Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfshiftioo Structured version   Visualization version   GIF version

Theorem cncfshiftioo 45813
Description: A periodic continuous function stays continuous if the domain is an open interval that is shifted a period. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfshiftioo.a (𝜑𝐴 ∈ ℝ)
cncfshiftioo.b (𝜑𝐵 ∈ ℝ)
cncfshiftioo.c 𝐶 = (𝐴(,)𝐵)
cncfshiftioo.t (𝜑𝑇 ∈ ℝ)
cncfshiftioo.d 𝐷 = ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))
cncfshiftioo.f (𝜑𝐹 ∈ (𝐶cn→ℂ))
cncfshiftioo.g 𝐺 = (𝑥𝐷 ↦ (𝐹‘(𝑥𝑇)))
Assertion
Ref Expression
cncfshiftioo (𝜑𝐺 ∈ (𝐷cn→ℂ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐹   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐺(𝑥)

Proof of Theorem cncfshiftioo
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioosscn 13469 . . . 4 (𝐴(,)𝐵) ⊆ ℂ
21a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
3 cncfshiftioo.t . . . 4 (𝜑𝑇 ∈ ℝ)
43recnd 11318 . . 3 (𝜑𝑇 ∈ ℂ)
5 eqeq1 2744 . . . . . 6 (𝑤 = 𝑥 → (𝑤 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑧 + 𝑇)))
65rexbidv 3185 . . . . 5 (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇)))
7 oveq1 7455 . . . . . . 7 (𝑧 = 𝑦 → (𝑧 + 𝑇) = (𝑦 + 𝑇))
87eqeq2d 2751 . . . . . 6 (𝑧 = 𝑦 → (𝑥 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑦 + 𝑇)))
98cbvrexvw 3244 . . . . 5 (∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ (𝐴(,)𝐵)𝑥 = (𝑦 + 𝑇))
106, 9bitrdi 287 . . . 4 (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ (𝐴(,)𝐵)𝑥 = (𝑦 + 𝑇)))
1110cbvrabv 3454 . . 3 {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴(,)𝐵)𝑥 = (𝑦 + 𝑇)}
12 cncfshiftioo.f . . . 4 (𝜑𝐹 ∈ (𝐶cn→ℂ))
13 cncfshiftioo.c . . . . 5 𝐶 = (𝐴(,)𝐵)
1413oveq1i 7458 . . . 4 (𝐶cn→ℂ) = ((𝐴(,)𝐵)–cn→ℂ)
1512, 14eleqtrdi 2854 . . 3 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
16 eqid 2740 . . 3 (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥𝑇))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥𝑇)))
172, 4, 11, 15, 16cncfshift 45795 . 2 (𝜑 → (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥𝑇))) ∈ ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)}–cn→ℂ))
18 cncfshiftioo.g . . 3 𝐺 = (𝑥𝐷 ↦ (𝐹‘(𝑥𝑇)))
19 cncfshiftioo.d . . . . 5 𝐷 = ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))
20 cncfshiftioo.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
21 cncfshiftioo.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
2220, 21, 3iooshift 45440 . . . . 5 (𝜑 → ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)})
2319, 22eqtrid 2792 . . . 4 (𝜑𝐷 = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)})
2423mpteq1d 5261 . . 3 (𝜑 → (𝑥𝐷 ↦ (𝐹‘(𝑥𝑇))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥𝑇))))
2518, 24eqtrid 2792 . 2 (𝜑𝐺 = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥𝑇))))
2623oveq1d 7463 . 2 (𝜑 → (𝐷cn→ℂ) = ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)}–cn→ℂ))
2717, 25, 263eltr4d 2859 1 (𝜑𝐺 ∈ (𝐷cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  wss 3976  cmpt 5249  cfv 6573  (class class class)co 7448  cc 11182  cr 11183   + caddc 11187  cmin 11520  (,)cioo 13407  cnccncf 24921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-ioo 13411  df-cncf 24923
This theorem is referenced by:  fourierdlem90  46117
  Copyright terms: Public domain W3C validator