![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg2ce | Structured version Visualization version GIF version |
Description: Utility theorem to eliminate p,q when converting theorems with explicit f. TODO: fix comment. (Contributed by NM, 22-Apr-2013.) |
Ref | Expression |
---|---|
cdlemg2.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemg2.l | ⊢ ≤ = (le‘𝐾) |
cdlemg2.j | ⊢ ∨ = (join‘𝐾) |
cdlemg2.m | ⊢ ∧ = (meet‘𝐾) |
cdlemg2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemg2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemg2.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemg2ex.u | ⊢ 𝑈 = ((𝑝 ∨ 𝑞) ∧ 𝑊) |
cdlemg2ex.d | ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) |
cdlemg2ex.e | ⊢ 𝐸 = ((𝑝 ∨ 𝑞) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
cdlemg2ex.g | ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ if((𝑝 ≠ 𝑞 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) |
cdlemg2ce.p | ⊢ (𝐹 = 𝐺 → (𝜓 ↔ 𝜒)) |
cdlemg2ce.c | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) ∧ 𝜑) → 𝜒) |
Ref | Expression |
---|---|
cdlemg2ce | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1134 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) → 𝐹 ∈ 𝑇) | |
2 | cdlemg2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
3 | cdlemg2.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
4 | cdlemg2.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
5 | cdlemg2.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
6 | cdlemg2.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | cdlemg2.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
8 | cdlemg2.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
9 | cdlemg2ex.u | . . . . 5 ⊢ 𝑈 = ((𝑝 ∨ 𝑞) ∧ 𝑊) | |
10 | cdlemg2ex.d | . . . . 5 ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) | |
11 | cdlemg2ex.e | . . . . 5 ⊢ 𝐸 = ((𝑝 ∨ 𝑞) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | |
12 | cdlemg2ex.g | . . . . 5 ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ if((𝑝 ≠ 𝑞 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) | |
13 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | cdlemg2cex 40290 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝑇 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺))) |
14 | 13 | 3ad2ant1 1130 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) → (𝐹 ∈ 𝑇 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺))) |
15 | 1, 14 | mpbid 231 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) → ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺)) |
16 | simp11 1200 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
17 | simp2l 1196 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺)) → 𝑝 ∈ 𝐴) | |
18 | simp31 1206 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺)) → ¬ 𝑝 ≤ 𝑊) | |
19 | 17, 18 | jca 510 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺)) → (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) |
20 | simp2r 1197 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺)) → 𝑞 ∈ 𝐴) | |
21 | simp32 1207 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺)) → ¬ 𝑞 ≤ 𝑊) | |
22 | 20, 21 | jca 510 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺)) → (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) |
23 | simp13 1202 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺)) → 𝜑) | |
24 | cdlemg2ce.c | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) ∧ 𝜑) → 𝜒) | |
25 | 16, 19, 22, 23, 24 | syl31anc 1370 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺)) → 𝜒) |
26 | simp33 1208 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺)) → 𝐹 = 𝐺) | |
27 | cdlemg2ce.p | . . . . . 6 ⊢ (𝐹 = 𝐺 → (𝜓 ↔ 𝜒)) | |
28 | 26, 27 | syl 17 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺)) → (𝜓 ↔ 𝜒)) |
29 | 25, 28 | mpbird 256 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺)) → 𝜓) |
30 | 29 | 3exp 1116 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) → ((𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) → ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺) → 𝜓))) |
31 | 30 | rexlimdvv 3201 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) → (∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺) → 𝜓)) |
32 | 15, 31 | mpd 15 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∀wral 3051 ∃wrex 3060 ⦋csb 3892 ifcif 4533 class class class wbr 5153 ↦ cmpt 5236 ‘cfv 6554 ℩crio 7379 (class class class)co 7424 Basecbs 17213 lecple 17273 joincjn 18336 meetcmee 18337 Atomscatm 38961 HLchlt 39048 LHypclh 39683 LTrncltrn 39800 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-riotaBAD 38651 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-iin 5004 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-1st 8003 df-2nd 8004 df-undef 8288 df-map 8857 df-proset 18320 df-poset 18338 df-plt 18355 df-lub 18371 df-glb 18372 df-join 18373 df-meet 18374 df-p0 18450 df-p1 18451 df-lat 18457 df-clat 18524 df-oposet 38874 df-ol 38876 df-oml 38877 df-covers 38964 df-ats 38965 df-atl 38996 df-cvlat 39020 df-hlat 39049 df-llines 39197 df-lplanes 39198 df-lvols 39199 df-lines 39200 df-psubsp 39202 df-pmap 39203 df-padd 39495 df-lhyp 39687 df-laut 39688 df-ldil 39803 df-ltrn 39804 df-trl 39858 |
This theorem is referenced by: cdlemg2jlemOLDN 40292 cdlemg2fvlem 40293 cdlemg2klem 40294 |
Copyright terms: Public domain | W3C validator |