Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfshiftioo Structured version   Visualization version   GIF version

Theorem cncfshiftioo 45874
Description: A periodic continuous function stays continuous if the domain is an open interval that is shifted a period. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfshiftioo.a (𝜑𝐴 ∈ ℝ)
cncfshiftioo.b (𝜑𝐵 ∈ ℝ)
cncfshiftioo.c 𝐶 = (𝐴(,)𝐵)
cncfshiftioo.t (𝜑𝑇 ∈ ℝ)
cncfshiftioo.d 𝐷 = ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))
cncfshiftioo.f (𝜑𝐹 ∈ (𝐶cn→ℂ))
cncfshiftioo.g 𝐺 = (𝑥𝐷 ↦ (𝐹‘(𝑥𝑇)))
Assertion
Ref Expression
cncfshiftioo (𝜑𝐺 ∈ (𝐷cn→ℂ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐹   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐺(𝑥)

Proof of Theorem cncfshiftioo
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioosscn 13329 . . . 4 (𝐴(,)𝐵) ⊆ ℂ
21a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
3 cncfshiftioo.t . . . 4 (𝜑𝑇 ∈ ℝ)
43recnd 11162 . . 3 (𝜑𝑇 ∈ ℂ)
5 eqeq1 2733 . . . . . 6 (𝑤 = 𝑥 → (𝑤 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑧 + 𝑇)))
65rexbidv 3153 . . . . 5 (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇)))
7 oveq1 7360 . . . . . . 7 (𝑧 = 𝑦 → (𝑧 + 𝑇) = (𝑦 + 𝑇))
87eqeq2d 2740 . . . . . 6 (𝑧 = 𝑦 → (𝑥 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑦 + 𝑇)))
98cbvrexvw 3208 . . . . 5 (∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ (𝐴(,)𝐵)𝑥 = (𝑦 + 𝑇))
106, 9bitrdi 287 . . . 4 (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ (𝐴(,)𝐵)𝑥 = (𝑦 + 𝑇)))
1110cbvrabv 3407 . . 3 {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴(,)𝐵)𝑥 = (𝑦 + 𝑇)}
12 cncfshiftioo.f . . . 4 (𝜑𝐹 ∈ (𝐶cn→ℂ))
13 cncfshiftioo.c . . . . 5 𝐶 = (𝐴(,)𝐵)
1413oveq1i 7363 . . . 4 (𝐶cn→ℂ) = ((𝐴(,)𝐵)–cn→ℂ)
1512, 14eleqtrdi 2838 . . 3 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
16 eqid 2729 . . 3 (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥𝑇))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥𝑇)))
172, 4, 11, 15, 16cncfshift 45856 . 2 (𝜑 → (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥𝑇))) ∈ ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)}–cn→ℂ))
18 cncfshiftioo.g . . 3 𝐺 = (𝑥𝐷 ↦ (𝐹‘(𝑥𝑇)))
19 cncfshiftioo.d . . . . 5 𝐷 = ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))
20 cncfshiftioo.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
21 cncfshiftioo.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
2220, 21, 3iooshift 45504 . . . . 5 (𝜑 → ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)})
2319, 22eqtrid 2776 . . . 4 (𝜑𝐷 = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)})
2423mpteq1d 5185 . . 3 (𝜑 → (𝑥𝐷 ↦ (𝐹‘(𝑥𝑇))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥𝑇))))
2518, 24eqtrid 2776 . 2 (𝜑𝐺 = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥𝑇))))
2623oveq1d 7368 . 2 (𝜑 → (𝐷cn→ℂ) = ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)}–cn→ℂ))
2717, 25, 263eltr4d 2843 1 (𝜑𝐺 ∈ (𝐷cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wrex 3053  {crab 3396  wss 3905  cmpt 5176  cfv 6486  (class class class)co 7353  cc 11026  cr 11027   + caddc 11031  cmin 11365  (,)cioo 13266  cnccncf 24785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-ioo 13270  df-cncf 24787
This theorem is referenced by:  fourierdlem90  46178
  Copyright terms: Public domain W3C validator