑧)))
195 brin 5144 . . . . . . . 8 ((𝑥 +s 𝑧)( ≤s ∩ (ℤs × ℤs))(𝑦 +s 𝑧) ↔ ((𝑥 +s 𝑧) ≤s (𝑦 +s 𝑧) ∧ (𝑥 +s 𝑧)(ℤs × ℤs)(𝑦 +s 𝑧)))
196 zaddscl 28287 . . . . . . . . . . 11 ((𝑥 ∈ ℤs𝑧 ∈ ℤs) → (𝑥 +s 𝑧) ∈ ℤs)
1971963adant2 1131 . . . . . . . . . 10 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥 +s 𝑧) ∈ ℤs)
198 brxp 5668 . . . . . . . . . 10 ((𝑥 +s 𝑧)(ℤs × ℤs)(𝑦 +s 𝑧) ↔ ((𝑥 +s 𝑧) ∈ ℤs ∧ (𝑦 +s 𝑧) ∈ ℤs))
199197, 22, 198sylanbrc 583 . . . . . . . . 9 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥 +s 𝑧)(ℤs × ℤs)(𝑦 +s 𝑧))
200199biantrud 531 . . . . . . . 8 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥 +s 𝑧) ≤s (𝑦 +s 𝑧) ↔ ((𝑥 +s 𝑧) ≤s (𝑦 +s 𝑧) ∧ (𝑥 +s 𝑧)(ℤs × ℤs)(𝑦 +s 𝑧))))
201195, 200bitr4id 290 . . . . . . 7 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥 +s 𝑧)( ≤s ∩ (ℤs × ℤs))(𝑦 +s 𝑧) ↔ (𝑥 +s 𝑧) ≤s (𝑦 +s 𝑧)))
202194, 201bitrd 279 . . . . . 6 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → ((𝑥( +s ↾ (ℤs × ℤs))𝑧)( ≤s ∩ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧) ↔ (𝑥 +s 𝑧) ≤s (𝑦 +s 𝑧)))
203191, 144, 2023imtr4d 294 . . . . 5 ((𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs) → (𝑥( ≤s ∩ (ℤs × ℤs))𝑦 → (𝑥( +s ↾ (ℤs × ℤs))𝑧)( ≤s ∩ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧)))
204203rgen3 3174 . . . 4 𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs (𝑥( ≤s ∩ (ℤs × ℤs))𝑦 → (𝑥( +s ↾ (ℤs × ℤs))𝑧)( ≤s ∩ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧))
2051, 2, 179isomnd 20002 . . . 4 (𝐾 ∈ oMnd ↔ (𝐾 ∈ Mnd ∧ 𝐾 ∈ Toset ∧ ∀𝑥 ∈ ℤs𝑦 ∈ ℤs𝑧 ∈ ℤs (𝑥( ≤s ∩ (ℤs × ℤs))𝑦 → (𝑥( +s ↾ (ℤs × ℤs))𝑧)( ≤s ∩ (ℤs × ℤs))(𝑦( +s ↾ (ℤs × ℤs))𝑧))))
206129, 188, 204, 205mpbir3an 1342 . . 3 𝐾 ∈ oMnd
207 isogrp 20003 . . 3 (𝐾 ∈ oGrp ↔ (𝐾 ∈ Grp ∧ 𝐾 ∈ oMnd))
20839, 206, 207mpbir2an 711 . 2 𝐾 ∈ oGrp
209 simplr 768 . . . . . . . 8 ((( 0s ≤s 𝑥𝑥 ∈ ℤs) ∧ ( 0s ≤s 𝑦𝑦 ∈ ℤs)) → 𝑥 ∈ ℤs)
210209znod 28276 . . . . . . 7 ((( 0s ≤s 𝑥𝑥 ∈ ℤs) ∧ ( 0s ≤s 𝑦𝑦 ∈ ℤs)) → 𝑥 No )
211 simprr 772 . . . . . . . 8 ((( 0s ≤s 𝑥𝑥 ∈ ℤs) ∧ ( 0s ≤s 𝑦𝑦 ∈ ℤs)) → 𝑦 ∈ ℤs)
212211znod 28276 . . . . . . 7 ((( 0s ≤s 𝑥𝑥 ∈ ℤs) ∧ ( 0s ≤s 𝑦𝑦 ∈ ℤs)) → 𝑦 No )
213 simpll 766 . . . . . . 7 ((( 0s ≤s 𝑥𝑥 ∈ ℤs) ∧ ( 0s ≤s 𝑦𝑦 ∈ ℤs)) → 0s ≤s 𝑥)
214 simprl 770 . . . . . . 7 ((( 0s ≤s 𝑥𝑥 ∈ ℤs) ∧ ( 0s ≤s 𝑦𝑦 ∈ ℤs)) → 0s ≤s 𝑦)
215210, 212, 213, 214mulsge0d 28054 . . . . . 6 ((( 0s ≤s 𝑥𝑥 ∈ ℤs) ∧ ( 0s ≤s 𝑦𝑦 ∈ ℤs)) → 0s ≤s (𝑥 ·s 𝑦))
216209, 211ovresd 7516 . . . . . 6 ((( 0s ≤s 𝑥𝑥 ∈ ℤs) ∧ ( 0s ≤s 𝑦𝑦 ∈ ℤs)) → (𝑥( ·s ↾ (ℤs × ℤs))𝑦) = (𝑥 ·s 𝑦))
217215, 216breqtrrd 5120 . . . . 5 ((( 0s ≤s 𝑥𝑥 ∈ ℤs) ∧ ( 0s ≤s 𝑦𝑦 ∈ ℤs)) → 0s ≤s (𝑥( ·s ↾ (ℤs × ℤs))𝑦))
218209, 211zmulscld 28290 . . . . . 6 ((( 0s ≤s 𝑥𝑥 ∈ ℤs) ∧ ( 0s ≤s 𝑦𝑦 ∈ ℤs)) → (𝑥 ·s 𝑦) ∈ ℤs)
219216, 218eqeltrd 2828 . . . . 5 ((( 0s ≤s 𝑥𝑥 ∈ ℤs) ∧ ( 0s ≤s 𝑦𝑦 ∈ ℤs)) → (𝑥( ·s ↾ (ℤs × ℤs))𝑦) ∈ ℤs)
220217, 219jca 511 . . . 4 ((( 0s ≤s 𝑥𝑥 ∈ ℤs) ∧ ( 0s ≤s 𝑦𝑦 ∈ ℤs)) → ( 0s ≤s (𝑥( ·s ↾ (ℤs × ℤs))𝑦) ∧ (𝑥( ·s ↾ (ℤs × ℤs))𝑦) ∈ ℤs))
221 brin 5144 . . . . . 6 ( 0s ( ≤s ∩ (ℤs × ℤs))𝑥 ↔ ( 0s ≤s 𝑥 ∧ 0s (ℤs × ℤs)𝑥))
222 brxp 5668 . . . . . . . 8 ( 0s (ℤs × ℤs)𝑥 ↔ ( 0s ∈ ℤs𝑥 ∈ ℤs))
22326, 222mpbiran 709 . . . . . . 7 ( 0s (ℤs × ℤs)𝑥𝑥 ∈ ℤs)
224223anbi2i 623 . . . . . 6 (( 0s ≤s 𝑥 ∧ 0s (ℤs × ℤs)𝑥) ↔ ( 0s ≤s 𝑥𝑥 ∈ ℤs))
225221, 224bitri 275 . . . . 5 ( 0s ( ≤s ∩ (ℤs × ℤs))𝑥 ↔ ( 0s ≤s 𝑥𝑥 ∈ ℤs))
226 brin 5144 . . . . . 6 ( 0s ( ≤s ∩ (ℤs × ℤs))𝑦 ↔ ( 0s ≤s 𝑦 ∧ 0s (ℤs × ℤs)𝑦))
227 brxp 5668 . . . . . . . 8 ( 0s (ℤs × ℤs)𝑦 ↔ ( 0s ∈ ℤs𝑦 ∈ ℤs))
22826, 227mpbiran 709 . . . . . . 7 ( 0s (ℤs × ℤs)𝑦𝑦 ∈ ℤs)
229228anbi2i 623 . . . . . 6 (( 0s ≤s 𝑦 ∧ 0s (ℤs × ℤs)𝑦) ↔ ( 0s ≤s 𝑦𝑦 ∈ ℤs))
230226, 229bitri 275 . . . . 5 ( 0s ( ≤s ∩ (ℤs × ℤs))𝑦 ↔ ( 0s ≤s 𝑦𝑦 ∈ ℤs))
231225, 230anbi12i 628 . . . 4 (( 0s ( ≤s ∩ (ℤs × ℤs))𝑥 ∧ 0s ( ≤s ∩ (ℤs × ℤs))𝑦) ↔ (( 0s ≤s 𝑥𝑥 ∈ ℤs) ∧ ( 0s ≤s 𝑦𝑦 ∈ ℤs)))
232 brin 5144 . . . . 5 ( 0s ( ≤s ∩ (ℤs × ℤs))(𝑥( ·s ↾ (ℤs × ℤs))𝑦) ↔ ( 0s ≤s (𝑥( ·s ↾ (ℤs × ℤs))𝑦) ∧ 0s (ℤs × ℤs)(𝑥( ·s ↾ (ℤs × ℤs))𝑦)))
233 brxp 5668 . . . . . . 7 ( 0s (ℤs × ℤs)(𝑥( ·s ↾ (ℤs × ℤs))𝑦) ↔ ( 0s ∈ ℤs ∧ (𝑥( ·s ↾ (ℤs × ℤs))𝑦) ∈ ℤs))
23426, 233mpbiran 709 . . . . . 6 ( 0s (ℤs × ℤs)(𝑥( ·s ↾ (ℤs × ℤs))𝑦) ↔ (𝑥( ·s ↾ (ℤs × ℤs))𝑦) ∈ ℤs)
235234anbi2i 623 . . . . 5 (( 0s ≤s (𝑥( ·s ↾ (ℤs × ℤs))𝑦) ∧ 0s (ℤs × ℤs)(𝑥( ·s ↾ (ℤs × ℤs))𝑦)) ↔ ( 0s ≤s (𝑥( ·s ↾ (ℤs × ℤs))𝑦) ∧ (𝑥( ·s ↾ (ℤs × ℤs))𝑦) ∈ ℤs))
236232, 235bitri 275 . . . 4 ( 0s ( ≤s ∩ (ℤs × ℤs))(𝑥( ·s ↾ (ℤs × ℤs))𝑦) ↔ ( 0s ≤s (𝑥( ·s ↾ (ℤs × ℤs))𝑦) ∧ (𝑥( ·s ↾ (ℤs × ℤs))𝑦) ∈ ℤs))
237220, 231, 2363imtr4i 292 . . 3 (( 0s ( ≤s ∩ (ℤs × ℤs))𝑥 ∧ 0s ( ≤s ∩ (ℤs × ℤs))𝑦) → 0s ( ≤s ∩ (ℤs × ℤs))(𝑥( ·s ↾ (ℤs × ℤs))𝑦))
238237rgen2w 3049 . 2 𝑥 ∈ ℤs𝑦 ∈ ℤs (( 0s ( ≤s ∩ (ℤs × ℤs))𝑥 ∧ 0s ( ≤s ∩ (ℤs × ℤs))𝑦) → 0s ( ≤s ∩ (ℤs × ℤs))(𝑥( ·s ↾ (ℤs × ℤs))𝑦))
239 zsoring.5 . . 3 0s = (0g𝐾)
2401, 239, 82, 179isorng 20746 . 2 (𝐾 ∈ oRing ↔ (𝐾 ∈ Ring ∧ 𝐾 ∈ oGrp ∧ ∀𝑥 ∈ ℤs𝑦 ∈ ℤs (( 0s ( ≤s ∩ (ℤs × ℤs))𝑥 ∧ 0s ( ≤s ∩ (ℤs × ℤs))𝑦) → 0s ( ≤s ∩ (ℤs × ℤs))(𝑥( ·s ↾ (ℤs × ℤs))𝑦))))
241112, 208, 238, 240mpbir3an 1342 1 𝐾 ∈ oRing
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3436  cin 3902   class class class wbr 5092   × cxp 5617  cres 5621  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  lecple 17168  0gc0g 17343  Posetcpo 18213  Tosetctos 18320  Mndcmnd 18608  Grpcgrp 18812  oMndcomnd 19998  oGrpcogrp 19999  mulGrpcmgp 20025  Ringcrg 20118  oRingcorng 20742   No csur 27549   ≤s csle 27654   0s c0s 27736   1s c1s 27737   +s cadds 27871   -us cnegs 27930   ·s cmuls 28014  sczs 28271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-nadd 8584  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-0g 17345  df-poset 18219  df-toset 18321  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-omnd 20000  df-ogrp 20001  df-mgp 20026  df-ring 20120  df-orng 20744  df-no 27552  df-slt 27553  df-bday 27554  df-sle 27655  df-sslt 27692  df-scut 27694  df-0s 27738  df-1s 27739  df-made 27757  df-old 27758  df-left 27760  df-right 27761  df-norec 27850  df-norec2 27861  df-adds 27872  df-negs 27932  df-subs 27933  df-muls 28015  df-n0s 28213  df-nns 28214  df-zs 28272
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator