Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfshiftioo Structured version   Visualization version   GIF version

Theorem cncfshiftioo 45864
Description: A periodic continuous function stays continuous if the domain is an open interval that is shifted a period. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfshiftioo.a (𝜑𝐴 ∈ ℝ)
cncfshiftioo.b (𝜑𝐵 ∈ ℝ)
cncfshiftioo.c 𝐶 = (𝐴(,)𝐵)
cncfshiftioo.t (𝜑𝑇 ∈ ℝ)
cncfshiftioo.d 𝐷 = ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))
cncfshiftioo.f (𝜑𝐹 ∈ (𝐶cn→ℂ))
cncfshiftioo.g 𝐺 = (𝑥𝐷 ↦ (𝐹‘(𝑥𝑇)))
Assertion
Ref Expression
cncfshiftioo (𝜑𝐺 ∈ (𝐷cn→ℂ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐹   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐺(𝑥)

Proof of Theorem cncfshiftioo
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioosscn 13431 . . . 4 (𝐴(,)𝐵) ⊆ ℂ
21a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
3 cncfshiftioo.t . . . 4 (𝜑𝑇 ∈ ℝ)
43recnd 11271 . . 3 (𝜑𝑇 ∈ ℂ)
5 eqeq1 2738 . . . . . 6 (𝑤 = 𝑥 → (𝑤 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑧 + 𝑇)))
65rexbidv 3166 . . . . 5 (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇)))
7 oveq1 7420 . . . . . . 7 (𝑧 = 𝑦 → (𝑧 + 𝑇) = (𝑦 + 𝑇))
87eqeq2d 2745 . . . . . 6 (𝑧 = 𝑦 → (𝑥 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑦 + 𝑇)))
98cbvrexvw 3224 . . . . 5 (∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ (𝐴(,)𝐵)𝑥 = (𝑦 + 𝑇))
106, 9bitrdi 287 . . . 4 (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ (𝐴(,)𝐵)𝑥 = (𝑦 + 𝑇)))
1110cbvrabv 3430 . . 3 {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴(,)𝐵)𝑥 = (𝑦 + 𝑇)}
12 cncfshiftioo.f . . . 4 (𝜑𝐹 ∈ (𝐶cn→ℂ))
13 cncfshiftioo.c . . . . 5 𝐶 = (𝐴(,)𝐵)
1413oveq1i 7423 . . . 4 (𝐶cn→ℂ) = ((𝐴(,)𝐵)–cn→ℂ)
1512, 14eleqtrdi 2843 . . 3 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
16 eqid 2734 . . 3 (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥𝑇))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥𝑇)))
172, 4, 11, 15, 16cncfshift 45846 . 2 (𝜑 → (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥𝑇))) ∈ ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)}–cn→ℂ))
18 cncfshiftioo.g . . 3 𝐺 = (𝑥𝐷 ↦ (𝐹‘(𝑥𝑇)))
19 cncfshiftioo.d . . . . 5 𝐷 = ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))
20 cncfshiftioo.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
21 cncfshiftioo.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
2220, 21, 3iooshift 45492 . . . . 5 (𝜑 → ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)})
2319, 22eqtrid 2781 . . . 4 (𝜑𝐷 = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)})
2423mpteq1d 5217 . . 3 (𝜑 → (𝑥𝐷 ↦ (𝐹‘(𝑥𝑇))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥𝑇))))
2518, 24eqtrid 2781 . 2 (𝜑𝐺 = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥𝑇))))
2623oveq1d 7428 . 2 (𝜑 → (𝐷cn→ℂ) = ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)}–cn→ℂ))
2717, 25, 263eltr4d 2848 1 (𝜑𝐺 ∈ (𝐷cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wrex 3059  {crab 3419  wss 3931  cmpt 5205  cfv 6541  (class class class)co 7413  cc 11135  cr 11136   + caddc 11140  cmin 11474  (,)cioo 13369  cnccncf 24838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-po 5572  df-so 5573  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-ioo 13373  df-cncf 24840
This theorem is referenced by:  fourierdlem90  46168
  Copyright terms: Public domain W3C validator