| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pw2divsdird | Structured version Visualization version GIF version | ||
| Description: Distribution of surreal division over addition for powers of two. (Contributed by Scott Fenton, 7-Nov-2025.) |
| Ref | Expression |
|---|---|
| pw2divsdird.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| pw2divsdird.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| pw2divsdird.3 | ⊢ (𝜑 → 𝑁 ∈ ℕ0s) |
| Ref | Expression |
|---|---|
| pw2divsdird | ⊢ (𝜑 → ((𝐴 +s 𝐵) /su (2s↑s𝑁)) = ((𝐴 /su (2s↑s𝑁)) +s (𝐵 /su (2s↑s𝑁)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw2divsdird.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 2 | pw2divsdird.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 3 | 1sno 27791 | . . . . 5 ⊢ 1s ∈ No | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → 1s ∈ No ) |
| 5 | pw2divsdird.3 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0s) | |
| 6 | 4, 5 | pw2divscld 28376 | . . 3 ⊢ (𝜑 → ( 1s /su (2s↑s𝑁)) ∈ No ) |
| 7 | 1, 2, 6 | addsdird 28112 | . 2 ⊢ (𝜑 → ((𝐴 +s 𝐵) ·s ( 1s /su (2s↑s𝑁))) = ((𝐴 ·s ( 1s /su (2s↑s𝑁))) +s (𝐵 ·s ( 1s /su (2s↑s𝑁))))) |
| 8 | 1, 2 | addscld 27939 | . . 3 ⊢ (𝜑 → (𝐴 +s 𝐵) ∈ No ) |
| 9 | 8, 5 | pw2divsrecd 28382 | . 2 ⊢ (𝜑 → ((𝐴 +s 𝐵) /su (2s↑s𝑁)) = ((𝐴 +s 𝐵) ·s ( 1s /su (2s↑s𝑁)))) |
| 10 | 1, 5 | pw2divsrecd 28382 | . . 3 ⊢ (𝜑 → (𝐴 /su (2s↑s𝑁)) = (𝐴 ·s ( 1s /su (2s↑s𝑁)))) |
| 11 | 2, 5 | pw2divsrecd 28382 | . . 3 ⊢ (𝜑 → (𝐵 /su (2s↑s𝑁)) = (𝐵 ·s ( 1s /su (2s↑s𝑁)))) |
| 12 | 10, 11 | oveq12d 7423 | . 2 ⊢ (𝜑 → ((𝐴 /su (2s↑s𝑁)) +s (𝐵 /su (2s↑s𝑁))) = ((𝐴 ·s ( 1s /su (2s↑s𝑁))) +s (𝐵 ·s ( 1s /su (2s↑s𝑁))))) |
| 13 | 7, 9, 12 | 3eqtr4d 2780 | 1 ⊢ (𝜑 → ((𝐴 +s 𝐵) /su (2s↑s𝑁)) = ((𝐴 /su (2s↑s𝑁)) +s (𝐵 /su (2s↑s𝑁)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 (class class class)co 7405 No csur 27603 1s c1s 27787 +s cadds 27918 ·s cmuls 28061 /su cdivs 28142 ℕ0scnn0s 28258 2sc2s 28348 ↑scexps 28350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-ot 4610 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-nadd 8678 df-no 27606 df-slt 27607 df-bday 27608 df-sle 27709 df-sslt 27745 df-scut 27747 df-0s 27788 df-1s 27789 df-made 27807 df-old 27808 df-left 27810 df-right 27811 df-norec 27897 df-norec2 27908 df-adds 27919 df-negs 27979 df-subs 27980 df-muls 28062 df-divs 28143 df-seqs 28230 df-n0s 28260 df-nns 28261 df-zs 28319 df-2s 28349 df-exps 28351 |
| This theorem is referenced by: pw2divsnegd 28384 zs12ge0 28394 |
| Copyright terms: Public domain | W3C validator |