![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cncfshiftioo | Structured version Visualization version GIF version |
Description: A periodic continuous function stays continuous if the domain is an open interval that is shifted a period. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
cncfshiftioo.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
cncfshiftioo.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
cncfshiftioo.c | ⊢ 𝐶 = (𝐴(,)𝐵) |
cncfshiftioo.t | ⊢ (𝜑 → 𝑇 ∈ ℝ) |
cncfshiftioo.d | ⊢ 𝐷 = ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)) |
cncfshiftioo.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶–cn→ℂ)) |
cncfshiftioo.g | ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ (𝐹‘(𝑥 − 𝑇))) |
Ref | Expression |
---|---|
cncfshiftioo | ⊢ (𝜑 → 𝐺 ∈ (𝐷–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioosscn 13446 | . . . 4 ⊢ (𝐴(,)𝐵) ⊆ ℂ | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℂ) |
3 | cncfshiftioo.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ ℝ) | |
4 | 3 | recnd 11287 | . . 3 ⊢ (𝜑 → 𝑇 ∈ ℂ) |
5 | eqeq1 2739 | . . . . . 6 ⊢ (𝑤 = 𝑥 → (𝑤 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑧 + 𝑇))) | |
6 | 5 | rexbidv 3177 | . . . . 5 ⊢ (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))) |
7 | oveq1 7438 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (𝑧 + 𝑇) = (𝑦 + 𝑇)) | |
8 | 7 | eqeq2d 2746 | . . . . . 6 ⊢ (𝑧 = 𝑦 → (𝑥 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑦 + 𝑇))) |
9 | 8 | cbvrexvw 3236 | . . . . 5 ⊢ (∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ (𝐴(,)𝐵)𝑥 = (𝑦 + 𝑇)) |
10 | 6, 9 | bitrdi 287 | . . . 4 ⊢ (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ (𝐴(,)𝐵)𝑥 = (𝑦 + 𝑇))) |
11 | 10 | cbvrabv 3444 | . . 3 ⊢ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴(,)𝐵)𝑥 = (𝑦 + 𝑇)} |
12 | cncfshiftioo.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶–cn→ℂ)) | |
13 | cncfshiftioo.c | . . . . 5 ⊢ 𝐶 = (𝐴(,)𝐵) | |
14 | 13 | oveq1i 7441 | . . . 4 ⊢ (𝐶–cn→ℂ) = ((𝐴(,)𝐵)–cn→ℂ) |
15 | 12, 14 | eleqtrdi 2849 | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
16 | eqid 2735 | . . 3 ⊢ (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥 − 𝑇))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥 − 𝑇))) | |
17 | 2, 4, 11, 15, 16 | cncfshift 45830 | . 2 ⊢ (𝜑 → (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥 − 𝑇))) ∈ ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)}–cn→ℂ)) |
18 | cncfshiftioo.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ (𝐹‘(𝑥 − 𝑇))) | |
19 | cncfshiftioo.d | . . . . 5 ⊢ 𝐷 = ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)) | |
20 | cncfshiftioo.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
21 | cncfshiftioo.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
22 | 20, 21, 3 | iooshift 45475 | . . . . 5 ⊢ (𝜑 → ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)}) |
23 | 19, 22 | eqtrid 2787 | . . . 4 ⊢ (𝜑 → 𝐷 = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)}) |
24 | 23 | mpteq1d 5243 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ (𝐹‘(𝑥 − 𝑇))) = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥 − 𝑇)))) |
25 | 18, 24 | eqtrid 2787 | . 2 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↦ (𝐹‘(𝑥 − 𝑇)))) |
26 | 23 | oveq1d 7446 | . 2 ⊢ (𝜑 → (𝐷–cn→ℂ) = ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)}–cn→ℂ)) |
27 | 17, 25, 26 | 3eltr4d 2854 | 1 ⊢ (𝜑 → 𝐺 ∈ (𝐷–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 {crab 3433 ⊆ wss 3963 ↦ cmpt 5231 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 ℝcr 11152 + caddc 11156 − cmin 11490 (,)cioo 13384 –cn→ccncf 24916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-ioo 13388 df-cncf 24918 |
This theorem is referenced by: fourierdlem90 46152 |
Copyright terms: Public domain | W3C validator |