MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephord2i Structured version   Visualization version   GIF version

Theorem alephord2i 9213
Description: Ordering property of the aleph function. Theorem 66 of [Suppes] p. 229. (Contributed by NM, 25-Oct-2003.)
Assertion
Ref Expression
alephord2i (𝐵 ∈ On → (𝐴𝐵 → (ℵ‘𝐴) ∈ (ℵ‘𝐵)))

Proof of Theorem alephord2i
StepHypRef Expression
1 onelon 5988 . . 3 ((𝐵 ∈ On ∧ 𝐴𝐵) → 𝐴 ∈ On)
2 alephord2 9212 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (ℵ‘𝐴) ∈ (ℵ‘𝐵)))
32biimpd 221 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (ℵ‘𝐴) ∈ (ℵ‘𝐵)))
43expimpd 447 . . 3 (𝐴 ∈ On → ((𝐵 ∈ On ∧ 𝐴𝐵) → (ℵ‘𝐴) ∈ (ℵ‘𝐵)))
51, 4mpcom 38 . 2 ((𝐵 ∈ On ∧ 𝐴𝐵) → (ℵ‘𝐴) ∈ (ℵ‘𝐵))
65ex 403 1 (𝐵 ∈ On → (𝐴𝐵 → (ℵ‘𝐴) ∈ (ℵ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wcel 2166  Oncon0 5963  cfv 6123  cale 9075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-om 7327  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-oi 8684  df-har 8732  df-card 9078  df-aleph 9079
This theorem is referenced by:  alephle  9224  alephsmo  9238  alephfp  9244  alephval3  9246  alephsing  9413  pwcfsdom  9720  winalim2  9833
  Copyright terms: Public domain W3C validator