Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cndivrenred Structured version   Visualization version   GIF version

Theorem cndivrenred 47300
Description: The quotient of an imaginary number and a real number is not a real number. (Contributed by AV, 23-Jan-2023.)
Hypotheses
Ref Expression
recnaddnred.a (𝜑𝐴 ∈ ℝ)
recnaddnred.b (𝜑𝐵 ∈ (ℂ ∖ ℝ))
cndivrenred.n (𝜑𝐴 ≠ 0)
Assertion
Ref Expression
cndivrenred (𝜑 → (𝐵 / 𝐴) ∉ ℝ)

Proof of Theorem cndivrenred
StepHypRef Expression
1 recnaddnred.b . . 3 (𝜑𝐵 ∈ (ℂ ∖ ℝ))
21eldifbd 3916 . 2 (𝜑 → ¬ 𝐵 ∈ ℝ)
3 df-nel 3030 . . 3 ((𝐵 / 𝐴) ∉ ℝ ↔ ¬ (𝐵 / 𝐴) ∈ ℝ)
41eldifad 3915 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
5 recnaddnred.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
65recnd 11143 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
7 cndivrenred.n . . . . . . 7 (𝜑𝐴 ≠ 0)
84, 6, 7divcld 11900 . . . . . 6 (𝜑 → (𝐵 / 𝐴) ∈ ℂ)
9 reim0b 15026 . . . . . 6 ((𝐵 / 𝐴) ∈ ℂ → ((𝐵 / 𝐴) ∈ ℝ ↔ (ℑ‘(𝐵 / 𝐴)) = 0))
108, 9syl 17 . . . . 5 (𝜑 → ((𝐵 / 𝐴) ∈ ℝ ↔ (ℑ‘(𝐵 / 𝐴)) = 0))
114imcld 15102 . . . . . . . 8 (𝜑 → (ℑ‘𝐵) ∈ ℝ)
1211recnd 11143 . . . . . . 7 (𝜑 → (ℑ‘𝐵) ∈ ℂ)
1312, 6, 7diveq0ad 11910 . . . . . 6 (𝜑 → (((ℑ‘𝐵) / 𝐴) = 0 ↔ (ℑ‘𝐵) = 0))
145, 4, 7imdivd 15137 . . . . . . 7 (𝜑 → (ℑ‘(𝐵 / 𝐴)) = ((ℑ‘𝐵) / 𝐴))
1514eqeq1d 2731 . . . . . 6 (𝜑 → ((ℑ‘(𝐵 / 𝐴)) = 0 ↔ ((ℑ‘𝐵) / 𝐴) = 0))
16 reim0b 15026 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵 ∈ ℝ ↔ (ℑ‘𝐵) = 0))
174, 16syl 17 . . . . . 6 (𝜑 → (𝐵 ∈ ℝ ↔ (ℑ‘𝐵) = 0))
1813, 15, 173bitr4d 311 . . . . 5 (𝜑 → ((ℑ‘(𝐵 / 𝐴)) = 0 ↔ 𝐵 ∈ ℝ))
1910, 18bitrd 279 . . . 4 (𝜑 → ((𝐵 / 𝐴) ∈ ℝ ↔ 𝐵 ∈ ℝ))
2019notbid 318 . . 3 (𝜑 → (¬ (𝐵 / 𝐴) ∈ ℝ ↔ ¬ 𝐵 ∈ ℝ))
213, 20bitrid 283 . 2 (𝜑 → ((𝐵 / 𝐴) ∉ ℝ ↔ ¬ 𝐵 ∈ ℝ))
222, 21mpbird 257 1 (𝜑 → (𝐵 / 𝐴) ∉ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  wne 2925  wnel 3029  cdif 3900  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009   / cdiv 11777  cim 15005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-cj 15006  df-re 15007  df-im 15008
This theorem is referenced by:  requad01  47615
  Copyright terms: Public domain W3C validator