| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2734 |
. . 3
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 2 | | eqid 2734 |
. . 3
⊢
(join‘𝐾) =
(join‘𝐾) |
| 3 | | eqid 2734 |
. . 3
⊢
(meet‘𝐾) =
(meet‘𝐾) |
| 4 | | eqid 2734 |
. . 3
⊢
(oc‘𝐾) =
(oc‘𝐾) |
| 5 | | eqid 2734 |
. . 3
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
| 6 | | cdlemk7.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
| 7 | | cdlemk7.t |
. . 3
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 8 | | cdlemk7.r |
. . 3
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| 9 | | eqid 2734 |
. . 3
⊢
((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊) |
| 10 | | eqid 2734 |
. . 3
⊢
((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅‘𝑏))(meet‘𝐾)((𝑁‘((oc‘𝐾)‘𝑊))(join‘𝐾)(𝑅‘(𝑏 ∘ ◡𝐹)))) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅‘𝑏))(meet‘𝐾)((𝑁‘((oc‘𝐾)‘𝑊))(join‘𝐾)(𝑅‘(𝑏 ∘ ◡𝐹)))) |
| 11 | | eqid 2734 |
. . 3
⊢
((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅‘𝑓))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅‘𝑏))(meet‘𝐾)((𝑁‘((oc‘𝐾)‘𝑊))(join‘𝐾)(𝑅‘(𝑏 ∘ ◡𝐹))))(join‘𝐾)(𝑅‘(𝑓 ∘ ◡𝑏)))) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅‘𝑓))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅‘𝑏))(meet‘𝐾)((𝑁‘((oc‘𝐾)‘𝑊))(join‘𝐾)(𝑅‘(𝑏 ∘ ◡𝐹))))(join‘𝐾)(𝑅‘(𝑓 ∘ ◡𝑏)))) |
| 12 | | eqid 2734 |
. . 3
⊢
(℩𝑧
∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑓)) → (𝑧‘((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅‘𝑓))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅‘𝑏))(meet‘𝐾)((𝑁‘((oc‘𝐾)‘𝑊))(join‘𝐾)(𝑅‘(𝑏 ∘ ◡𝐹))))(join‘𝐾)(𝑅‘(𝑓 ∘ ◡𝑏)))))) = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑓)) → (𝑧‘((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅‘𝑓))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅‘𝑏))(meet‘𝐾)((𝑁‘((oc‘𝐾)‘𝑊))(join‘𝐾)(𝑅‘(𝑏 ∘ ◡𝐹))))(join‘𝐾)(𝑅‘(𝑓 ∘ ◡𝑏)))))) |
| 13 | | eqid 2734 |
. . 3
⊢ (𝑓 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑓, (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑓)) → (𝑧‘((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅‘𝑓))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅‘𝑏))(meet‘𝐾)((𝑁‘((oc‘𝐾)‘𝑊))(join‘𝐾)(𝑅‘(𝑏 ∘ ◡𝐹))))(join‘𝐾)(𝑅‘(𝑓 ∘ ◡𝑏)))))))) = (𝑓 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑓, (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑓)) → (𝑧‘((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅‘𝑓))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅‘𝑏))(meet‘𝐾)((𝑁‘((oc‘𝐾)‘𝑊))(join‘𝐾)(𝑅‘(𝑏 ∘ ◡𝐹))))(join‘𝐾)(𝑅‘(𝑓 ∘ ◡𝑏)))))))) |
| 14 | | cdlemk7.e |
. . 3
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| 15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14 | cdlemk56w 40950 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → ((𝑓 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑓, (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑓)) → (𝑧‘((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅‘𝑓))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅‘𝑏))(meet‘𝐾)((𝑁‘((oc‘𝐾)‘𝑊))(join‘𝐾)(𝑅‘(𝑏 ∘ ◡𝐹))))(join‘𝐾)(𝑅‘(𝑓 ∘ ◡𝑏)))))))) ∈ 𝐸 ∧ ((𝑓 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑓, (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑓)) → (𝑧‘((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅‘𝑓))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅‘𝑏))(meet‘𝐾)((𝑁‘((oc‘𝐾)‘𝑊))(join‘𝐾)(𝑅‘(𝑏 ∘ ◡𝐹))))(join‘𝐾)(𝑅‘(𝑓 ∘ ◡𝑏))))))))‘𝐹) = 𝑁)) |
| 16 | | fveq1 6885 |
. . . 4
⊢ (𝑢 = (𝑓 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑓, (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑓)) → (𝑧‘((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅‘𝑓))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅‘𝑏))(meet‘𝐾)((𝑁‘((oc‘𝐾)‘𝑊))(join‘𝐾)(𝑅‘(𝑏 ∘ ◡𝐹))))(join‘𝐾)(𝑅‘(𝑓 ∘ ◡𝑏)))))))) → (𝑢‘𝐹) = ((𝑓 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑓, (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑓)) → (𝑧‘((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅‘𝑓))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅‘𝑏))(meet‘𝐾)((𝑁‘((oc‘𝐾)‘𝑊))(join‘𝐾)(𝑅‘(𝑏 ∘ ◡𝐹))))(join‘𝐾)(𝑅‘(𝑓 ∘ ◡𝑏))))))))‘𝐹)) |
| 17 | 16 | eqeq1d 2736 |
. . 3
⊢ (𝑢 = (𝑓 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑓, (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑓)) → (𝑧‘((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅‘𝑓))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅‘𝑏))(meet‘𝐾)((𝑁‘((oc‘𝐾)‘𝑊))(join‘𝐾)(𝑅‘(𝑏 ∘ ◡𝐹))))(join‘𝐾)(𝑅‘(𝑓 ∘ ◡𝑏)))))))) → ((𝑢‘𝐹) = 𝑁 ↔ ((𝑓 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑓, (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑓)) → (𝑧‘((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅‘𝑓))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅‘𝑏))(meet‘𝐾)((𝑁‘((oc‘𝐾)‘𝑊))(join‘𝐾)(𝑅‘(𝑏 ∘ ◡𝐹))))(join‘𝐾)(𝑅‘(𝑓 ∘ ◡𝑏))))))))‘𝐹) = 𝑁)) |
| 18 | 17 | rspcev 3605 |
. 2
⊢ (((𝑓 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑓, (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑓)) → (𝑧‘((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅‘𝑓))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅‘𝑏))(meet‘𝐾)((𝑁‘((oc‘𝐾)‘𝑊))(join‘𝐾)(𝑅‘(𝑏 ∘ ◡𝐹))))(join‘𝐾)(𝑅‘(𝑓 ∘ ◡𝑏)))))))) ∈ 𝐸 ∧ ((𝑓 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑓, (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ (Base‘𝐾)) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑓)) → (𝑧‘((oc‘𝐾)‘𝑊)) = ((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅‘𝑓))(meet‘𝐾)(((((oc‘𝐾)‘𝑊)(join‘𝐾)(𝑅‘𝑏))(meet‘𝐾)((𝑁‘((oc‘𝐾)‘𝑊))(join‘𝐾)(𝑅‘(𝑏 ∘ ◡𝐹))))(join‘𝐾)(𝑅‘(𝑓 ∘ ◡𝑏))))))))‘𝐹) = 𝑁) → ∃𝑢 ∈ 𝐸 (𝑢‘𝐹) = 𝑁) |
| 19 | 15, 18 | syl 17 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) → ∃𝑢 ∈ 𝐸 (𝑢‘𝐹) = 𝑁) |