| Step | Hyp | Ref
| Expression |
| 1 | | zsoring.1 |
. . . 4
⊢
ℤs = (Base‘𝐾) |
| 2 | | zsoring.2 |
. . . 4
⊢ (
+s ↾ (ℤs × ℤs)) =
(+g‘𝐾) |
| 3 | | ovres 7535 |
. . . . 5
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs) → (𝑥( +s ↾ (ℤs
× ℤs))𝑦) = (𝑥 +s 𝑦)) |
| 4 | | zaddscl 28322 |
. . . . 5
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs) → (𝑥 +s 𝑦) ∈
ℤs) |
| 5 | 3, 4 | eqeltrd 2828 |
. . . 4
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs) → (𝑥( +s ↾ (ℤs
× ℤs))𝑦) ∈
ℤs) |
| 6 | | zno 28310 |
. . . . . 6
⊢ (𝑥 ∈ ℤs
→ 𝑥 ∈ No ) |
| 7 | | zno 28310 |
. . . . . 6
⊢ (𝑦 ∈ ℤs
→ 𝑦 ∈ No ) |
| 8 | | zno 28310 |
. . . . . 6
⊢ (𝑧 ∈ ℤs
→ 𝑧 ∈ No ) |
| 9 | | addsass 27952 |
. . . . . 6
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ ((𝑥 +s
𝑦) +s 𝑧) = (𝑥 +s (𝑦 +s 𝑧))) |
| 10 | 6, 7, 8, 9 | syl3an 1160 |
. . . . 5
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → ((𝑥 +s 𝑦) +s 𝑧) = (𝑥 +s (𝑦 +s 𝑧))) |
| 11 | 3 | 3adant3 1132 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑥( +s ↾ (ℤs
× ℤs))𝑦) = (𝑥 +s 𝑦)) |
| 12 | 11 | oveq1d 7384 |
. . . . . 6
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → ((𝑥( +s ↾ (ℤs
× ℤs))𝑦)( +s ↾ (ℤs
× ℤs))𝑧) = ((𝑥 +s 𝑦)( +s ↾ (ℤs
× ℤs))𝑧)) |
| 13 | 4 | 3adant3 1132 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑥 +s 𝑦) ∈
ℤs) |
| 14 | | simp3 1138 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → 𝑧 ∈ ℤs) |
| 15 | 13, 14 | ovresd 7536 |
. . . . . 6
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → ((𝑥 +s 𝑦)( +s ↾ (ℤs
× ℤs))𝑧) = ((𝑥 +s 𝑦) +s 𝑧)) |
| 16 | 12, 15 | eqtrd 2764 |
. . . . 5
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → ((𝑥( +s ↾ (ℤs
× ℤs))𝑦)( +s ↾ (ℤs
× ℤs))𝑧) = ((𝑥 +s 𝑦) +s 𝑧)) |
| 17 | | ovres 7535 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℤs
∧ 𝑧 ∈
ℤs) → (𝑦( +s ↾ (ℤs
× ℤs))𝑧) = (𝑦 +s 𝑧)) |
| 18 | 17 | 3adant1 1130 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑦( +s ↾ (ℤs
× ℤs))𝑧) = (𝑦 +s 𝑧)) |
| 19 | 18 | oveq2d 7385 |
. . . . . 6
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑥( +s ↾ (ℤs
× ℤs))(𝑦( +s ↾ (ℤs
× ℤs))𝑧)) = (𝑥( +s ↾ (ℤs
× ℤs))(𝑦 +s 𝑧))) |
| 20 | | simp1 1136 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → 𝑥 ∈ ℤs) |
| 21 | | zaddscl 28322 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℤs
∧ 𝑧 ∈
ℤs) → (𝑦 +s 𝑧) ∈
ℤs) |
| 22 | 21 | 3adant1 1130 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑦 +s 𝑧) ∈
ℤs) |
| 23 | 20, 22 | ovresd 7536 |
. . . . . 6
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑥( +s ↾ (ℤs
× ℤs))(𝑦 +s 𝑧)) = (𝑥 +s (𝑦 +s 𝑧))) |
| 24 | 19, 23 | eqtrd 2764 |
. . . . 5
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑥( +s ↾ (ℤs
× ℤs))(𝑦( +s ↾ (ℤs
× ℤs))𝑧)) = (𝑥 +s (𝑦 +s 𝑧))) |
| 25 | 10, 16, 24 | 3eqtr4d 2774 |
. . . 4
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → ((𝑥( +s ↾ (ℤs
× ℤs))𝑦)( +s ↾ (ℤs
× ℤs))𝑧) = (𝑥( +s ↾ (ℤs
× ℤs))(𝑦( +s ↾ (ℤs
× ℤs))𝑧))) |
| 26 | | 0zs 28316 |
. . . 4
⊢
0s ∈ ℤs |
| 27 | | ovres 7535 |
. . . . . 6
⊢ ((
0s ∈ ℤs ∧ 𝑥 ∈ ℤs) → (
0s ( +s ↾ (ℤs ×
ℤs))𝑥) = (
0s +s 𝑥)) |
| 28 | 26, 27 | mpan 690 |
. . . . 5
⊢ (𝑥 ∈ ℤs
→ ( 0s ( +s ↾ (ℤs ×
ℤs))𝑥) = (
0s +s 𝑥)) |
| 29 | | addslid 27915 |
. . . . . 6
⊢ (𝑥 ∈
No → ( 0s +s 𝑥) = 𝑥) |
| 30 | 6, 29 | syl 17 |
. . . . 5
⊢ (𝑥 ∈ ℤs
→ ( 0s +s 𝑥) = 𝑥) |
| 31 | 28, 30 | eqtrd 2764 |
. . . 4
⊢ (𝑥 ∈ ℤs
→ ( 0s ( +s ↾ (ℤs ×
ℤs))𝑥) =
𝑥) |
| 32 | | znegscl 28320 |
. . . 4
⊢ (𝑥 ∈ ℤs
→ ( -us ‘𝑥) ∈
ℤs) |
| 33 | | id 22 |
. . . . . 6
⊢ (𝑥 ∈ ℤs
→ 𝑥 ∈
ℤs) |
| 34 | 32, 33 | ovresd 7536 |
. . . . 5
⊢ (𝑥 ∈ ℤs
→ (( -us ‘𝑥)( +s ↾ (ℤs
× ℤs))𝑥) = (( -us ‘𝑥) +s 𝑥)) |
| 35 | 32 | znod 28311 |
. . . . . 6
⊢ (𝑥 ∈ ℤs
→ ( -us ‘𝑥) ∈ No
) |
| 36 | 35, 6 | addscomd 27914 |
. . . . 5
⊢ (𝑥 ∈ ℤs
→ (( -us ‘𝑥) +s 𝑥) = (𝑥 +s ( -us ‘𝑥))) |
| 37 | 6 | negsidd 27988 |
. . . . 5
⊢ (𝑥 ∈ ℤs
→ (𝑥 +s (
-us ‘𝑥)) =
0s ) |
| 38 | 34, 36, 37 | 3eqtrd 2768 |
. . . 4
⊢ (𝑥 ∈ ℤs
→ (( -us ‘𝑥)( +s ↾ (ℤs
× ℤs))𝑥) = 0s ) |
| 39 | 1, 2, 5, 25, 26, 31, 32, 38 | isgrpi 18873 |
. . 3
⊢ 𝐾 ∈ Grp |
| 40 | | ovres 7535 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs) → (𝑥( ·s ↾
(ℤs × ℤs))𝑦) = (𝑥 ·s 𝑦)) |
| 41 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs) → 𝑥 ∈ ℤs) |
| 42 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs) → 𝑦 ∈ ℤs) |
| 43 | 41, 42 | zmulscld 28325 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs) → (𝑥 ·s 𝑦) ∈
ℤs) |
| 44 | 40, 43 | eqeltrd 2828 |
. . . . . 6
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs) → (𝑥( ·s ↾
(ℤs × ℤs))𝑦) ∈
ℤs) |
| 45 | | mulsass 28109 |
. . . . . . . . . 10
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ ((𝑥
·s 𝑦)
·s 𝑧) =
(𝑥 ·s
(𝑦 ·s
𝑧))) |
| 46 | 6, 7, 8, 45 | syl3an 1160 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → ((𝑥 ·s 𝑦) ·s 𝑧) = (𝑥 ·s (𝑦 ·s 𝑧))) |
| 47 | 40 | 3adant3 1132 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑥( ·s ↾
(ℤs × ℤs))𝑦) = (𝑥 ·s 𝑦)) |
| 48 | 47 | oveq1d 7384 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → ((𝑥( ·s ↾
(ℤs × ℤs))𝑦)( ·s ↾
(ℤs × ℤs))𝑧) = ((𝑥 ·s 𝑦)( ·s ↾
(ℤs × ℤs))𝑧)) |
| 49 | | simp2 1137 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → 𝑦 ∈ ℤs) |
| 50 | 20, 49 | zmulscld 28325 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑥 ·s 𝑦) ∈
ℤs) |
| 51 | 50, 14 | ovresd 7536 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → ((𝑥 ·s 𝑦)( ·s ↾
(ℤs × ℤs))𝑧) = ((𝑥 ·s 𝑦) ·s 𝑧)) |
| 52 | 48, 51 | eqtrd 2764 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → ((𝑥( ·s ↾
(ℤs × ℤs))𝑦)( ·s ↾
(ℤs × ℤs))𝑧) = ((𝑥 ·s 𝑦) ·s 𝑧)) |
| 53 | | ovres 7535 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℤs
∧ 𝑧 ∈
ℤs) → (𝑦( ·s ↾
(ℤs × ℤs))𝑧) = (𝑦 ·s 𝑧)) |
| 54 | 53 | 3adant1 1130 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑦( ·s ↾
(ℤs × ℤs))𝑧) = (𝑦 ·s 𝑧)) |
| 55 | 54 | oveq2d 7385 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑥( ·s ↾
(ℤs × ℤs))(𝑦( ·s ↾
(ℤs × ℤs))𝑧)) = (𝑥( ·s ↾
(ℤs × ℤs))(𝑦 ·s 𝑧))) |
| 56 | 49, 14 | zmulscld 28325 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑦 ·s 𝑧) ∈
ℤs) |
| 57 | 20, 56 | ovresd 7536 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑥( ·s ↾
(ℤs × ℤs))(𝑦 ·s 𝑧)) = (𝑥 ·s (𝑦 ·s 𝑧))) |
| 58 | 55, 57 | eqtrd 2764 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑥( ·s ↾
(ℤs × ℤs))(𝑦( ·s ↾
(ℤs × ℤs))𝑧)) = (𝑥 ·s (𝑦 ·s 𝑧))) |
| 59 | 46, 52, 58 | 3eqtr4d 2774 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → ((𝑥( ·s ↾
(ℤs × ℤs))𝑦)( ·s ↾
(ℤs × ℤs))𝑧) = (𝑥( ·s ↾
(ℤs × ℤs))(𝑦( ·s ↾
(ℤs × ℤs))𝑧))) |
| 60 | 59 | 3expa 1118 |
. . . . . . 7
⊢ (((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs) ∧ 𝑧 ∈ ℤs) → ((𝑥( ·s ↾
(ℤs × ℤs))𝑦)( ·s ↾
(ℤs × ℤs))𝑧) = (𝑥( ·s ↾
(ℤs × ℤs))(𝑦( ·s ↾
(ℤs × ℤs))𝑧))) |
| 61 | 60 | ralrimiva 3125 |
. . . . . 6
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs) → ∀𝑧 ∈ ℤs ((𝑥( ·s ↾
(ℤs × ℤs))𝑦)( ·s ↾
(ℤs × ℤs))𝑧) = (𝑥( ·s ↾
(ℤs × ℤs))(𝑦( ·s ↾
(ℤs × ℤs))𝑧))) |
| 62 | 44, 61 | jca 511 |
. . . . 5
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs) → ((𝑥( ·s ↾
(ℤs × ℤs))𝑦) ∈ ℤs ∧
∀𝑧 ∈
ℤs ((𝑥(
·s ↾ (ℤs ×
ℤs))𝑦)(
·s ↾ (ℤs ×
ℤs))𝑧) =
(𝑥( ·s
↾ (ℤs × ℤs))(𝑦( ·s ↾
(ℤs × ℤs))𝑧)))) |
| 63 | 62 | rgen2 3175 |
. . . 4
⊢
∀𝑥 ∈
ℤs ∀𝑦 ∈ ℤs ((𝑥( ·s ↾
(ℤs × ℤs))𝑦) ∈ ℤs ∧
∀𝑧 ∈
ℤs ((𝑥(
·s ↾ (ℤs ×
ℤs))𝑦)(
·s ↾ (ℤs ×
ℤs))𝑧) =
(𝑥( ·s
↾ (ℤs × ℤs))(𝑦( ·s ↾
(ℤs × ℤs))𝑧))) |
| 64 | | 1zs 28319 |
. . . . 5
⊢
1s ∈ ℤs |
| 65 | | ovres 7535 |
. . . . . . . . 9
⊢ ((
1s ∈ ℤs ∧ 𝑥 ∈ ℤs) → (
1s ( ·s ↾ (ℤs ×
ℤs))𝑥) = (
1s ·s 𝑥)) |
| 66 | 64, 65 | mpan 690 |
. . . . . . . 8
⊢ (𝑥 ∈ ℤs
→ ( 1s ( ·s ↾ (ℤs
× ℤs))𝑥) = ( 1s ·s
𝑥)) |
| 67 | 6 | mulslidd 28086 |
. . . . . . . 8
⊢ (𝑥 ∈ ℤs
→ ( 1s ·s 𝑥) = 𝑥) |
| 68 | 66, 67 | eqtrd 2764 |
. . . . . . 7
⊢ (𝑥 ∈ ℤs
→ ( 1s ( ·s ↾ (ℤs
× ℤs))𝑥) = 𝑥) |
| 69 | | ovres 7535 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℤs
∧ 1s ∈ ℤs) → (𝑥( ·s ↾
(ℤs × ℤs)) 1s ) = (𝑥 ·s
1s )) |
| 70 | 64, 69 | mpan2 691 |
. . . . . . . 8
⊢ (𝑥 ∈ ℤs
→ (𝑥(
·s ↾ (ℤs × ℤs))
1s ) = (𝑥
·s 1s )) |
| 71 | 6 | mulsridd 28057 |
. . . . . . . 8
⊢ (𝑥 ∈ ℤs
→ (𝑥
·s 1s ) = 𝑥) |
| 72 | 70, 71 | eqtrd 2764 |
. . . . . . 7
⊢ (𝑥 ∈ ℤs
→ (𝑥(
·s ↾ (ℤs × ℤs))
1s ) = 𝑥) |
| 73 | 68, 72 | jca 511 |
. . . . . 6
⊢ (𝑥 ∈ ℤs
→ (( 1s ( ·s ↾ (ℤs
× ℤs))𝑥) = 𝑥 ∧ (𝑥( ·s ↾
(ℤs × ℤs)) 1s ) = 𝑥)) |
| 74 | 73 | rgen 3046 |
. . . . 5
⊢
∀𝑥 ∈
ℤs (( 1s ( ·s ↾
(ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( ·s ↾
(ℤs × ℤs)) 1s ) = 𝑥) |
| 75 | | oveq1 7376 |
. . . . . . . 8
⊢ (𝑦 = 1s → (𝑦( ·s ↾
(ℤs × ℤs))𝑥) = ( 1s ( ·s
↾ (ℤs × ℤs))𝑥)) |
| 76 | 75 | eqeq1d 2731 |
. . . . . . 7
⊢ (𝑦 = 1s → ((𝑦( ·s ↾
(ℤs × ℤs))𝑥) = 𝑥 ↔ ( 1s (
·s ↾ (ℤs ×
ℤs))𝑥) =
𝑥)) |
| 77 | 76 | ovanraleqv 7393 |
. . . . . 6
⊢ (𝑦 = 1s →
(∀𝑥 ∈
ℤs ((𝑦(
·s ↾ (ℤs ×
ℤs))𝑥) =
𝑥 ∧ (𝑥( ·s ↾
(ℤs × ℤs))𝑦) = 𝑥) ↔ ∀𝑥 ∈ ℤs (( 1s
( ·s ↾ (ℤs ×
ℤs))𝑥) =
𝑥 ∧ (𝑥( ·s ↾
(ℤs × ℤs)) 1s ) = 𝑥))) |
| 78 | 77 | rspcev 3585 |
. . . . 5
⊢ ((
1s ∈ ℤs ∧ ∀𝑥 ∈ ℤs (( 1s
( ·s ↾ (ℤs ×
ℤs))𝑥) =
𝑥 ∧ (𝑥( ·s ↾
(ℤs × ℤs)) 1s ) = 𝑥)) → ∃𝑦 ∈ ℤs
∀𝑥 ∈
ℤs ((𝑦(
·s ↾ (ℤs ×
ℤs))𝑥) =
𝑥 ∧ (𝑥( ·s ↾
(ℤs × ℤs))𝑦) = 𝑥)) |
| 79 | 64, 74, 78 | mp2an 692 |
. . . 4
⊢
∃𝑦 ∈
ℤs ∀𝑥 ∈ ℤs ((𝑦( ·s ↾
(ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( ·s ↾
(ℤs × ℤs))𝑦) = 𝑥) |
| 80 | | eqid 2729 |
. . . . . 6
⊢
(mulGrp‘𝐾) =
(mulGrp‘𝐾) |
| 81 | 80, 1 | mgpbas 20065 |
. . . . 5
⊢
ℤs = (Base‘(mulGrp‘𝐾)) |
| 82 | | zsoring.3 |
. . . . . 6
⊢ (
·s ↾ (ℤs × ℤs))
= (.r‘𝐾) |
| 83 | 80, 82 | mgpplusg 20064 |
. . . . 5
⊢ (
·s ↾ (ℤs × ℤs))
= (+g‘(mulGrp‘𝐾)) |
| 84 | 81, 83 | ismnd 18646 |
. . . 4
⊢
((mulGrp‘𝐾)
∈ Mnd ↔ (∀𝑥 ∈ ℤs ∀𝑦 ∈ ℤs
((𝑥( ·s
↾ (ℤs × ℤs))𝑦) ∈ ℤs ∧
∀𝑧 ∈
ℤs ((𝑥(
·s ↾ (ℤs ×
ℤs))𝑦)(
·s ↾ (ℤs ×
ℤs))𝑧) =
(𝑥( ·s
↾ (ℤs × ℤs))(𝑦( ·s ↾
(ℤs × ℤs))𝑧))) ∧ ∃𝑦 ∈ ℤs ∀𝑥 ∈ ℤs
((𝑦( ·s
↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( ·s ↾
(ℤs × ℤs))𝑦) = 𝑥))) |
| 85 | 63, 79, 84 | mpbir2an 711 |
. . 3
⊢
(mulGrp‘𝐾)
∈ Mnd |
| 86 | | addsdi 28098 |
. . . . . . 7
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ (𝑥
·s (𝑦
+s 𝑧)) = ((𝑥 ·s 𝑦) +s (𝑥 ·s 𝑧))) |
| 87 | 6, 7, 8, 86 | syl3an 1160 |
. . . . . 6
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑥 ·s (𝑦 +s 𝑧)) = ((𝑥 ·s 𝑦) +s (𝑥 ·s 𝑧))) |
| 88 | 18 | oveq2d 7385 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑥( ·s ↾
(ℤs × ℤs))(𝑦( +s ↾ (ℤs
× ℤs))𝑧)) = (𝑥( ·s ↾
(ℤs × ℤs))(𝑦 +s 𝑧))) |
| 89 | 20, 22 | ovresd 7536 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑥( ·s ↾
(ℤs × ℤs))(𝑦 +s 𝑧)) = (𝑥 ·s (𝑦 +s 𝑧))) |
| 90 | 88, 89 | eqtrd 2764 |
. . . . . 6
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑥( ·s ↾
(ℤs × ℤs))(𝑦( +s ↾ (ℤs
× ℤs))𝑧)) = (𝑥 ·s (𝑦 +s 𝑧))) |
| 91 | | ovres 7535 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℤs
∧ 𝑧 ∈
ℤs) → (𝑥( ·s ↾
(ℤs × ℤs))𝑧) = (𝑥 ·s 𝑧)) |
| 92 | 91 | 3adant2 1131 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑥( ·s ↾
(ℤs × ℤs))𝑧) = (𝑥 ·s 𝑧)) |
| 93 | 47, 92 | oveq12d 7387 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → ((𝑥( ·s ↾
(ℤs × ℤs))𝑦)( +s ↾ (ℤs
× ℤs))(𝑥( ·s ↾
(ℤs × ℤs))𝑧)) = ((𝑥 ·s 𝑦)( +s ↾ (ℤs
× ℤs))(𝑥 ·s 𝑧))) |
| 94 | 20, 14 | zmulscld 28325 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑥 ·s 𝑧) ∈
ℤs) |
| 95 | 50, 94 | ovresd 7536 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → ((𝑥 ·s 𝑦)( +s ↾ (ℤs
× ℤs))(𝑥 ·s 𝑧)) = ((𝑥 ·s 𝑦) +s (𝑥 ·s 𝑧))) |
| 96 | 93, 95 | eqtrd 2764 |
. . . . . 6
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → ((𝑥( ·s ↾
(ℤs × ℤs))𝑦)( +s ↾ (ℤs
× ℤs))(𝑥( ·s ↾
(ℤs × ℤs))𝑧)) = ((𝑥 ·s 𝑦) +s (𝑥 ·s 𝑧))) |
| 97 | 87, 90, 96 | 3eqtr4d 2774 |
. . . . 5
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑥( ·s ↾
(ℤs × ℤs))(𝑦( +s ↾ (ℤs
× ℤs))𝑧)) = ((𝑥( ·s ↾
(ℤs × ℤs))𝑦)( +s ↾ (ℤs
× ℤs))(𝑥( ·s ↾
(ℤs × ℤs))𝑧))) |
| 98 | 20 | znod 28311 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → 𝑥 ∈ No
) |
| 99 | 49 | znod 28311 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → 𝑦 ∈ No
) |
| 100 | 14 | znod 28311 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → 𝑧 ∈ No
) |
| 101 | 98, 99, 100 | addsdird 28100 |
. . . . . 6
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → ((𝑥 +s 𝑦) ·s 𝑧) = ((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑧))) |
| 102 | 11 | oveq1d 7384 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → ((𝑥( +s ↾ (ℤs
× ℤs))𝑦)( ·s ↾
(ℤs × ℤs))𝑧) = ((𝑥 +s 𝑦)( ·s ↾
(ℤs × ℤs))𝑧)) |
| 103 | 13, 14 | ovresd 7536 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → ((𝑥 +s 𝑦)( ·s ↾
(ℤs × ℤs))𝑧) = ((𝑥 +s 𝑦) ·s 𝑧)) |
| 104 | 102, 103 | eqtrd 2764 |
. . . . . 6
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → ((𝑥( +s ↾ (ℤs
× ℤs))𝑦)( ·s ↾
(ℤs × ℤs))𝑧) = ((𝑥 +s 𝑦) ·s 𝑧)) |
| 105 | 92, 54 | oveq12d 7387 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → ((𝑥( ·s ↾
(ℤs × ℤs))𝑧)( +s ↾ (ℤs
× ℤs))(𝑦( ·s ↾
(ℤs × ℤs))𝑧)) = ((𝑥 ·s 𝑧)( +s ↾ (ℤs
× ℤs))(𝑦 ·s 𝑧))) |
| 106 | 94, 56 | ovresd 7536 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → ((𝑥 ·s 𝑧)( +s ↾ (ℤs
× ℤs))(𝑦 ·s 𝑧)) = ((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑧))) |
| 107 | 105, 106 | eqtrd 2764 |
. . . . . 6
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → ((𝑥( ·s ↾
(ℤs × ℤs))𝑧)( +s ↾ (ℤs
× ℤs))(𝑦( ·s ↾
(ℤs × ℤs))𝑧)) = ((𝑥 ·s 𝑧) +s (𝑦 ·s 𝑧))) |
| 108 | 101, 104,
107 | 3eqtr4d 2774 |
. . . . 5
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → ((𝑥( +s ↾ (ℤs
× ℤs))𝑦)( ·s ↾
(ℤs × ℤs))𝑧) = ((𝑥( ·s ↾
(ℤs × ℤs))𝑧)( +s ↾ (ℤs
× ℤs))(𝑦( ·s ↾
(ℤs × ℤs))𝑧))) |
| 109 | 97, 108 | jca 511 |
. . . 4
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → ((𝑥( ·s ↾
(ℤs × ℤs))(𝑦( +s ↾ (ℤs
× ℤs))𝑧)) = ((𝑥( ·s ↾
(ℤs × ℤs))𝑦)( +s ↾ (ℤs
× ℤs))(𝑥( ·s ↾
(ℤs × ℤs))𝑧)) ∧ ((𝑥( +s ↾ (ℤs
× ℤs))𝑦)( ·s ↾
(ℤs × ℤs))𝑧) = ((𝑥( ·s ↾
(ℤs × ℤs))𝑧)( +s ↾ (ℤs
× ℤs))(𝑦( ·s ↾
(ℤs × ℤs))𝑧)))) |
| 110 | 109 | rgen3 3180 |
. . 3
⊢
∀𝑥 ∈
ℤs ∀𝑦 ∈ ℤs ∀𝑧 ∈ ℤs
((𝑥( ·s
↾ (ℤs × ℤs))(𝑦( +s ↾ (ℤs
× ℤs))𝑧)) = ((𝑥( ·s ↾
(ℤs × ℤs))𝑦)( +s ↾ (ℤs
× ℤs))(𝑥( ·s ↾
(ℤs × ℤs))𝑧)) ∧ ((𝑥( +s ↾ (ℤs
× ℤs))𝑦)( ·s ↾
(ℤs × ℤs))𝑧) = ((𝑥( ·s ↾
(ℤs × ℤs))𝑧)( +s ↾ (ℤs
× ℤs))(𝑦( ·s ↾
(ℤs × ℤs))𝑧))) |
| 111 | 1, 80, 2, 82 | isring 20157 |
. . 3
⊢ (𝐾 ∈ Ring ↔ (𝐾 ∈ Grp ∧
(mulGrp‘𝐾) ∈ Mnd
∧ ∀𝑥 ∈
ℤs ∀𝑦 ∈ ℤs ∀𝑧 ∈ ℤs
((𝑥( ·s
↾ (ℤs × ℤs))(𝑦( +s ↾ (ℤs
× ℤs))𝑧)) = ((𝑥( ·s ↾
(ℤs × ℤs))𝑦)( +s ↾ (ℤs
× ℤs))(𝑥( ·s ↾
(ℤs × ℤs))𝑧)) ∧ ((𝑥( +s ↾ (ℤs
× ℤs))𝑦)( ·s ↾
(ℤs × ℤs))𝑧) = ((𝑥( ·s ↾
(ℤs × ℤs))𝑧)( +s ↾ (ℤs
× ℤs))(𝑦( ·s ↾
(ℤs × ℤs))𝑧))))) |
| 112 | 39, 85, 110, 111 | mpbir3an 1342 |
. 2
⊢ 𝐾 ∈ Ring |
| 113 | 25 | 3expa 1118 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs) ∧ 𝑧 ∈ ℤs) → ((𝑥( +s ↾
(ℤs × ℤs))𝑦)( +s ↾ (ℤs
× ℤs))𝑧) = (𝑥( +s ↾ (ℤs
× ℤs))(𝑦( +s ↾ (ℤs
× ℤs))𝑧))) |
| 114 | 113 | ralrimiva 3125 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs) → ∀𝑧 ∈ ℤs ((𝑥( +s ↾
(ℤs × ℤs))𝑦)( +s ↾ (ℤs
× ℤs))𝑧) = (𝑥( +s ↾ (ℤs
× ℤs))(𝑦( +s ↾ (ℤs
× ℤs))𝑧))) |
| 115 | 5, 114 | jca 511 |
. . . . . 6
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs) → ((𝑥( +s ↾ (ℤs
× ℤs))𝑦) ∈ ℤs ∧
∀𝑧 ∈
ℤs ((𝑥(
+s ↾ (ℤs × ℤs))𝑦)( +s ↾
(ℤs × ℤs))𝑧) = (𝑥( +s ↾ (ℤs
× ℤs))(𝑦( +s ↾ (ℤs
× ℤs))𝑧)))) |
| 116 | 115 | rgen2 3175 |
. . . . 5
⊢
∀𝑥 ∈
ℤs ∀𝑦 ∈ ℤs ((𝑥( +s ↾
(ℤs × ℤs))𝑦) ∈ ℤs ∧
∀𝑧 ∈
ℤs ((𝑥(
+s ↾ (ℤs × ℤs))𝑦)( +s ↾
(ℤs × ℤs))𝑧) = (𝑥( +s ↾ (ℤs
× ℤs))(𝑦( +s ↾ (ℤs
× ℤs))𝑧))) |
| 117 | | ovres 7535 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℤs
∧ 0s ∈ ℤs) → (𝑥( +s ↾ (ℤs
× ℤs)) 0s ) = (𝑥 +s 0s
)) |
| 118 | 26, 117 | mpan2 691 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℤs
→ (𝑥( +s
↾ (ℤs × ℤs)) 0s ) =
(𝑥 +s
0s )) |
| 119 | 6 | addsridd 27912 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℤs
→ (𝑥 +s
0s ) = 𝑥) |
| 120 | 118, 119 | eqtrd 2764 |
. . . . . . . 8
⊢ (𝑥 ∈ ℤs
→ (𝑥( +s
↾ (ℤs × ℤs)) 0s ) =
𝑥) |
| 121 | 31, 120 | jca 511 |
. . . . . . 7
⊢ (𝑥 ∈ ℤs
→ (( 0s ( +s ↾ (ℤs ×
ℤs))𝑥) =
𝑥 ∧ (𝑥( +s ↾ (ℤs
× ℤs)) 0s ) = 𝑥)) |
| 122 | 121 | rgen 3046 |
. . . . . 6
⊢
∀𝑥 ∈
ℤs (( 0s ( +s ↾
(ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( +s ↾ (ℤs
× ℤs)) 0s ) = 𝑥) |
| 123 | | oveq1 7376 |
. . . . . . . . 9
⊢ (𝑦 = 0s → (𝑦( +s ↾
(ℤs × ℤs))𝑥) = ( 0s ( +s ↾
(ℤs × ℤs))𝑥)) |
| 124 | 123 | eqeq1d 2731 |
. . . . . . . 8
⊢ (𝑦 = 0s → ((𝑦( +s ↾
(ℤs × ℤs))𝑥) = 𝑥 ↔ ( 0s ( +s
↾ (ℤs × ℤs))𝑥) = 𝑥)) |
| 125 | 124 | ovanraleqv 7393 |
. . . . . . 7
⊢ (𝑦 = 0s →
(∀𝑥 ∈
ℤs ((𝑦(
+s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( +s ↾ (ℤs
× ℤs))𝑦) = 𝑥) ↔ ∀𝑥 ∈ ℤs (( 0s
( +s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( +s ↾ (ℤs
× ℤs)) 0s ) = 𝑥))) |
| 126 | 125 | rspcev 3585 |
. . . . . 6
⊢ ((
0s ∈ ℤs ∧ ∀𝑥 ∈ ℤs (( 0s
( +s ↾ (ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( +s ↾ (ℤs
× ℤs)) 0s ) = 𝑥)) → ∃𝑦 ∈ ℤs ∀𝑥 ∈ ℤs
((𝑦( +s ↾
(ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( +s ↾ (ℤs
× ℤs))𝑦) = 𝑥)) |
| 127 | 26, 122, 126 | mp2an 692 |
. . . . 5
⊢
∃𝑦 ∈
ℤs ∀𝑥 ∈ ℤs ((𝑦( +s ↾
(ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( +s ↾ (ℤs
× ℤs))𝑦) = 𝑥) |
| 128 | 1, 2 | ismnd 18646 |
. . . . 5
⊢ (𝐾 ∈ Mnd ↔
(∀𝑥 ∈
ℤs ∀𝑦 ∈ ℤs ((𝑥( +s ↾
(ℤs × ℤs))𝑦) ∈ ℤs ∧
∀𝑧 ∈
ℤs ((𝑥(
+s ↾ (ℤs × ℤs))𝑦)( +s ↾
(ℤs × ℤs))𝑧) = (𝑥( +s ↾ (ℤs
× ℤs))(𝑦( +s ↾ (ℤs
× ℤs))𝑧))) ∧ ∃𝑦 ∈ ℤs ∀𝑥 ∈ ℤs
((𝑦( +s ↾
(ℤs × ℤs))𝑥) = 𝑥 ∧ (𝑥( +s ↾ (ℤs
× ℤs))𝑦) = 𝑥))) |
| 129 | 116, 127,
128 | mpbir2an 711 |
. . . 4
⊢ 𝐾 ∈ Mnd |
| 130 | 39 | elexi 3467 |
. . . . . 6
⊢ 𝐾 ∈ V |
| 131 | | slerflex 27708 |
. . . . . . . . . . 11
⊢ (𝑥 ∈
No → 𝑥 ≤s
𝑥) |
| 132 | 6, 131 | syl 17 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℤs
→ 𝑥 ≤s 𝑥) |
| 133 | | brxp 5680 |
. . . . . . . . . . . 12
⊢ (𝑥(ℤs ×
ℤs)𝑥
↔ (𝑥 ∈
ℤs ∧ 𝑥
∈ ℤs)) |
| 134 | 133 | biimpri 228 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℤs
∧ 𝑥 ∈
ℤs) → 𝑥(ℤs ×
ℤs)𝑥) |
| 135 | 134 | anidms 566 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℤs
→ 𝑥(ℤs ×
ℤs)𝑥) |
| 136 | | brin 5154 |
. . . . . . . . . 10
⊢ (𝑥( ≤s ∩
(ℤs × ℤs))𝑥 ↔ (𝑥 ≤s 𝑥 ∧ 𝑥(ℤs ×
ℤs)𝑥)) |
| 137 | 132, 135,
136 | sylanbrc 583 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℤs
→ 𝑥( ≤s ∩
(ℤs × ℤs))𝑥) |
| 138 | 137 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → 𝑥( ≤s ∩ (ℤs ×
ℤs))𝑥) |
| 139 | | brin 5154 |
. . . . . . . . . . 11
⊢ (𝑥( ≤s ∩
(ℤs × ℤs))𝑦 ↔ (𝑥 ≤s 𝑦 ∧ 𝑥(ℤs ×
ℤs)𝑦)) |
| 140 | | brxp 5680 |
. . . . . . . . . . . . . 14
⊢ (𝑥(ℤs ×
ℤs)𝑦
↔ (𝑥 ∈
ℤs ∧ 𝑦
∈ ℤs)) |
| 141 | 140 | biimpri 228 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs) → 𝑥(ℤs ×
ℤs)𝑦) |
| 142 | 141 | 3adant3 1132 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → 𝑥(ℤs ×
ℤs)𝑦) |
| 143 | 142 | biantrud 531 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑥 ≤s 𝑦 ↔ (𝑥 ≤s 𝑦 ∧ 𝑥(ℤs ×
ℤs)𝑦))) |
| 144 | 139, 143 | bitr4id 290 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑥( ≤s ∩ (ℤs ×
ℤs))𝑦
↔ 𝑥 ≤s 𝑦)) |
| 145 | | brin 5154 |
. . . . . . . . . . . 12
⊢ (𝑦( ≤s ∩
(ℤs × ℤs))𝑥 ↔ (𝑦 ≤s 𝑥 ∧ 𝑦(ℤs ×
ℤs)𝑥)) |
| 146 | | brxp 5680 |
. . . . . . . . . . . . . . 15
⊢ (𝑦(ℤs ×
ℤs)𝑥
↔ (𝑦 ∈
ℤs ∧ 𝑥
∈ ℤs)) |
| 147 | 146 | biimpri 228 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℤs
∧ 𝑥 ∈
ℤs) → 𝑦(ℤs ×
ℤs)𝑥) |
| 148 | 147 | ancoms 458 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs) → 𝑦(ℤs ×
ℤs)𝑥) |
| 149 | 148 | biantrud 531 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs) → (𝑦 ≤s 𝑥 ↔ (𝑦 ≤s 𝑥 ∧ 𝑦(ℤs ×
ℤs)𝑥))) |
| 150 | 145, 149 | bitr4id 290 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs) → (𝑦( ≤s ∩ (ℤs ×
ℤs))𝑥
↔ 𝑦 ≤s 𝑥)) |
| 151 | 150 | 3adant3 1132 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑦( ≤s ∩ (ℤs ×
ℤs))𝑥
↔ 𝑦 ≤s 𝑥)) |
| 152 | 144, 151 | anbi12d 632 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → ((𝑥( ≤s ∩ (ℤs ×
ℤs))𝑦
∧ 𝑦( ≤s ∩
(ℤs × ℤs))𝑥) ↔ (𝑥 ≤s 𝑦 ∧ 𝑦 ≤s 𝑥))) |
| 153 | | sletri3 27700 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ) → (𝑥 = 𝑦 ↔ (𝑥 ≤s 𝑦 ∧ 𝑦 ≤s 𝑥))) |
| 154 | 6, 7, 153 | syl2an 596 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs) → (𝑥 = 𝑦 ↔ (𝑥 ≤s 𝑦 ∧ 𝑦 ≤s 𝑥))) |
| 155 | 154 | 3adant3 1132 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑥 = 𝑦 ↔ (𝑥 ≤s 𝑦 ∧ 𝑦 ≤s 𝑥))) |
| 156 | 155 | biimprd 248 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → ((𝑥 ≤s 𝑦 ∧ 𝑦 ≤s 𝑥) → 𝑥 = 𝑦)) |
| 157 | 152, 156 | sylbid 240 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → ((𝑥( ≤s ∩ (ℤs ×
ℤs))𝑦
∧ 𝑦( ≤s ∩
(ℤs × ℤs))𝑥) → 𝑥 = 𝑦)) |
| 158 | | sletr 27703 |
. . . . . . . . . 10
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ ((𝑥 ≤s 𝑦 ∧ 𝑦 ≤s 𝑧) → 𝑥 ≤s 𝑧)) |
| 159 | 6, 7, 8, 158 | syl3an 1160 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → ((𝑥 ≤s 𝑦 ∧ 𝑦 ≤s 𝑧) → 𝑥 ≤s 𝑧)) |
| 160 | 141 | biantrud 531 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs) → (𝑥 ≤s 𝑦 ↔ (𝑥 ≤s 𝑦 ∧ 𝑥(ℤs ×
ℤs)𝑦))) |
| 161 | 139, 160 | bitr4id 290 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs) → (𝑥( ≤s ∩ (ℤs ×
ℤs))𝑦
↔ 𝑥 ≤s 𝑦)) |
| 162 | 161 | 3adant3 1132 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑥( ≤s ∩ (ℤs ×
ℤs))𝑦
↔ 𝑥 ≤s 𝑦)) |
| 163 | | brin 5154 |
. . . . . . . . . . 11
⊢ (𝑦( ≤s ∩
(ℤs × ℤs))𝑧 ↔ (𝑦 ≤s 𝑧 ∧ 𝑦(ℤs ×
ℤs)𝑧)) |
| 164 | | brxp 5680 |
. . . . . . . . . . . . . 14
⊢ (𝑦(ℤs ×
ℤs)𝑧
↔ (𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs)) |
| 165 | 164 | biimpri 228 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℤs
∧ 𝑧 ∈
ℤs) → 𝑦(ℤs ×
ℤs)𝑧) |
| 166 | 165 | 3adant1 1130 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → 𝑦(ℤs ×
ℤs)𝑧) |
| 167 | 166 | biantrud 531 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑦 ≤s 𝑧 ↔ (𝑦 ≤s 𝑧 ∧ 𝑦(ℤs ×
ℤs)𝑧))) |
| 168 | 163, 167 | bitr4id 290 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑦( ≤s ∩ (ℤs ×
ℤs))𝑧
↔ 𝑦 ≤s 𝑧)) |
| 169 | 162, 168 | anbi12d 632 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → ((𝑥( ≤s ∩ (ℤs ×
ℤs))𝑦
∧ 𝑦( ≤s ∩
(ℤs × ℤs))𝑧) ↔ (𝑥 ≤s 𝑦 ∧ 𝑦 ≤s 𝑧))) |
| 170 | | brin 5154 |
. . . . . . . . . 10
⊢ (𝑥( ≤s ∩
(ℤs × ℤs))𝑧 ↔ (𝑥 ≤s 𝑧 ∧ 𝑥(ℤs ×
ℤs)𝑧)) |
| 171 | | brxp 5680 |
. . . . . . . . . . . . 13
⊢ (𝑥(ℤs ×
ℤs)𝑧
↔ (𝑥 ∈
ℤs ∧ 𝑧
∈ ℤs)) |
| 172 | 171 | biimpri 228 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℤs
∧ 𝑧 ∈
ℤs) → 𝑥(ℤs ×
ℤs)𝑧) |
| 173 | 172 | 3adant2 1131 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → 𝑥(ℤs ×
ℤs)𝑧) |
| 174 | 173 | biantrud 531 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑥 ≤s 𝑧 ↔ (𝑥 ≤s 𝑧 ∧ 𝑥(ℤs ×
ℤs)𝑧))) |
| 175 | 170, 174 | bitr4id 290 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑥( ≤s ∩ (ℤs ×
ℤs))𝑧
↔ 𝑥 ≤s 𝑧)) |
| 176 | 159, 169,
175 | 3imtr4d 294 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → ((𝑥( ≤s ∩ (ℤs ×
ℤs))𝑦
∧ 𝑦( ≤s ∩
(ℤs × ℤs))𝑧) → 𝑥( ≤s ∩ (ℤs ×
ℤs))𝑧)) |
| 177 | 138, 157,
176 | 3jca 1128 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑥( ≤s ∩ (ℤs ×
ℤs))𝑥
∧ ((𝑥( ≤s ∩
(ℤs × ℤs))𝑦 ∧ 𝑦( ≤s ∩ (ℤs ×
ℤs))𝑥)
→ 𝑥 = 𝑦) ∧ ((𝑥( ≤s ∩ (ℤs ×
ℤs))𝑦
∧ 𝑦( ≤s ∩
(ℤs × ℤs))𝑧) → 𝑥( ≤s ∩ (ℤs ×
ℤs))𝑧))) |
| 178 | 177 | rgen3 3180 |
. . . . . 6
⊢
∀𝑥 ∈
ℤs ∀𝑦 ∈ ℤs ∀𝑧 ∈ ℤs
(𝑥( ≤s ∩
(ℤs × ℤs))𝑥 ∧ ((𝑥( ≤s ∩ (ℤs ×
ℤs))𝑦
∧ 𝑦( ≤s ∩
(ℤs × ℤs))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥( ≤s ∩ (ℤs ×
ℤs))𝑦
∧ 𝑦( ≤s ∩
(ℤs × ℤs))𝑧) → 𝑥( ≤s ∩ (ℤs ×
ℤs))𝑧)) |
| 179 | | zsoring.4 |
. . . . . . 7
⊢ ( ≤s
∩ (ℤs × ℤs)) = (le‘𝐾) |
| 180 | 1, 179 | ispos 18255 |
. . . . . 6
⊢ (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ ∀𝑥 ∈ ℤs
∀𝑦 ∈
ℤs ∀𝑧 ∈ ℤs (𝑥( ≤s ∩
(ℤs × ℤs))𝑥 ∧ ((𝑥( ≤s ∩ (ℤs ×
ℤs))𝑦
∧ 𝑦( ≤s ∩
(ℤs × ℤs))𝑥) → 𝑥 = 𝑦) ∧ ((𝑥( ≤s ∩ (ℤs ×
ℤs))𝑦
∧ 𝑦( ≤s ∩
(ℤs × ℤs))𝑧) → 𝑥( ≤s ∩ (ℤs ×
ℤs))𝑧)))) |
| 181 | 130, 178,
180 | mpbir2an 711 |
. . . . 5
⊢ 𝐾 ∈ Poset |
| 182 | | sletric 27709 |
. . . . . . . 8
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ) → (𝑥 ≤s 𝑦 ∨ 𝑦 ≤s 𝑥)) |
| 183 | 6, 7, 182 | syl2an 596 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs) → (𝑥 ≤s 𝑦 ∨ 𝑦 ≤s 𝑥)) |
| 184 | 161, 150 | orbi12d 918 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs) → ((𝑥( ≤s ∩ (ℤs ×
ℤs))𝑦 ∨
𝑦( ≤s ∩
(ℤs × ℤs))𝑥) ↔ (𝑥 ≤s 𝑦 ∨ 𝑦 ≤s 𝑥))) |
| 185 | 183, 184 | mpbird 257 |
. . . . . 6
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs) → (𝑥( ≤s ∩ (ℤs ×
ℤs))𝑦 ∨
𝑦( ≤s ∩
(ℤs × ℤs))𝑥)) |
| 186 | 185 | rgen2 3175 |
. . . . 5
⊢
∀𝑥 ∈
ℤs ∀𝑦 ∈ ℤs (𝑥( ≤s ∩
(ℤs × ℤs))𝑦 ∨ 𝑦( ≤s ∩ (ℤs ×
ℤs))𝑥) |
| 187 | 1, 179 | istos 18357 |
. . . . 5
⊢ (𝐾 ∈ Toset ↔ (𝐾 ∈ Poset ∧
∀𝑥 ∈
ℤs ∀𝑦 ∈ ℤs (𝑥( ≤s ∩
(ℤs × ℤs))𝑦 ∨ 𝑦( ≤s ∩ (ℤs ×
ℤs))𝑥))) |
| 188 | 181, 186,
187 | mpbir2an 711 |
. . . 4
⊢ 𝐾 ∈ Toset |
| 189 | | sleadd1 27936 |
. . . . . . . 8
⊢ ((𝑥 ∈
No ∧ 𝑦 ∈
No ∧ 𝑧 ∈ No )
→ (𝑥 ≤s 𝑦 ↔ (𝑥 +s 𝑧) ≤s (𝑦 +s 𝑧))) |
| 190 | 6, 7, 8, 189 | syl3an 1160 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑥 ≤s 𝑦 ↔ (𝑥 +s 𝑧) ≤s (𝑦 +s 𝑧))) |
| 191 | 190 | biimpd 229 |
. . . . . 6
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑥 ≤s 𝑦 → (𝑥 +s 𝑧) ≤s (𝑦 +s 𝑧))) |
| 192 | 20, 14 | ovresd 7536 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑥( +s ↾ (ℤs
× ℤs))𝑧) = (𝑥 +s 𝑧)) |
| 193 | 49, 14 | ovresd 7536 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑦( +s ↾ (ℤs
× ℤs))𝑧) = (𝑦 +s 𝑧)) |
| 194 | 192, 193 | breq12d 5115 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → ((𝑥( +s ↾ (ℤs
× ℤs))𝑧)( ≤s ∩ (ℤs ×
ℤs))(𝑦(
+s ↾ (ℤs × ℤs))𝑧) ↔ (𝑥 +s 𝑧)( ≤s ∩ (ℤs ×
ℤs))(𝑦
+s 𝑧))) |
| 195 | | brin 5154 |
. . . . . . . 8
⊢ ((𝑥 +s 𝑧)( ≤s ∩
(ℤs × ℤs))(𝑦 +s 𝑧) ↔ ((𝑥 +s 𝑧) ≤s (𝑦 +s 𝑧) ∧ (𝑥 +s 𝑧)(ℤs ×
ℤs)(𝑦
+s 𝑧))) |
| 196 | | zaddscl 28322 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℤs
∧ 𝑧 ∈
ℤs) → (𝑥 +s 𝑧) ∈
ℤs) |
| 197 | 196 | 3adant2 1131 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑥 +s 𝑧) ∈
ℤs) |
| 198 | | brxp 5680 |
. . . . . . . . . 10
⊢ ((𝑥 +s 𝑧)(ℤs ×
ℤs)(𝑦
+s 𝑧) ↔
((𝑥 +s 𝑧) ∈ ℤs
∧ (𝑦 +s
𝑧) ∈
ℤs)) |
| 199 | 197, 22, 198 | sylanbrc 583 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑥 +s 𝑧)(ℤs ×
ℤs)(𝑦
+s 𝑧)) |
| 200 | 199 | biantrud 531 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → ((𝑥 +s 𝑧) ≤s (𝑦 +s 𝑧) ↔ ((𝑥 +s 𝑧) ≤s (𝑦 +s 𝑧) ∧ (𝑥 +s 𝑧)(ℤs ×
ℤs)(𝑦
+s 𝑧)))) |
| 201 | 195, 200 | bitr4id 290 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → ((𝑥 +s 𝑧)( ≤s ∩ (ℤs ×
ℤs))(𝑦
+s 𝑧) ↔
(𝑥 +s 𝑧) ≤s (𝑦 +s 𝑧))) |
| 202 | 194, 201 | bitrd 279 |
. . . . . 6
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → ((𝑥( +s ↾ (ℤs
× ℤs))𝑧)( ≤s ∩ (ℤs ×
ℤs))(𝑦(
+s ↾ (ℤs × ℤs))𝑧) ↔ (𝑥 +s 𝑧) ≤s (𝑦 +s 𝑧))) |
| 203 | 191, 144,
202 | 3imtr4d 294 |
. . . . 5
⊢ ((𝑥 ∈ ℤs
∧ 𝑦 ∈
ℤs ∧ 𝑧
∈ ℤs) → (𝑥( ≤s ∩ (ℤs ×
ℤs))𝑦
→ (𝑥( +s
↾ (ℤs × ℤs))𝑧)( ≤s ∩ (ℤs ×
ℤs))(𝑦(
+s ↾ (ℤs × ℤs))𝑧))) |
| 204 | 203 | rgen3 3180 |
. . . 4
⊢
∀𝑥 ∈
ℤs ∀𝑦 ∈ ℤs ∀𝑧 ∈ ℤs
(𝑥( ≤s ∩
(ℤs × ℤs))𝑦 → (𝑥( +s ↾ (ℤs
× ℤs))𝑧)( ≤s ∩ (ℤs ×
ℤs))(𝑦(
+s ↾ (ℤs × ℤs))𝑧)) |
| 205 | 1, 2, 179 | isomnd 20037 |
. . . 4
⊢ (𝐾 ∈ oMnd ↔ (𝐾 ∈ Mnd ∧ 𝐾 ∈ Toset ∧
∀𝑥 ∈
ℤs ∀𝑦 ∈ ℤs ∀𝑧 ∈ ℤs
(𝑥( ≤s ∩
(ℤs × ℤs))𝑦 → (𝑥( +s ↾ (ℤs
× ℤs))𝑧)( ≤s ∩ (ℤs ×
ℤs))(𝑦(
+s ↾ (ℤs × ℤs))𝑧)))) |
| 206 | 129, 188,
204, 205 | mpbir3an 1342 |
. . 3
⊢ 𝐾 ∈ oMnd |
| 207 | | isogrp 20038 |
. . 3
⊢ (𝐾 ∈ oGrp ↔ (𝐾 ∈ Grp ∧ 𝐾 ∈ oMnd)) |
| 208 | 39, 206, 207 | mpbir2an 711 |
. 2
⊢ 𝐾 ∈ oGrp |
| 209 | | simplr 768 |
. . . . . . . 8
⊢ (((
0s ≤s 𝑥 ∧
𝑥 ∈
ℤs) ∧ ( 0s ≤s 𝑦 ∧ 𝑦 ∈ ℤs)) → 𝑥 ∈
ℤs) |
| 210 | 209 | znod 28311 |
. . . . . . 7
⊢ (((
0s ≤s 𝑥 ∧
𝑥 ∈
ℤs) ∧ ( 0s ≤s 𝑦 ∧ 𝑦 ∈ ℤs)) → 𝑥 ∈
No ) |
| 211 | | simprr 772 |
. . . . . . . 8
⊢ (((
0s ≤s 𝑥 ∧
𝑥 ∈
ℤs) ∧ ( 0s ≤s 𝑦 ∧ 𝑦 ∈ ℤs)) → 𝑦 ∈
ℤs) |
| 212 | 211 | znod 28311 |
. . . . . . 7
⊢ (((
0s ≤s 𝑥 ∧
𝑥 ∈
ℤs) ∧ ( 0s ≤s 𝑦 ∧ 𝑦 ∈ ℤs)) → 𝑦 ∈
No ) |
| 213 | | simpll 766 |
. . . . . . 7
⊢ (((
0s ≤s 𝑥 ∧
𝑥 ∈
ℤs) ∧ ( 0s ≤s 𝑦 ∧ 𝑦 ∈ ℤs)) →
0s ≤s 𝑥) |
| 214 | | simprl 770 |
. . . . . . 7
⊢ (((
0s ≤s 𝑥 ∧
𝑥 ∈
ℤs) ∧ ( 0s ≤s 𝑦 ∧ 𝑦 ∈ ℤs)) →
0s ≤s 𝑦) |
| 215 | 210, 212,
213, 214 | mulsge0d 28089 |
. . . . . 6
⊢ (((
0s ≤s 𝑥 ∧
𝑥 ∈
ℤs) ∧ ( 0s ≤s 𝑦 ∧ 𝑦 ∈ ℤs)) →
0s ≤s (𝑥
·s 𝑦)) |
| 216 | 209, 211 | ovresd 7536 |
. . . . . 6
⊢ (((
0s ≤s 𝑥 ∧
𝑥 ∈
ℤs) ∧ ( 0s ≤s 𝑦 ∧ 𝑦 ∈ ℤs)) → (𝑥( ·s ↾
(ℤs × ℤs))𝑦) = (𝑥 ·s 𝑦)) |
| 217 | 215, 216 | breqtrrd 5130 |
. . . . 5
⊢ (((
0s ≤s 𝑥 ∧
𝑥 ∈
ℤs) ∧ ( 0s ≤s 𝑦 ∧ 𝑦 ∈ ℤs)) →
0s ≤s (𝑥(
·s ↾ (ℤs ×
ℤs))𝑦)) |
| 218 | 209, 211 | zmulscld 28325 |
. . . . . 6
⊢ (((
0s ≤s 𝑥 ∧
𝑥 ∈
ℤs) ∧ ( 0s ≤s 𝑦 ∧ 𝑦 ∈ ℤs)) → (𝑥 ·s 𝑦) ∈
ℤs) |
| 219 | 216, 218 | eqeltrd 2828 |
. . . . 5
⊢ (((
0s ≤s 𝑥 ∧
𝑥 ∈
ℤs) ∧ ( 0s ≤s 𝑦 ∧ 𝑦 ∈ ℤs)) → (𝑥( ·s ↾
(ℤs × ℤs))𝑦) ∈
ℤs) |
| 220 | 217, 219 | jca 511 |
. . . 4
⊢ (((
0s ≤s 𝑥 ∧
𝑥 ∈
ℤs) ∧ ( 0s ≤s 𝑦 ∧ 𝑦 ∈ ℤs)) → (
0s ≤s (𝑥(
·s ↾ (ℤs ×
ℤs))𝑦)
∧ (𝑥(
·s ↾ (ℤs ×
ℤs))𝑦)
∈ ℤs)) |
| 221 | | brin 5154 |
. . . . . 6
⊢ (
0s ( ≤s ∩ (ℤs ×
ℤs))𝑥
↔ ( 0s ≤s 𝑥 ∧ 0s (ℤs
× ℤs)𝑥)) |
| 222 | | brxp 5680 |
. . . . . . . 8
⊢ (
0s (ℤs × ℤs)𝑥 ↔ ( 0s ∈
ℤs ∧ 𝑥
∈ ℤs)) |
| 223 | 26, 222 | mpbiran 709 |
. . . . . . 7
⊢ (
0s (ℤs × ℤs)𝑥 ↔ 𝑥 ∈ ℤs) |
| 224 | 223 | anbi2i 623 |
. . . . . 6
⊢ ((
0s ≤s 𝑥 ∧
0s (ℤs × ℤs)𝑥) ↔ ( 0s ≤s
𝑥 ∧ 𝑥 ∈
ℤs)) |
| 225 | 221, 224 | bitri 275 |
. . . . 5
⊢ (
0s ( ≤s ∩ (ℤs ×
ℤs))𝑥
↔ ( 0s ≤s 𝑥 ∧ 𝑥 ∈
ℤs)) |
| 226 | | brin 5154 |
. . . . . 6
⊢ (
0s ( ≤s ∩ (ℤs ×
ℤs))𝑦
↔ ( 0s ≤s 𝑦 ∧ 0s (ℤs
× ℤs)𝑦)) |
| 227 | | brxp 5680 |
. . . . . . . 8
⊢ (
0s (ℤs × ℤs)𝑦 ↔ ( 0s ∈
ℤs ∧ 𝑦
∈ ℤs)) |
| 228 | 26, 227 | mpbiran 709 |
. . . . . . 7
⊢ (
0s (ℤs × ℤs)𝑦 ↔ 𝑦 ∈ ℤs) |
| 229 | 228 | anbi2i 623 |
. . . . . 6
⊢ ((
0s ≤s 𝑦 ∧
0s (ℤs × ℤs)𝑦) ↔ ( 0s ≤s
𝑦 ∧ 𝑦 ∈
ℤs)) |
| 230 | 226, 229 | bitri 275 |
. . . . 5
⊢ (
0s ( ≤s ∩ (ℤs ×
ℤs))𝑦
↔ ( 0s ≤s 𝑦 ∧ 𝑦 ∈
ℤs)) |
| 231 | 225, 230 | anbi12i 628 |
. . . 4
⊢ ((
0s ( ≤s ∩ (ℤs ×
ℤs))𝑥
∧ 0s ( ≤s ∩ (ℤs ×
ℤs))𝑦)
↔ (( 0s ≤s 𝑥 ∧ 𝑥 ∈ ℤs) ∧ (
0s ≤s 𝑦 ∧
𝑦 ∈
ℤs))) |
| 232 | | brin 5154 |
. . . . 5
⊢ (
0s ( ≤s ∩ (ℤs ×
ℤs))(𝑥(
·s ↾ (ℤs ×
ℤs))𝑦)
↔ ( 0s ≤s (𝑥( ·s ↾
(ℤs × ℤs))𝑦) ∧ 0s (ℤs
× ℤs)(𝑥( ·s ↾
(ℤs × ℤs))𝑦))) |
| 233 | | brxp 5680 |
. . . . . . 7
⊢ (
0s (ℤs × ℤs)(𝑥( ·s ↾
(ℤs × ℤs))𝑦) ↔ ( 0s ∈
ℤs ∧ (𝑥( ·s ↾
(ℤs × ℤs))𝑦) ∈
ℤs)) |
| 234 | 26, 233 | mpbiran 709 |
. . . . . 6
⊢ (
0s (ℤs × ℤs)(𝑥( ·s ↾
(ℤs × ℤs))𝑦) ↔ (𝑥( ·s ↾
(ℤs × ℤs))𝑦) ∈
ℤs) |
| 235 | 234 | anbi2i 623 |
. . . . 5
⊢ ((
0s ≤s (𝑥(
·s ↾ (ℤs ×
ℤs))𝑦)
∧ 0s (ℤs × ℤs)(𝑥( ·s ↾
(ℤs × ℤs))𝑦)) ↔ ( 0s ≤s (𝑥( ·s ↾
(ℤs × ℤs))𝑦) ∧ (𝑥( ·s ↾
(ℤs × ℤs))𝑦) ∈
ℤs)) |
| 236 | 232, 235 | bitri 275 |
. . . 4
⊢ (
0s ( ≤s ∩ (ℤs ×
ℤs))(𝑥(
·s ↾ (ℤs ×
ℤs))𝑦)
↔ ( 0s ≤s (𝑥( ·s ↾
(ℤs × ℤs))𝑦) ∧ (𝑥( ·s ↾
(ℤs × ℤs))𝑦) ∈
ℤs)) |
| 237 | 220, 231,
236 | 3imtr4i 292 |
. . 3
⊢ ((
0s ( ≤s ∩ (ℤs ×
ℤs))𝑥
∧ 0s ( ≤s ∩ (ℤs ×
ℤs))𝑦)
→ 0s ( ≤s ∩ (ℤs ×
ℤs))(𝑥(
·s ↾ (ℤs ×
ℤs))𝑦)) |
| 238 | 237 | rgen2w 3049 |
. 2
⊢
∀𝑥 ∈
ℤs ∀𝑦 ∈ ℤs (( 0s
( ≤s ∩ (ℤs × ℤs))𝑥 ∧ 0s ( ≤s
∩ (ℤs × ℤs))𝑦) → 0s ( ≤s ∩
(ℤs × ℤs))(𝑥( ·s ↾
(ℤs × ℤs))𝑦)) |
| 239 | | zsoring.5 |
. . 3
⊢
0s = (0g‘𝐾) |
| 240 | 1, 239, 82, 179 | isorng 20781 |
. 2
⊢ (𝐾 ∈ oRing ↔ (𝐾 ∈ Ring ∧ 𝐾 ∈ oGrp ∧ ∀𝑥 ∈ ℤs
∀𝑦 ∈
ℤs (( 0s ( ≤s ∩ (ℤs ×
ℤs))𝑥
∧ 0s ( ≤s ∩ (ℤs ×
ℤs))𝑦)
→ 0s ( ≤s ∩ (ℤs ×
ℤs))(𝑥(
·s ↾ (ℤs ×
ℤs))𝑦)))) |
| 241 | 112, 208,
238, 240 | mpbir3an 1342 |
1
⊢ 𝐾 ∈ oRing |