![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephord2i | Structured version Visualization version GIF version |
Description: Ordering property of the aleph function. Theorem 66 of [Suppes] p. 229. (Contributed by NM, 25-Oct-2003.) |
Ref | Expression |
---|---|
alephord2i | ⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → (ℵ‘𝐴) ∈ (ℵ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onelon 5992 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ On) | |
2 | alephord2 9219 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ (ℵ‘𝐴) ∈ (ℵ‘𝐵))) | |
3 | 2 | biimpd 221 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 → (ℵ‘𝐴) ∈ (ℵ‘𝐵))) |
4 | 3 | expimpd 447 | . . 3 ⊢ (𝐴 ∈ On → ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → (ℵ‘𝐴) ∈ (ℵ‘𝐵))) |
5 | 1, 4 | mpcom 38 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ 𝐵) → (ℵ‘𝐴) ∈ (ℵ‘𝐵)) |
6 | 5 | ex 403 | 1 ⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → (ℵ‘𝐴) ∈ (ℵ‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2164 Oncon0 5967 ‘cfv 6127 ℵcale 9082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-inf2 8822 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-se 5306 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-isom 6136 df-riota 6871 df-om 7332 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-oi 8691 df-har 8739 df-card 9085 df-aleph 9086 |
This theorem is referenced by: alephle 9231 alephsmo 9245 alephfp 9251 alephval3 9253 alephsing 9420 pwcfsdom 9727 winalim2 9840 |
Copyright terms: Public domain | W3C validator |