Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme23c Structured version   Visualization version   GIF version

Theorem cdleme23c 40389
Description: Part of proof of Lemma E in [Crawley] p. 113, 4th paragraph, 6th line on p. 115. (Contributed by NM, 8-Dec-2012.)
Hypotheses
Ref Expression
cdleme23.b 𝐵 = (Base‘𝐾)
cdleme23.l = (le‘𝐾)
cdleme23.j = (join‘𝐾)
cdleme23.m = (meet‘𝐾)
cdleme23.a 𝐴 = (Atoms‘𝐾)
cdleme23.h 𝐻 = (LHyp‘𝐾)
cdleme23.v 𝑉 = ((𝑆 𝑇) (𝑋 𝑊))
Assertion
Ref Expression
cdleme23c ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑆 (𝑇 𝑉))

Proof of Theorem cdleme23c
StepHypRef Expression
1 simp11l 1285 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝐾 ∈ HL)
21hllatd 39402 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝐾 ∈ Lat)
3 simp12l 1287 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑆𝐴)
4 cdleme23.b . . . . . 6 𝐵 = (Base‘𝐾)
5 cdleme23.a . . . . . 6 𝐴 = (Atoms‘𝐾)
64, 5atbase 39327 . . . . 5 (𝑆𝐴𝑆𝐵)
73, 6syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑆𝐵)
8 simp13l 1289 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑇𝐴)
94, 5atbase 39327 . . . . 5 (𝑇𝐴𝑇𝐵)
108, 9syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑇𝐵)
11 cdleme23.l . . . . 5 = (le‘𝐾)
12 cdleme23.j . . . . 5 = (join‘𝐾)
134, 11, 12latlej1 18351 . . . 4 ((𝐾 ∈ Lat ∧ 𝑆𝐵𝑇𝐵) → 𝑆 (𝑆 𝑇))
142, 7, 10, 13syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑆 (𝑆 𝑇))
15 simp2l 1200 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑋𝐵)
16 simp11r 1286 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑊𝐻)
17 cdleme23.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
184, 17lhpbase 40036 . . . . . . 7 (𝑊𝐻𝑊𝐵)
1916, 18syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑊𝐵)
20 cdleme23.m . . . . . . 7 = (meet‘𝐾)
214, 20latmcl 18343 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
222, 15, 19, 21syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (𝑋 𝑊) ∈ 𝐵)
234, 11, 12latlej1 18351 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑆𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → 𝑆 (𝑆 (𝑋 𝑊)))
242, 7, 22, 23syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑆 (𝑆 (𝑋 𝑊)))
25 simp32 1211 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (𝑆 (𝑋 𝑊)) = 𝑋)
26 simp33 1212 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (𝑇 (𝑋 𝑊)) = 𝑋)
2725, 26eqtr4d 2769 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (𝑆 (𝑋 𝑊)) = (𝑇 (𝑋 𝑊)))
2824, 27breqtrd 5117 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑆 (𝑇 (𝑋 𝑊)))
294, 12, 5hlatjcl 39405 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) ∈ 𝐵)
301, 3, 8, 29syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (𝑆 𝑇) ∈ 𝐵)
314, 12latjcl 18342 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑇𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → (𝑇 (𝑋 𝑊)) ∈ 𝐵)
322, 10, 22, 31syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (𝑇 (𝑋 𝑊)) ∈ 𝐵)
334, 11, 20latlem12 18369 . . . 4 ((𝐾 ∈ Lat ∧ (𝑆𝐵 ∧ (𝑆 𝑇) ∈ 𝐵 ∧ (𝑇 (𝑋 𝑊)) ∈ 𝐵)) → ((𝑆 (𝑆 𝑇) ∧ 𝑆 (𝑇 (𝑋 𝑊))) ↔ 𝑆 ((𝑆 𝑇) (𝑇 (𝑋 𝑊)))))
342, 7, 30, 32, 33syl13anc 1374 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → ((𝑆 (𝑆 𝑇) ∧ 𝑆 (𝑇 (𝑋 𝑊))) ↔ 𝑆 ((𝑆 𝑇) (𝑇 (𝑋 𝑊)))))
3514, 28, 34mpbi2and 712 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑆 ((𝑆 𝑇) (𝑇 (𝑋 𝑊))))
36 cdleme23.v . . . 4 𝑉 = ((𝑆 𝑇) (𝑋 𝑊))
3736oveq2i 7357 . . 3 (𝑇 𝑉) = (𝑇 ((𝑆 𝑇) (𝑋 𝑊)))
384, 11, 12latlej2 18352 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑆𝐵𝑇𝐵) → 𝑇 (𝑆 𝑇))
392, 7, 10, 38syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑇 (𝑆 𝑇))
404, 11, 12, 20, 5atmod3i1 39902 . . . 4 ((𝐾 ∈ HL ∧ (𝑇𝐴 ∧ (𝑆 𝑇) ∈ 𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) ∧ 𝑇 (𝑆 𝑇)) → (𝑇 ((𝑆 𝑇) (𝑋 𝑊))) = ((𝑆 𝑇) (𝑇 (𝑋 𝑊))))
411, 8, 30, 22, 39, 40syl131anc 1385 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (𝑇 ((𝑆 𝑇) (𝑋 𝑊))) = ((𝑆 𝑇) (𝑇 (𝑋 𝑊))))
4237, 41eqtrid 2778 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (𝑇 𝑉) = ((𝑆 𝑇) (𝑇 (𝑋 𝑊))))
4335, 42breqtrrd 5119 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑆 (𝑇 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5091  cfv 6481  (class class class)co 7346  Basecbs 17117  lecple 17165  joincjn 18214  meetcmee 18215  Latclat 18334  Atomscatm 39301  HLchlt 39388  LHypclh 40022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-proset 18197  df-poset 18216  df-plt 18231  df-lub 18247  df-glb 18248  df-join 18249  df-meet 18250  df-p0 18326  df-lat 18335  df-clat 18402  df-oposet 39214  df-ol 39216  df-oml 39217  df-covers 39304  df-ats 39305  df-atl 39336  df-cvlat 39360  df-hlat 39389  df-psubsp 39541  df-pmap 39542  df-padd 39834  df-lhyp 40026
This theorem is referenced by:  cdleme28a  40408
  Copyright terms: Public domain W3C validator