| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleml2N | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cdleml1.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdleml1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdleml1.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| cdleml1.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| cdleml1.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| cdleml2N | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈‘𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉‘𝑓) ≠ ( I ↾ 𝐵))) → ∃𝑠 ∈ 𝐸 (𝑠‘(𝑈‘𝑓)) = (𝑉‘𝑓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈‘𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉‘𝑓) ≠ ( I ↾ 𝐵))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | simp21 1207 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈‘𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉‘𝑓) ≠ ( I ↾ 𝐵))) → 𝑈 ∈ 𝐸) | |
| 3 | simp23 1209 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈‘𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉‘𝑓) ≠ ( I ↾ 𝐵))) → 𝑓 ∈ 𝑇) | |
| 4 | cdleml1.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | cdleml1.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 6 | cdleml1.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 7 | 4, 5, 6 | tendocl 40746 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) → (𝑈‘𝑓) ∈ 𝑇) |
| 8 | 1, 2, 3, 7 | syl3anc 1373 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈‘𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉‘𝑓) ≠ ( I ↾ 𝐵))) → (𝑈‘𝑓) ∈ 𝑇) |
| 9 | simp22 1208 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈‘𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉‘𝑓) ≠ ( I ↾ 𝐵))) → 𝑉 ∈ 𝐸) | |
| 10 | 4, 5, 6 | tendocl 40746 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑉 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) → (𝑉‘𝑓) ∈ 𝑇) |
| 11 | 1, 9, 3, 10 | syl3anc 1373 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈‘𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉‘𝑓) ≠ ( I ↾ 𝐵))) → (𝑉‘𝑓) ∈ 𝑇) |
| 12 | cdleml1.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 13 | cdleml1.r | . . 3 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 14 | 12, 4, 5, 13, 6 | cdleml1N 40955 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈‘𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉‘𝑓) ≠ ( I ↾ 𝐵))) → (𝑅‘(𝑈‘𝑓)) = (𝑅‘(𝑉‘𝑓))) |
| 15 | 4, 5, 13, 6 | cdlemk 40953 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑈‘𝑓) ∈ 𝑇 ∧ (𝑉‘𝑓) ∈ 𝑇) ∧ (𝑅‘(𝑈‘𝑓)) = (𝑅‘(𝑉‘𝑓))) → ∃𝑠 ∈ 𝐸 (𝑠‘(𝑈‘𝑓)) = (𝑉‘𝑓)) |
| 16 | 1, 8, 11, 14, 15 | syl121anc 1377 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑓 ∈ 𝑇) ∧ (𝑓 ≠ ( I ↾ 𝐵) ∧ (𝑈‘𝑓) ≠ ( I ↾ 𝐵) ∧ (𝑉‘𝑓) ≠ ( I ↾ 𝐵))) → ∃𝑠 ∈ 𝐸 (𝑠‘(𝑈‘𝑓)) = (𝑉‘𝑓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 I cid 5517 ↾ cres 5625 ‘cfv 6486 Basecbs 17138 HLchlt 39328 LHypclh 39963 LTrncltrn 40080 trLctrl 40137 TEndoctendo 40731 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-riotaBAD 38931 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-undef 8213 df-map 8762 df-proset 18218 df-poset 18237 df-plt 18252 df-lub 18268 df-glb 18269 df-join 18270 df-meet 18271 df-p0 18347 df-p1 18348 df-lat 18356 df-clat 18423 df-oposet 39154 df-ol 39156 df-oml 39157 df-covers 39244 df-ats 39245 df-atl 39276 df-cvlat 39300 df-hlat 39329 df-llines 39477 df-lplanes 39478 df-lvols 39479 df-lines 39480 df-psubsp 39482 df-pmap 39483 df-padd 39775 df-lhyp 39967 df-laut 39968 df-ldil 40083 df-ltrn 40084 df-trl 40138 df-tendo 40734 |
| This theorem is referenced by: cdleml3N 40957 |
| Copyright terms: Public domain | W3C validator |