Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleml2N Structured version   Visualization version   GIF version

Theorem cdleml2N 40963
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleml1.b 𝐵 = (Base‘𝐾)
cdleml1.h 𝐻 = (LHyp‘𝐾)
cdleml1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdleml1.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdleml1.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
cdleml2N (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → ∃𝑠𝐸 (𝑠‘(𝑈𝑓)) = (𝑉𝑓))
Distinct variable groups:   𝐸,𝑠   𝐾,𝑠   𝑅,𝑠   𝑇,𝑠   𝑈,𝑠   𝑉,𝑠   𝑊,𝑠   𝑓,𝑠
Allowed substitution hints:   𝐵(𝑓,𝑠)   𝑅(𝑓)   𝑇(𝑓)   𝑈(𝑓)   𝐸(𝑓)   𝐻(𝑓,𝑠)   𝐾(𝑓)   𝑉(𝑓)   𝑊(𝑓)

Proof of Theorem cdleml2N
StepHypRef Expression
1 simp1 1136 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp21 1207 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → 𝑈𝐸)
3 simp23 1209 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → 𝑓𝑇)
4 cdleml1.h . . . 4 𝐻 = (LHyp‘𝐾)
5 cdleml1.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
6 cdleml1.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
74, 5, 6tendocl 40753 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑓𝑇) → (𝑈𝑓) ∈ 𝑇)
81, 2, 3, 7syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑈𝑓) ∈ 𝑇)
9 simp22 1208 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → 𝑉𝐸)
104, 5, 6tendocl 40753 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸𝑓𝑇) → (𝑉𝑓) ∈ 𝑇)
111, 9, 3, 10syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑉𝑓) ∈ 𝑇)
12 cdleml1.b . . 3 𝐵 = (Base‘𝐾)
13 cdleml1.r . . 3 𝑅 = ((trL‘𝐾)‘𝑊)
1412, 4, 5, 13, 6cdleml1N 40962 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → (𝑅‘(𝑈𝑓)) = (𝑅‘(𝑉𝑓)))
154, 5, 13, 6cdlemk 40960 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑈𝑓) ∈ 𝑇 ∧ (𝑉𝑓) ∈ 𝑇) ∧ (𝑅‘(𝑈𝑓)) = (𝑅‘(𝑉𝑓))) → ∃𝑠𝐸 (𝑠‘(𝑈𝑓)) = (𝑉𝑓))
161, 8, 11, 14, 15syl121anc 1377 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝑓𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉𝑓) ≠ ( I ↾ 𝐵))) → ∃𝑠𝐸 (𝑠‘(𝑈𝑓)) = (𝑉𝑓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2927  wrex 3055   I cid 5540  cres 5648  cfv 6519  Basecbs 17185  HLchlt 39335  LHypclh 39970  LTrncltrn 40087  trLctrl 40144  TEndoctendo 40738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-riotaBAD 38938
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-iin 4966  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-undef 8261  df-map 8805  df-proset 18261  df-poset 18280  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-p1 18391  df-lat 18397  df-clat 18464  df-oposet 39161  df-ol 39163  df-oml 39164  df-covers 39251  df-ats 39252  df-atl 39283  df-cvlat 39307  df-hlat 39336  df-llines 39484  df-lplanes 39485  df-lvols 39486  df-lines 39487  df-psubsp 39489  df-pmap 39490  df-padd 39782  df-lhyp 39974  df-laut 39975  df-ldil 40090  df-ltrn 40091  df-trl 40145  df-tendo 40741
This theorem is referenced by:  cdleml3N  40964
  Copyright terms: Public domain W3C validator