| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleml2N | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cdleml1.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdleml1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdleml1.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| cdleml1.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| cdleml1.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| cdleml2N | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈‘𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉‘𝑓) ≠ ( I ↾ 𝐵))) → ∃𝑠 ∈ 𝐸 (𝑠‘(𝑈‘𝑓)) = (𝑉‘𝑓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈‘𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉‘𝑓) ≠ ( I ↾ 𝐵))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | simp21 1206 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈‘𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉‘𝑓) ≠ ( I ↾ 𝐵))) → 𝑈 ∈ 𝐸) | |
| 3 | simp23 1208 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈‘𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉‘𝑓) ≠ ( I ↾ 𝐵))) → 𝑓 ∈ 𝑇) | |
| 4 | cdleml1.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | cdleml1.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 6 | cdleml1.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 7 | 4, 5, 6 | tendocl 40710 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) → (𝑈‘𝑓) ∈ 𝑇) |
| 8 | 1, 2, 3, 7 | syl3anc 1372 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈‘𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉‘𝑓) ≠ ( I ↾ 𝐵))) → (𝑈‘𝑓) ∈ 𝑇) |
| 9 | simp22 1207 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈‘𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉‘𝑓) ≠ ( I ↾ 𝐵))) → 𝑉 ∈ 𝐸) | |
| 10 | 4, 5, 6 | tendocl 40710 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑉 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) → (𝑉‘𝑓) ∈ 𝑇) |
| 11 | 1, 9, 3, 10 | syl3anc 1372 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈‘𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉‘𝑓) ≠ ( I ↾ 𝐵))) → (𝑉‘𝑓) ∈ 𝑇) |
| 12 | cdleml1.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 13 | cdleml1.r | . . 3 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 14 | 12, 4, 5, 13, 6 | cdleml1N 40919 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈‘𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉‘𝑓) ≠ ( I ↾ 𝐵))) → (𝑅‘(𝑈‘𝑓)) = (𝑅‘(𝑉‘𝑓))) |
| 15 | 4, 5, 13, 6 | cdlemk 40917 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑈‘𝑓) ∈ 𝑇 ∧ (𝑉‘𝑓) ∈ 𝑇) ∧ (𝑅‘(𝑈‘𝑓)) = (𝑅‘(𝑉‘𝑓))) → ∃𝑠 ∈ 𝐸 (𝑠‘(𝑈‘𝑓)) = (𝑉‘𝑓)) |
| 16 | 1, 8, 11, 14, 15 | syl121anc 1376 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈‘𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉‘𝑓) ≠ ( I ↾ 𝐵))) → ∃𝑠 ∈ 𝐸 (𝑠‘(𝑈‘𝑓)) = (𝑉‘𝑓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∃wrex 3059 I cid 5559 ↾ cres 5669 ‘cfv 6542 Basecbs 17230 HLchlt 39292 LHypclh 39927 LTrncltrn 40044 trLctrl 40101 TEndoctendo 40695 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-riotaBAD 38895 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-iin 4976 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7997 df-2nd 7998 df-undef 8281 df-map 8851 df-proset 18315 df-poset 18334 df-plt 18349 df-lub 18365 df-glb 18366 df-join 18367 df-meet 18368 df-p0 18444 df-p1 18445 df-lat 18451 df-clat 18518 df-oposet 39118 df-ol 39120 df-oml 39121 df-covers 39208 df-ats 39209 df-atl 39240 df-cvlat 39264 df-hlat 39293 df-llines 39441 df-lplanes 39442 df-lvols 39443 df-lines 39444 df-psubsp 39446 df-pmap 39447 df-padd 39739 df-lhyp 39931 df-laut 39932 df-ldil 40047 df-ltrn 40048 df-trl 40102 df-tendo 40698 |
| This theorem is referenced by: cdleml3N 40921 |
| Copyright terms: Public domain | W3C validator |