Proof of Theorem cdleme23c
Step | Hyp | Ref
| Expression |
1 | | simp11l 1282 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝐾 ∈ HL) |
2 | 1 | hllatd 37305 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝐾 ∈ Lat) |
3 | | simp12l 1284 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑆 ∈ 𝐴) |
4 | | cdleme23.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐾) |
5 | | cdleme23.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
6 | 4, 5 | atbase 37230 |
. . . . 5
⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ 𝐵) |
7 | 3, 6 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑆 ∈ 𝐵) |
8 | | simp13l 1286 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑇 ∈ 𝐴) |
9 | 4, 5 | atbase 37230 |
. . . . 5
⊢ (𝑇 ∈ 𝐴 → 𝑇 ∈ 𝐵) |
10 | 8, 9 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑇 ∈ 𝐵) |
11 | | cdleme23.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
12 | | cdleme23.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
13 | 4, 11, 12 | latlej1 18081 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑆 ∈ 𝐵 ∧ 𝑇 ∈ 𝐵) → 𝑆 ≤ (𝑆 ∨ 𝑇)) |
14 | 2, 7, 10, 13 | syl3anc 1369 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑆 ≤ (𝑆 ∨ 𝑇)) |
15 | | simp2l 1197 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑋 ∈ 𝐵) |
16 | | simp11r 1283 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑊 ∈ 𝐻) |
17 | | cdleme23.h |
. . . . . . . 8
⊢ 𝐻 = (LHyp‘𝐾) |
18 | 4, 17 | lhpbase 37939 |
. . . . . . 7
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
19 | 16, 18 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑊 ∈ 𝐵) |
20 | | cdleme23.m |
. . . . . . 7
⊢ ∧ =
(meet‘𝐾) |
21 | 4, 20 | latmcl 18073 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
22 | 2, 15, 19, 21 | syl3anc 1369 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
23 | 4, 11, 12 | latlej1 18081 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑆 ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ∈ 𝐵) → 𝑆 ≤ (𝑆 ∨ (𝑋 ∧ 𝑊))) |
24 | 2, 7, 22, 23 | syl3anc 1369 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑆 ≤ (𝑆 ∨ (𝑋 ∧ 𝑊))) |
25 | | simp32 1208 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋) |
26 | | simp33 1209 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋) |
27 | 25, 26 | eqtr4d 2781 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝑆 ∨ (𝑋 ∧ 𝑊)) = (𝑇 ∨ (𝑋 ∧ 𝑊))) |
28 | 24, 27 | breqtrd 5096 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑆 ≤ (𝑇 ∨ (𝑋 ∧ 𝑊))) |
29 | 4, 12, 5 | hlatjcl 37308 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (𝑆 ∨ 𝑇) ∈ 𝐵) |
30 | 1, 3, 8, 29 | syl3anc 1369 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝑆 ∨ 𝑇) ∈ 𝐵) |
31 | 4, 12 | latjcl 18072 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑇 ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ∈ 𝐵) → (𝑇 ∨ (𝑋 ∧ 𝑊)) ∈ 𝐵) |
32 | 2, 10, 22, 31 | syl3anc 1369 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝑇 ∨ (𝑋 ∧ 𝑊)) ∈ 𝐵) |
33 | 4, 11, 20 | latlem12 18099 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑆 ∈ 𝐵 ∧ (𝑆 ∨ 𝑇) ∈ 𝐵 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) ∈ 𝐵)) → ((𝑆 ≤ (𝑆 ∨ 𝑇) ∧ 𝑆 ≤ (𝑇 ∨ (𝑋 ∧ 𝑊))) ↔ 𝑆 ≤ ((𝑆 ∨ 𝑇) ∧ (𝑇 ∨ (𝑋 ∧ 𝑊))))) |
34 | 2, 7, 30, 32, 33 | syl13anc 1370 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((𝑆 ≤ (𝑆 ∨ 𝑇) ∧ 𝑆 ≤ (𝑇 ∨ (𝑋 ∧ 𝑊))) ↔ 𝑆 ≤ ((𝑆 ∨ 𝑇) ∧ (𝑇 ∨ (𝑋 ∧ 𝑊))))) |
35 | 14, 28, 34 | mpbi2and 708 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑆 ≤ ((𝑆 ∨ 𝑇) ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)))) |
36 | | cdleme23.v |
. . . 4
⊢ 𝑉 = ((𝑆 ∨ 𝑇) ∧ (𝑋 ∧ 𝑊)) |
37 | 36 | oveq2i 7266 |
. . 3
⊢ (𝑇 ∨ 𝑉) = (𝑇 ∨ ((𝑆 ∨ 𝑇) ∧ (𝑋 ∧ 𝑊))) |
38 | 4, 11, 12 | latlej2 18082 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑆 ∈ 𝐵 ∧ 𝑇 ∈ 𝐵) → 𝑇 ≤ (𝑆 ∨ 𝑇)) |
39 | 2, 7, 10, 38 | syl3anc 1369 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑇 ≤ (𝑆 ∨ 𝑇)) |
40 | 4, 11, 12, 20, 5 | atmod3i1 37805 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑇 ∈ 𝐴 ∧ (𝑆 ∨ 𝑇) ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ∈ 𝐵) ∧ 𝑇 ≤ (𝑆 ∨ 𝑇)) → (𝑇 ∨ ((𝑆 ∨ 𝑇) ∧ (𝑋 ∧ 𝑊))) = ((𝑆 ∨ 𝑇) ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)))) |
41 | 1, 8, 30, 22, 39, 40 | syl131anc 1381 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝑇 ∨ ((𝑆 ∨ 𝑇) ∧ (𝑋 ∧ 𝑊))) = ((𝑆 ∨ 𝑇) ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)))) |
42 | 37, 41 | syl5eq 2791 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝑇 ∨ 𝑉) = ((𝑆 ∨ 𝑇) ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)))) |
43 | 35, 42 | breqtrrd 5098 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ (𝑆 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑇 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → 𝑆 ≤ (𝑇 ∨ 𝑉)) |