Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alephord2i | Structured version Visualization version GIF version |
Description: Ordering property of the aleph function. Theorem 66 of [Suppes] p. 229. (Contributed by NM, 25-Oct-2003.) |
Ref | Expression |
---|---|
alephord2i | ⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → (ℵ‘𝐴) ∈ (ℵ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onelon 6321 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ On) | |
2 | alephord2 9925 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ (ℵ‘𝐴) ∈ (ℵ‘𝐵))) | |
3 | 2 | biimpd 228 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 → (ℵ‘𝐴) ∈ (ℵ‘𝐵))) |
4 | 3 | expimpd 454 | . . 3 ⊢ (𝐴 ∈ On → ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → (ℵ‘𝐴) ∈ (ℵ‘𝐵))) |
5 | 1, 4 | mpcom 38 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → (ℵ‘𝐴) ∈ (ℵ‘𝐵)) |
6 | 5 | ex 413 | 1 ⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → (ℵ‘𝐴) ∈ (ℵ‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2105 Oncon0 6296 ‘cfv 6473 ℵcale 9785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-inf2 9490 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-se 5570 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-isom 6482 df-riota 7286 df-ov 7332 df-om 7773 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-oi 9359 df-har 9406 df-card 9788 df-aleph 9789 |
This theorem is referenced by: alephle 9937 alephsmo 9951 alephfp 9957 alephval3 9959 alephsing 10125 pwcfsdom 10432 winalim2 10545 |
Copyright terms: Public domain | W3C validator |