| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cncfshiftioo | Structured version Visualization version GIF version | ||
| Description: A periodic continuous function stays continuous if the domain is an open interval that is shifted a period. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| cncfshiftioo.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| cncfshiftioo.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| cncfshiftioo.c | ⊢ 𝐶 = (𝐴(,)𝐵) |
| cncfshiftioo.t | ⊢ (𝜑 → 𝑇 ∈ ℝ) |
| cncfshiftioo.d | ⊢ 𝐷 = ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)) |
| cncfshiftioo.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶–cn→ℂ)) |
| cncfshiftioo.g | ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ (𝐹‘(𝑥 − 𝑇))) |
| Ref | Expression |
|---|---|
| cncfshiftioo | ⊢ (𝜑 → 𝐺 ∈ (𝐷–cn→ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioosscn 13376 | . . . 4 ⊢ (𝐴(,)𝐵) ⊆ ℂ | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℂ) |
| 3 | cncfshiftioo.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ ℝ) | |
| 4 | 3 | recnd 11209 | . . 3 ⊢ (𝜑 → 𝑇 ∈ ℂ) |
| 5 | eqeq1 2734 | . . . . . 6 ⊢ (𝑤 = 𝑥 → (𝑤 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑧 + 𝑇))) | |
| 6 | 5 | rexbidv 3158 | . . . . 5 ⊢ (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))) |
| 7 | oveq1 7397 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (𝑧 + 𝑇) = (𝑦 + 𝑇)) | |
| 8 | 7 | eqeq2d 2741 | . . . . . 6 ⊢ (𝑧 = 𝑦 → (𝑥 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑦 + 𝑇))) |
| 9 | 8 | cbvrexvw 3217 | . . . . 5 ⊢ (∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ (𝐴(,)𝐵)𝑥 = (𝑦 + 𝑇)) |
| 10 | 6, 9 | bitrdi 287 | . . . 4 ⊢ (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ (𝐴(,)𝐵)𝑥 = (𝑦 + 𝑇))) |
| 11 | 10 | cbvrabv 3419 | . . 3 ⊢ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴(,)𝐵)𝑥 = (𝑦 + 𝑇)} |
| 12 | cncfshiftioo.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶–cn→ℂ)) | |
| 13 | cncfshiftioo.c | . . . . 5 ⊢ 𝐶 = (𝐴(,)𝐵) | |
| 14 | 13 | oveq1i 7400 | . . . 4 ⊢ (𝐶–cn→ℂ) = ((𝐴(,)𝐵)–cn→ℂ) |
| 15 | 12, 14 | eleqtrdi 2839 | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
| 16 | eqid 2730 | . . 3 ⊢ (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥 − 𝑇))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥 − 𝑇))) | |
| 17 | 2, 4, 11, 15, 16 | cncfshift 45879 | . 2 ⊢ (𝜑 → (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥 − 𝑇))) ∈ ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)}–cn→ℂ)) |
| 18 | cncfshiftioo.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ (𝐹‘(𝑥 − 𝑇))) | |
| 19 | cncfshiftioo.d | . . . . 5 ⊢ 𝐷 = ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)) | |
| 20 | cncfshiftioo.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 21 | cncfshiftioo.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 22 | 20, 21, 3 | iooshift 45527 | . . . . 5 ⊢ (𝜑 → ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)}) |
| 23 | 19, 22 | eqtrid 2777 | . . . 4 ⊢ (𝜑 → 𝐷 = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)}) |
| 24 | 23 | mpteq1d 5200 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ (𝐹‘(𝑥 − 𝑇))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥 − 𝑇)))) |
| 25 | 18, 24 | eqtrid 2777 | . 2 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥 − 𝑇)))) |
| 26 | 23 | oveq1d 7405 | . 2 ⊢ (𝜑 → (𝐷–cn→ℂ) = ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)}–cn→ℂ)) |
| 27 | 17, 25, 26 | 3eltr4d 2844 | 1 ⊢ (𝜑 → 𝐺 ∈ (𝐷–cn→ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 {crab 3408 ⊆ wss 3917 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 + caddc 11078 − cmin 11412 (,)cioo 13313 –cn→ccncf 24776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-ioo 13317 df-cncf 24778 |
| This theorem is referenced by: fourierdlem90 46201 |
| Copyright terms: Public domain | W3C validator |