Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme23c Structured version   Visualization version   GIF version

Theorem cdleme23c 37018
Description: Part of proof of Lemma E in [Crawley] p. 113, 4th paragraph, 6th line on p. 115. (Contributed by NM, 8-Dec-2012.)
Hypotheses
Ref Expression
cdleme23.b 𝐵 = (Base‘𝐾)
cdleme23.l = (le‘𝐾)
cdleme23.j = (join‘𝐾)
cdleme23.m = (meet‘𝐾)
cdleme23.a 𝐴 = (Atoms‘𝐾)
cdleme23.h 𝐻 = (LHyp‘𝐾)
cdleme23.v 𝑉 = ((𝑆 𝑇) (𝑋 𝑊))
Assertion
Ref Expression
cdleme23c ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑆 (𝑇 𝑉))

Proof of Theorem cdleme23c
StepHypRef Expression
1 simp11l 1277 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝐾 ∈ HL)
21hllatd 36031 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝐾 ∈ Lat)
3 simp12l 1279 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑆𝐴)
4 cdleme23.b . . . . . 6 𝐵 = (Base‘𝐾)
5 cdleme23.a . . . . . 6 𝐴 = (Atoms‘𝐾)
64, 5atbase 35956 . . . . 5 (𝑆𝐴𝑆𝐵)
73, 6syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑆𝐵)
8 simp13l 1281 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑇𝐴)
94, 5atbase 35956 . . . . 5 (𝑇𝐴𝑇𝐵)
108, 9syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑇𝐵)
11 cdleme23.l . . . . 5 = (le‘𝐾)
12 cdleme23.j . . . . 5 = (join‘𝐾)
134, 11, 12latlej1 17499 . . . 4 ((𝐾 ∈ Lat ∧ 𝑆𝐵𝑇𝐵) → 𝑆 (𝑆 𝑇))
142, 7, 10, 13syl3anc 1364 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑆 (𝑆 𝑇))
15 simp2l 1192 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑋𝐵)
16 simp11r 1278 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑊𝐻)
17 cdleme23.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
184, 17lhpbase 36665 . . . . . . 7 (𝑊𝐻𝑊𝐵)
1916, 18syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑊𝐵)
20 cdleme23.m . . . . . . 7 = (meet‘𝐾)
214, 20latmcl 17491 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
222, 15, 19, 21syl3anc 1364 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (𝑋 𝑊) ∈ 𝐵)
234, 11, 12latlej1 17499 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑆𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → 𝑆 (𝑆 (𝑋 𝑊)))
242, 7, 22, 23syl3anc 1364 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑆 (𝑆 (𝑋 𝑊)))
25 simp32 1203 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (𝑆 (𝑋 𝑊)) = 𝑋)
26 simp33 1204 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (𝑇 (𝑋 𝑊)) = 𝑋)
2725, 26eqtr4d 2834 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (𝑆 (𝑋 𝑊)) = (𝑇 (𝑋 𝑊)))
2824, 27breqtrd 4988 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑆 (𝑇 (𝑋 𝑊)))
294, 12, 5hlatjcl 36034 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) ∈ 𝐵)
301, 3, 8, 29syl3anc 1364 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (𝑆 𝑇) ∈ 𝐵)
314, 12latjcl 17490 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑇𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → (𝑇 (𝑋 𝑊)) ∈ 𝐵)
322, 10, 22, 31syl3anc 1364 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (𝑇 (𝑋 𝑊)) ∈ 𝐵)
334, 11, 20latlem12 17517 . . . 4 ((𝐾 ∈ Lat ∧ (𝑆𝐵 ∧ (𝑆 𝑇) ∈ 𝐵 ∧ (𝑇 (𝑋 𝑊)) ∈ 𝐵)) → ((𝑆 (𝑆 𝑇) ∧ 𝑆 (𝑇 (𝑋 𝑊))) ↔ 𝑆 ((𝑆 𝑇) (𝑇 (𝑋 𝑊)))))
342, 7, 30, 32, 33syl13anc 1365 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → ((𝑆 (𝑆 𝑇) ∧ 𝑆 (𝑇 (𝑋 𝑊))) ↔ 𝑆 ((𝑆 𝑇) (𝑇 (𝑋 𝑊)))))
3514, 28, 34mpbi2and 708 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑆 ((𝑆 𝑇) (𝑇 (𝑋 𝑊))))
36 cdleme23.v . . . 4 𝑉 = ((𝑆 𝑇) (𝑋 𝑊))
3736oveq2i 7027 . . 3 (𝑇 𝑉) = (𝑇 ((𝑆 𝑇) (𝑋 𝑊)))
384, 11, 12latlej2 17500 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑆𝐵𝑇𝐵) → 𝑇 (𝑆 𝑇))
392, 7, 10, 38syl3anc 1364 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑇 (𝑆 𝑇))
404, 11, 12, 20, 5atmod3i1 36531 . . . 4 ((𝐾 ∈ HL ∧ (𝑇𝐴 ∧ (𝑆 𝑇) ∈ 𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) ∧ 𝑇 (𝑆 𝑇)) → (𝑇 ((𝑆 𝑇) (𝑋 𝑊))) = ((𝑆 𝑇) (𝑇 (𝑋 𝑊))))
411, 8, 30, 22, 39, 40syl131anc 1376 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (𝑇 ((𝑆 𝑇) (𝑋 𝑊))) = ((𝑆 𝑇) (𝑇 (𝑋 𝑊))))
4237, 41syl5eq 2843 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → (𝑇 𝑉) = ((𝑆 𝑇) (𝑇 (𝑋 𝑊))))
4335, 42breqtrrd 4990 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊)) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊) ∧ (𝑆𝑇 ∧ (𝑆 (𝑋 𝑊)) = 𝑋 ∧ (𝑇 (𝑋 𝑊)) = 𝑋)) → 𝑆 (𝑇 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081  wne 2984   class class class wbr 4962  cfv 6225  (class class class)co 7016  Basecbs 16312  lecple 16401  joincjn 17383  meetcmee 17384  Latclat 17484  Atomscatm 35930  HLchlt 36017  LHypclh 36651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-1st 7545  df-2nd 7546  df-proset 17367  df-poset 17385  df-plt 17397  df-lub 17413  df-glb 17414  df-join 17415  df-meet 17416  df-p0 17478  df-lat 17485  df-clat 17547  df-oposet 35843  df-ol 35845  df-oml 35846  df-covers 35933  df-ats 35934  df-atl 35965  df-cvlat 35989  df-hlat 36018  df-psubsp 36170  df-pmap 36171  df-padd 36463  df-lhyp 36655
This theorem is referenced by:  cdleme28a  37037
  Copyright terms: Public domain W3C validator