Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cndivrenred | Structured version Visualization version GIF version |
Description: The quotient of an imaginary number and a real number is not a real number. (Contributed by AV, 23-Jan-2023.) |
Ref | Expression |
---|---|
recnaddnred.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
recnaddnred.b | ⊢ (𝜑 → 𝐵 ∈ (ℂ ∖ ℝ)) |
cndivrenred.n | ⊢ (𝜑 → 𝐴 ≠ 0) |
Ref | Expression |
---|---|
cndivrenred | ⊢ (𝜑 → (𝐵 / 𝐴) ∉ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recnaddnred.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ (ℂ ∖ ℝ)) | |
2 | 1 | eldifbd 3873 | . 2 ⊢ (𝜑 → ¬ 𝐵 ∈ ℝ) |
3 | df-nel 3056 | . . 3 ⊢ ((𝐵 / 𝐴) ∉ ℝ ↔ ¬ (𝐵 / 𝐴) ∈ ℝ) | |
4 | 1 | eldifad 3872 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
5 | recnaddnred.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
6 | 5 | recnd 10712 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
7 | cndivrenred.n | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≠ 0) | |
8 | 4, 6, 7 | divcld 11459 | . . . . . 6 ⊢ (𝜑 → (𝐵 / 𝐴) ∈ ℂ) |
9 | reim0b 14531 | . . . . . 6 ⊢ ((𝐵 / 𝐴) ∈ ℂ → ((𝐵 / 𝐴) ∈ ℝ ↔ (ℑ‘(𝐵 / 𝐴)) = 0)) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝐵 / 𝐴) ∈ ℝ ↔ (ℑ‘(𝐵 / 𝐴)) = 0)) |
11 | 4 | imcld 14607 | . . . . . . . 8 ⊢ (𝜑 → (ℑ‘𝐵) ∈ ℝ) |
12 | 11 | recnd 10712 | . . . . . . 7 ⊢ (𝜑 → (ℑ‘𝐵) ∈ ℂ) |
13 | 12, 6, 7 | diveq0ad 11469 | . . . . . 6 ⊢ (𝜑 → (((ℑ‘𝐵) / 𝐴) = 0 ↔ (ℑ‘𝐵) = 0)) |
14 | 5, 4, 7 | imdivd 14642 | . . . . . . 7 ⊢ (𝜑 → (ℑ‘(𝐵 / 𝐴)) = ((ℑ‘𝐵) / 𝐴)) |
15 | 14 | eqeq1d 2760 | . . . . . 6 ⊢ (𝜑 → ((ℑ‘(𝐵 / 𝐴)) = 0 ↔ ((ℑ‘𝐵) / 𝐴) = 0)) |
16 | reim0b 14531 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (𝐵 ∈ ℝ ↔ (ℑ‘𝐵) = 0)) | |
17 | 4, 16 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∈ ℝ ↔ (ℑ‘𝐵) = 0)) |
18 | 13, 15, 17 | 3bitr4d 314 | . . . . 5 ⊢ (𝜑 → ((ℑ‘(𝐵 / 𝐴)) = 0 ↔ 𝐵 ∈ ℝ)) |
19 | 10, 18 | bitrd 282 | . . . 4 ⊢ (𝜑 → ((𝐵 / 𝐴) ∈ ℝ ↔ 𝐵 ∈ ℝ)) |
20 | 19 | notbid 321 | . . 3 ⊢ (𝜑 → (¬ (𝐵 / 𝐴) ∈ ℝ ↔ ¬ 𝐵 ∈ ℝ)) |
21 | 3, 20 | syl5bb 286 | . 2 ⊢ (𝜑 → ((𝐵 / 𝐴) ∉ ℝ ↔ ¬ 𝐵 ∈ ℝ)) |
22 | 2, 21 | mpbird 260 | 1 ⊢ (𝜑 → (𝐵 / 𝐴) ∉ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∉ wnel 3055 ∖ cdif 3857 ‘cfv 6339 (class class class)co 7155 ℂcc 10578 ℝcr 10579 0cc0 10580 / cdiv 11340 ℑcim 14510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-po 5446 df-so 5447 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-div 11341 df-2 11742 df-cj 14511 df-re 14512 df-im 14513 |
This theorem is referenced by: requad01 44534 |
Copyright terms: Public domain | W3C validator |