Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleml2N Structured version   Visualization version   GIF version

Theorem cdleml2N 40360
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleml1.b 𝐡 = (Baseβ€˜πΎ)
cdleml1.h 𝐻 = (LHypβ€˜πΎ)
cdleml1.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdleml1.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
cdleml1.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
cdleml2N (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) ∧ (𝑓 β‰  ( I β†Ύ 𝐡) ∧ (π‘ˆβ€˜π‘“) β‰  ( I β†Ύ 𝐡) ∧ (π‘‰β€˜π‘“) β‰  ( I β†Ύ 𝐡))) β†’ βˆƒπ‘  ∈ 𝐸 (π‘ β€˜(π‘ˆβ€˜π‘“)) = (π‘‰β€˜π‘“))
Distinct variable groups:   𝐸,𝑠   𝐾,𝑠   𝑅,𝑠   𝑇,𝑠   π‘ˆ,𝑠   𝑉,𝑠   π‘Š,𝑠   𝑓,𝑠
Allowed substitution hints:   𝐡(𝑓,𝑠)   𝑅(𝑓)   𝑇(𝑓)   π‘ˆ(𝑓)   𝐸(𝑓)   𝐻(𝑓,𝑠)   𝐾(𝑓)   𝑉(𝑓)   π‘Š(𝑓)

Proof of Theorem cdleml2N
StepHypRef Expression
1 simp1 1133 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) ∧ (𝑓 β‰  ( I β†Ύ 𝐡) ∧ (π‘ˆβ€˜π‘“) β‰  ( I β†Ύ 𝐡) ∧ (π‘‰β€˜π‘“) β‰  ( I β†Ύ 𝐡))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 simp21 1203 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) ∧ (𝑓 β‰  ( I β†Ύ 𝐡) ∧ (π‘ˆβ€˜π‘“) β‰  ( I β†Ύ 𝐡) ∧ (π‘‰β€˜π‘“) β‰  ( I β†Ύ 𝐡))) β†’ π‘ˆ ∈ 𝐸)
3 simp23 1205 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) ∧ (𝑓 β‰  ( I β†Ύ 𝐡) ∧ (π‘ˆβ€˜π‘“) β‰  ( I β†Ύ 𝐡) ∧ (π‘‰β€˜π‘“) β‰  ( I β†Ύ 𝐡))) β†’ 𝑓 ∈ 𝑇)
4 cdleml1.h . . . 4 𝐻 = (LHypβ€˜πΎ)
5 cdleml1.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
6 cdleml1.e . . . 4 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
74, 5, 6tendocl 40150 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) β†’ (π‘ˆβ€˜π‘“) ∈ 𝑇)
81, 2, 3, 7syl3anc 1368 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) ∧ (𝑓 β‰  ( I β†Ύ 𝐡) ∧ (π‘ˆβ€˜π‘“) β‰  ( I β†Ύ 𝐡) ∧ (π‘‰β€˜π‘“) β‰  ( I β†Ύ 𝐡))) β†’ (π‘ˆβ€˜π‘“) ∈ 𝑇)
9 simp22 1204 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) ∧ (𝑓 β‰  ( I β†Ύ 𝐡) ∧ (π‘ˆβ€˜π‘“) β‰  ( I β†Ύ 𝐡) ∧ (π‘‰β€˜π‘“) β‰  ( I β†Ύ 𝐡))) β†’ 𝑉 ∈ 𝐸)
104, 5, 6tendocl 40150 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑉 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) β†’ (π‘‰β€˜π‘“) ∈ 𝑇)
111, 9, 3, 10syl3anc 1368 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) ∧ (𝑓 β‰  ( I β†Ύ 𝐡) ∧ (π‘ˆβ€˜π‘“) β‰  ( I β†Ύ 𝐡) ∧ (π‘‰β€˜π‘“) β‰  ( I β†Ύ 𝐡))) β†’ (π‘‰β€˜π‘“) ∈ 𝑇)
12 cdleml1.b . . 3 𝐡 = (Baseβ€˜πΎ)
13 cdleml1.r . . 3 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
1412, 4, 5, 13, 6cdleml1N 40359 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) ∧ (𝑓 β‰  ( I β†Ύ 𝐡) ∧ (π‘ˆβ€˜π‘“) β‰  ( I β†Ύ 𝐡) ∧ (π‘‰β€˜π‘“) β‰  ( I β†Ύ 𝐡))) β†’ (π‘…β€˜(π‘ˆβ€˜π‘“)) = (π‘…β€˜(π‘‰β€˜π‘“)))
154, 5, 13, 6cdlemk 40357 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((π‘ˆβ€˜π‘“) ∈ 𝑇 ∧ (π‘‰β€˜π‘“) ∈ 𝑇) ∧ (π‘…β€˜(π‘ˆβ€˜π‘“)) = (π‘…β€˜(π‘‰β€˜π‘“))) β†’ βˆƒπ‘  ∈ 𝐸 (π‘ β€˜(π‘ˆβ€˜π‘“)) = (π‘‰β€˜π‘“))
161, 8, 11, 14, 15syl121anc 1372 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) ∧ (𝑓 β‰  ( I β†Ύ 𝐡) ∧ (π‘ˆβ€˜π‘“) β‰  ( I β†Ύ 𝐡) ∧ (π‘‰β€˜π‘“) β‰  ( I β†Ύ 𝐡))) β†’ βˆƒπ‘  ∈ 𝐸 (π‘ β€˜(π‘ˆβ€˜π‘“)) = (π‘‰β€˜π‘“))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934  βˆƒwrex 3064   I cid 5566   β†Ύ cres 5671  β€˜cfv 6536  Basecbs 17150  HLchlt 38732  LHypclh 39367  LTrncltrn 39484  trLctrl 39541  TEndoctendo 40135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-riotaBAD 38335
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7971  df-2nd 7972  df-undef 8256  df-map 8821  df-proset 18257  df-poset 18275  df-plt 18292  df-lub 18308  df-glb 18309  df-join 18310  df-meet 18311  df-p0 18387  df-p1 18388  df-lat 18394  df-clat 18461  df-oposet 38558  df-ol 38560  df-oml 38561  df-covers 38648  df-ats 38649  df-atl 38680  df-cvlat 38704  df-hlat 38733  df-llines 38881  df-lplanes 38882  df-lvols 38883  df-lines 38884  df-psubsp 38886  df-pmap 38887  df-padd 39179  df-lhyp 39371  df-laut 39372  df-ldil 39487  df-ltrn 39488  df-trl 39542  df-tendo 40138
This theorem is referenced by:  cdleml3N  40361
  Copyright terms: Public domain W3C validator