Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfshiftioo Structured version   Visualization version   GIF version

Theorem cncfshiftioo 45921
Description: A periodic continuous function stays continuous if the domain is an open interval that is shifted a period. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfshiftioo.a (𝜑𝐴 ∈ ℝ)
cncfshiftioo.b (𝜑𝐵 ∈ ℝ)
cncfshiftioo.c 𝐶 = (𝐴(,)𝐵)
cncfshiftioo.t (𝜑𝑇 ∈ ℝ)
cncfshiftioo.d 𝐷 = ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))
cncfshiftioo.f (𝜑𝐹 ∈ (𝐶cn→ℂ))
cncfshiftioo.g 𝐺 = (𝑥𝐷 ↦ (𝐹‘(𝑥𝑇)))
Assertion
Ref Expression
cncfshiftioo (𝜑𝐺 ∈ (𝐷cn→ℂ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐹   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐺(𝑥)

Proof of Theorem cncfshiftioo
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioosscn 13425 . . . 4 (𝐴(,)𝐵) ⊆ ℂ
21a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
3 cncfshiftioo.t . . . 4 (𝜑𝑇 ∈ ℝ)
43recnd 11263 . . 3 (𝜑𝑇 ∈ ℂ)
5 eqeq1 2739 . . . . . 6 (𝑤 = 𝑥 → (𝑤 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑧 + 𝑇)))
65rexbidv 3164 . . . . 5 (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇)))
7 oveq1 7412 . . . . . . 7 (𝑧 = 𝑦 → (𝑧 + 𝑇) = (𝑦 + 𝑇))
87eqeq2d 2746 . . . . . 6 (𝑧 = 𝑦 → (𝑥 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑦 + 𝑇)))
98cbvrexvw 3221 . . . . 5 (∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ (𝐴(,)𝐵)𝑥 = (𝑦 + 𝑇))
106, 9bitrdi 287 . . . 4 (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ (𝐴(,)𝐵)𝑥 = (𝑦 + 𝑇)))
1110cbvrabv 3426 . . 3 {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴(,)𝐵)𝑥 = (𝑦 + 𝑇)}
12 cncfshiftioo.f . . . 4 (𝜑𝐹 ∈ (𝐶cn→ℂ))
13 cncfshiftioo.c . . . . 5 𝐶 = (𝐴(,)𝐵)
1413oveq1i 7415 . . . 4 (𝐶cn→ℂ) = ((𝐴(,)𝐵)–cn→ℂ)
1512, 14eleqtrdi 2844 . . 3 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
16 eqid 2735 . . 3 (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥𝑇))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥𝑇)))
172, 4, 11, 15, 16cncfshift 45903 . 2 (𝜑 → (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥𝑇))) ∈ ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)}–cn→ℂ))
18 cncfshiftioo.g . . 3 𝐺 = (𝑥𝐷 ↦ (𝐹‘(𝑥𝑇)))
19 cncfshiftioo.d . . . . 5 𝐷 = ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))
20 cncfshiftioo.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
21 cncfshiftioo.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
2220, 21, 3iooshift 45551 . . . . 5 (𝜑 → ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)})
2319, 22eqtrid 2782 . . . 4 (𝜑𝐷 = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)})
2423mpteq1d 5210 . . 3 (𝜑 → (𝑥𝐷 ↦ (𝐹‘(𝑥𝑇))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥𝑇))))
2518, 24eqtrid 2782 . 2 (𝜑𝐺 = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥𝑇))))
2623oveq1d 7420 . 2 (𝜑 → (𝐷cn→ℂ) = ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)}–cn→ℂ))
2717, 25, 263eltr4d 2849 1 (𝜑𝐺 ∈ (𝐷cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wrex 3060  {crab 3415  wss 3926  cmpt 5201  cfv 6531  (class class class)co 7405  cc 11127  cr 11128   + caddc 11132  cmin 11466  (,)cioo 13362  cnccncf 24820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-ioo 13366  df-cncf 24822
This theorem is referenced by:  fourierdlem90  46225
  Copyright terms: Public domain W3C validator