![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cndivrenred | Structured version Visualization version GIF version |
Description: The quotient of an imaginary number and a real number is not a real number. (Contributed by AV, 23-Jan-2023.) |
Ref | Expression |
---|---|
recnaddnred.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
recnaddnred.b | ⊢ (𝜑 → 𝐵 ∈ (ℂ ∖ ℝ)) |
cndivrenred.n | ⊢ (𝜑 → 𝐴 ≠ 0) |
Ref | Expression |
---|---|
cndivrenred | ⊢ (𝜑 → (𝐵 / 𝐴) ∉ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recnaddnred.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ (ℂ ∖ ℝ)) | |
2 | 1 | eldifbd 3953 | . 2 ⊢ (𝜑 → ¬ 𝐵 ∈ ℝ) |
3 | df-nel 3039 | . . 3 ⊢ ((𝐵 / 𝐴) ∉ ℝ ↔ ¬ (𝐵 / 𝐴) ∈ ℝ) | |
4 | 1 | eldifad 3952 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
5 | recnaddnred.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
6 | 5 | recnd 11239 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
7 | cndivrenred.n | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≠ 0) | |
8 | 4, 6, 7 | divcld 11987 | . . . . . 6 ⊢ (𝜑 → (𝐵 / 𝐴) ∈ ℂ) |
9 | reim0b 15063 | . . . . . 6 ⊢ ((𝐵 / 𝐴) ∈ ℂ → ((𝐵 / 𝐴) ∈ ℝ ↔ (ℑ‘(𝐵 / 𝐴)) = 0)) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝐵 / 𝐴) ∈ ℝ ↔ (ℑ‘(𝐵 / 𝐴)) = 0)) |
11 | 4 | imcld 15139 | . . . . . . . 8 ⊢ (𝜑 → (ℑ‘𝐵) ∈ ℝ) |
12 | 11 | recnd 11239 | . . . . . . 7 ⊢ (𝜑 → (ℑ‘𝐵) ∈ ℂ) |
13 | 12, 6, 7 | diveq0ad 11997 | . . . . . 6 ⊢ (𝜑 → (((ℑ‘𝐵) / 𝐴) = 0 ↔ (ℑ‘𝐵) = 0)) |
14 | 5, 4, 7 | imdivd 15174 | . . . . . . 7 ⊢ (𝜑 → (ℑ‘(𝐵 / 𝐴)) = ((ℑ‘𝐵) / 𝐴)) |
15 | 14 | eqeq1d 2726 | . . . . . 6 ⊢ (𝜑 → ((ℑ‘(𝐵 / 𝐴)) = 0 ↔ ((ℑ‘𝐵) / 𝐴) = 0)) |
16 | reim0b 15063 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (𝐵 ∈ ℝ ↔ (ℑ‘𝐵) = 0)) | |
17 | 4, 16 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∈ ℝ ↔ (ℑ‘𝐵) = 0)) |
18 | 13, 15, 17 | 3bitr4d 311 | . . . . 5 ⊢ (𝜑 → ((ℑ‘(𝐵 / 𝐴)) = 0 ↔ 𝐵 ∈ ℝ)) |
19 | 10, 18 | bitrd 279 | . . . 4 ⊢ (𝜑 → ((𝐵 / 𝐴) ∈ ℝ ↔ 𝐵 ∈ ℝ)) |
20 | 19 | notbid 318 | . . 3 ⊢ (𝜑 → (¬ (𝐵 / 𝐴) ∈ ℝ ↔ ¬ 𝐵 ∈ ℝ)) |
21 | 3, 20 | bitrid 283 | . 2 ⊢ (𝜑 → ((𝐵 / 𝐴) ∉ ℝ ↔ ¬ 𝐵 ∈ ℝ)) |
22 | 2, 21 | mpbird 257 | 1 ⊢ (𝜑 → (𝐵 / 𝐴) ∉ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∉ wnel 3038 ∖ cdif 3937 ‘cfv 6533 (class class class)co 7401 ℂcc 11104 ℝcr 11105 0cc0 11106 / cdiv 11868 ℑcim 15042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-po 5578 df-so 5579 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-2 12272 df-cj 15043 df-re 15044 df-im 15045 |
This theorem is referenced by: requad01 46774 |
Copyright terms: Public domain | W3C validator |