Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk Structured version   Visualization version   GIF version

Theorem cdlemk 40973
Description: Lemma K of [Crawley] p. 118. Final result, lines 11 and 12 on p. 120: given two translations f and k with the same trace, there exists a trace-preserving endomorphism tau whose value at f is k. We use 𝐹, 𝑁, and 𝑢 to represent f, k, and tau. (Contributed by NM, 1-Aug-2013.)
Hypotheses
Ref Expression
cdlemk7.h 𝐻 = (LHyp‘𝐾)
cdlemk7.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk7.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk7.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemk (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝐹) = (𝑅𝑁)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
Distinct variable groups:   𝑢,𝐸   𝑢,𝐹   𝑢,𝐾   𝑢,𝑁   𝑢,𝑅   𝑢,𝑇   𝑢,𝑊
Allowed substitution hint:   𝐻(𝑢)

Proof of Theorem cdlemk
Dummy variables 𝑓 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2729 . . 3 (join‘𝐾) = (join‘𝐾)
3 eqid 2729 . . 3 (meet‘𝐾) = (meet‘𝐾)
4 eqid 2729 . . 3 (oc‘𝐾) = (oc‘𝐾)
5 eqid 2729 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
6 cdlemk7.h . . 3 𝐻 = (LHyp‘𝐾)
7 cdlemk7.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 cdlemk7.r . . 3 𝑅 = ((trL‘𝐾)‘𝑊)
9 eqid 2729 . . 3 ((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊)
10 eqid 2729 . . 3 ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅𝑏))(meet‘𝐾)((𝑁‘((oc‘𝐾)‘𝑊))(join‘𝐾)(𝑅‘(𝑏𝐹)))) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅𝑏))(meet‘𝐾)((𝑁‘((oc‘𝐾)‘𝑊))(join‘𝐾)(𝑅‘(𝑏𝐹))))
11 eqid 2729 . . 3 ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅𝑓))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅𝑏))(meet‘𝐾)((𝑁‘((oc‘𝐾)‘𝑊))(join‘𝐾)(𝑅‘(𝑏𝐹))))(join‘𝐾)(𝑅‘(𝑓𝑏)))) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅𝑓))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅𝑏))(meet‘𝐾)((𝑁‘((oc‘𝐾)‘𝑊))(join‘𝐾)(𝑅‘(𝑏𝐹))))(join‘𝐾)(𝑅‘(𝑓𝑏))))
12 eqid 2729 . . 3 (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑓)) → (𝑧‘((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅𝑓))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅𝑏))(meet‘𝐾)((𝑁‘((oc‘𝐾)‘𝑊))(join‘𝐾)(𝑅‘(𝑏𝐹))))(join‘𝐾)(𝑅‘(𝑓𝑏)))))) = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑓)) → (𝑧‘((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅𝑓))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅𝑏))(meet‘𝐾)((𝑁‘((oc‘𝐾)‘𝑊))(join‘𝐾)(𝑅‘(𝑏𝐹))))(join‘𝐾)(𝑅‘(𝑓𝑏))))))
13 eqid 2729 . . 3 (𝑓𝑇 ↦ if(𝐹 = 𝑁, 𝑓, (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑓)) → (𝑧‘((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅𝑓))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅𝑏))(meet‘𝐾)((𝑁‘((oc‘𝐾)‘𝑊))(join‘𝐾)(𝑅‘(𝑏𝐹))))(join‘𝐾)(𝑅‘(𝑓𝑏)))))))) = (𝑓𝑇 ↦ if(𝐹 = 𝑁, 𝑓, (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑓)) → (𝑧‘((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅𝑓))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅𝑏))(meet‘𝐾)((𝑁‘((oc‘𝐾)‘𝑊))(join‘𝐾)(𝑅‘(𝑏𝐹))))(join‘𝐾)(𝑅‘(𝑓𝑏))))))))
14 cdlemk7.e . . 3 𝐸 = ((TEndo‘𝐾)‘𝑊)
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14cdlemk56w 40972 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝐹) = (𝑅𝑁)) → ((𝑓𝑇 ↦ if(𝐹 = 𝑁, 𝑓, (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑓)) → (𝑧‘((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅𝑓))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅𝑏))(meet‘𝐾)((𝑁‘((oc‘𝐾)‘𝑊))(join‘𝐾)(𝑅‘(𝑏𝐹))))(join‘𝐾)(𝑅‘(𝑓𝑏)))))))) ∈ 𝐸 ∧ ((𝑓𝑇 ↦ if(𝐹 = 𝑁, 𝑓, (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑓)) → (𝑧‘((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅𝑓))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅𝑏))(meet‘𝐾)((𝑁‘((oc‘𝐾)‘𝑊))(join‘𝐾)(𝑅‘(𝑏𝐹))))(join‘𝐾)(𝑅‘(𝑓𝑏))))))))‘𝐹) = 𝑁))
16 fveq1 6825 . . . 4 (𝑢 = (𝑓𝑇 ↦ if(𝐹 = 𝑁, 𝑓, (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑓)) → (𝑧‘((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅𝑓))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅𝑏))(meet‘𝐾)((𝑁‘((oc‘𝐾)‘𝑊))(join‘𝐾)(𝑅‘(𝑏𝐹))))(join‘𝐾)(𝑅‘(𝑓𝑏)))))))) → (𝑢𝐹) = ((𝑓𝑇 ↦ if(𝐹 = 𝑁, 𝑓, (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑓)) → (𝑧‘((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅𝑓))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅𝑏))(meet‘𝐾)((𝑁‘((oc‘𝐾)‘𝑊))(join‘𝐾)(𝑅‘(𝑏𝐹))))(join‘𝐾)(𝑅‘(𝑓𝑏))))))))‘𝐹))
1716eqeq1d 2731 . . 3 (𝑢 = (𝑓𝑇 ↦ if(𝐹 = 𝑁, 𝑓, (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑓)) → (𝑧‘((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅𝑓))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅𝑏))(meet‘𝐾)((𝑁‘((oc‘𝐾)‘𝑊))(join‘𝐾)(𝑅‘(𝑏𝐹))))(join‘𝐾)(𝑅‘(𝑓𝑏)))))))) → ((𝑢𝐹) = 𝑁 ↔ ((𝑓𝑇 ↦ if(𝐹 = 𝑁, 𝑓, (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑓)) → (𝑧‘((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅𝑓))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅𝑏))(meet‘𝐾)((𝑁‘((oc‘𝐾)‘𝑊))(join‘𝐾)(𝑅‘(𝑏𝐹))))(join‘𝐾)(𝑅‘(𝑓𝑏))))))))‘𝐹) = 𝑁))
1817rspcev 3579 . 2 (((𝑓𝑇 ↦ if(𝐹 = 𝑁, 𝑓, (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑓)) → (𝑧‘((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅𝑓))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅𝑏))(meet‘𝐾)((𝑁‘((oc‘𝐾)‘𝑊))(join‘𝐾)(𝑅‘(𝑏𝐹))))(join‘𝐾)(𝑅‘(𝑓𝑏)))))))) ∈ 𝐸 ∧ ((𝑓𝑇 ↦ if(𝐹 = 𝑁, 𝑓, (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑓)) → (𝑧‘((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅𝑓))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅𝑏))(meet‘𝐾)((𝑁‘((oc‘𝐾)‘𝑊))(join‘𝐾)(𝑅‘(𝑏𝐹))))(join‘𝐾)(𝑅‘(𝑓𝑏))))))))‘𝐹) = 𝑁) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
1915, 18syl 17 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑁𝑇) ∧ (𝑅𝐹) = (𝑅𝑁)) → ∃𝑢𝐸 (𝑢𝐹) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  ifcif 4478  cmpt 5176   I cid 5517  ccnv 5622  cres 5625  ccom 5627  cfv 6486  crio 7309  (class class class)co 7353  Basecbs 17139  occoc 17188  joincjn 18236  meetcmee 18237  Atomscatm 39261  HLchlt 39348  LHypclh 39983  LTrncltrn 40100  trLctrl 40157  TEndoctendo 40751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-riotaBAD 38951
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-undef 8213  df-map 8762  df-proset 18219  df-poset 18238  df-plt 18253  df-lub 18269  df-glb 18270  df-join 18271  df-meet 18272  df-p0 18348  df-p1 18349  df-lat 18357  df-clat 18424  df-oposet 39174  df-ol 39176  df-oml 39177  df-covers 39264  df-ats 39265  df-atl 39296  df-cvlat 39320  df-hlat 39349  df-llines 39497  df-lplanes 39498  df-lvols 39499  df-lines 39500  df-psubsp 39502  df-pmap 39503  df-padd 39795  df-lhyp 39987  df-laut 39988  df-ldil 40103  df-ltrn 40104  df-trl 40158  df-tendo 40754
This theorem is referenced by:  tendoex  40974  cdleml2N  40976
  Copyright terms: Public domain W3C validator