| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg2ce | Structured version Visualization version GIF version | ||
| Description: Utility theorem to eliminate p,q when converting theorems with explicit f. TODO: fix comment. (Contributed by NM, 22-Apr-2013.) |
| Ref | Expression |
|---|---|
| cdlemg2.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdlemg2.l | ⊢ ≤ = (le‘𝐾) |
| cdlemg2.j | ⊢ ∨ = (join‘𝐾) |
| cdlemg2.m | ⊢ ∧ = (meet‘𝐾) |
| cdlemg2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemg2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemg2.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| cdlemg2ex.u | ⊢ 𝑈 = ((𝑝 ∨ 𝑞) ∧ 𝑊) |
| cdlemg2ex.d | ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) |
| cdlemg2ex.e | ⊢ 𝐸 = ((𝑝 ∨ 𝑞) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
| cdlemg2ex.g | ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ if((𝑝 ≠ 𝑞 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) |
| cdlemg2ce.p | ⊢ (𝐹 = 𝐺 → (𝜓 ↔ 𝜒)) |
| cdlemg2ce.c | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) ∧ 𝜑) → 𝜒) |
| Ref | Expression |
|---|---|
| cdlemg2ce | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) → 𝐹 ∈ 𝑇) | |
| 2 | cdlemg2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | cdlemg2.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 4 | cdlemg2.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
| 5 | cdlemg2.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
| 6 | cdlemg2.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 7 | cdlemg2.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 8 | cdlemg2.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 9 | cdlemg2ex.u | . . . . 5 ⊢ 𝑈 = ((𝑝 ∨ 𝑞) ∧ 𝑊) | |
| 10 | cdlemg2ex.d | . . . . 5 ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) | |
| 11 | cdlemg2ex.e | . . . . 5 ⊢ 𝐸 = ((𝑝 ∨ 𝑞) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | |
| 12 | cdlemg2ex.g | . . . . 5 ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ if((𝑝 ≠ 𝑞 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) | |
| 13 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | cdlemg2cex 40570 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝑇 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺))) |
| 14 | 13 | 3ad2ant1 1133 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) → (𝐹 ∈ 𝑇 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺))) |
| 15 | 1, 14 | mpbid 232 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) → ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺)) |
| 16 | simp11 1204 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 17 | simp2l 1200 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺)) → 𝑝 ∈ 𝐴) | |
| 18 | simp31 1210 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺)) → ¬ 𝑝 ≤ 𝑊) | |
| 19 | 17, 18 | jca 511 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺)) → (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊)) |
| 20 | simp2r 1201 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺)) → 𝑞 ∈ 𝐴) | |
| 21 | simp32 1211 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺)) → ¬ 𝑞 ≤ 𝑊) | |
| 22 | 20, 21 | jca 511 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺)) → (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) |
| 23 | simp13 1206 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺)) → 𝜑) | |
| 24 | cdlemg2ce.c | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) ∧ 𝜑) → 𝜒) | |
| 25 | 16, 19, 22, 23, 24 | syl31anc 1375 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺)) → 𝜒) |
| 26 | simp33 1212 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺)) → 𝐹 = 𝐺) | |
| 27 | cdlemg2ce.p | . . . . . 6 ⊢ (𝐹 = 𝐺 → (𝜓 ↔ 𝜒)) | |
| 28 | 26, 27 | syl 17 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺)) → (𝜓 ↔ 𝜒)) |
| 29 | 25, 28 | mpbird 257 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) ∧ (𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) ∧ (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺)) → 𝜓) |
| 30 | 29 | 3exp 1119 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) → ((𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴) → ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺) → 𝜓))) |
| 31 | 30 | rexlimdvv 3185 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) → (∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ∧ 𝐹 = 𝐺) → 𝜓)) |
| 32 | 15, 31 | mpd 15 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝜑) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ⦋csb 3853 ifcif 4478 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6486 ℩crio 7309 (class class class)co 7353 Basecbs 17138 lecple 17186 joincjn 18235 meetcmee 18236 Atomscatm 39241 HLchlt 39328 LHypclh 39963 LTrncltrn 40080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-riotaBAD 38931 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-undef 8213 df-map 8762 df-proset 18218 df-poset 18237 df-plt 18252 df-lub 18268 df-glb 18269 df-join 18270 df-meet 18271 df-p0 18347 df-p1 18348 df-lat 18356 df-clat 18423 df-oposet 39154 df-ol 39156 df-oml 39157 df-covers 39244 df-ats 39245 df-atl 39276 df-cvlat 39300 df-hlat 39329 df-llines 39477 df-lplanes 39478 df-lvols 39479 df-lines 39480 df-psubsp 39482 df-pmap 39483 df-padd 39775 df-lhyp 39967 df-laut 39968 df-ldil 40083 df-ltrn 40084 df-trl 40138 |
| This theorem is referenced by: cdlemg2jlemOLDN 40572 cdlemg2fvlem 40573 cdlemg2klem 40574 |
| Copyright terms: Public domain | W3C validator |