Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cndivrenred Structured version   Visualization version   GIF version

Theorem cndivrenred 42942
Description: The quotient of an imaginary number and a real number is not a real number. (Contributed by AV, 23-Jan-2023.)
Hypotheses
Ref Expression
recnaddnred.a (𝜑𝐴 ∈ ℝ)
recnaddnred.b (𝜑𝐵 ∈ (ℂ ∖ ℝ))
cndivrenred.n (𝜑𝐴 ≠ 0)
Assertion
Ref Expression
cndivrenred (𝜑 → (𝐵 / 𝐴) ∉ ℝ)

Proof of Theorem cndivrenred
StepHypRef Expression
1 recnaddnred.b . . 3 (𝜑𝐵 ∈ (ℂ ∖ ℝ))
21eldifbd 3837 . 2 (𝜑 → ¬ 𝐵 ∈ ℝ)
3 df-nel 3069 . . 3 ((𝐵 / 𝐴) ∉ ℝ ↔ ¬ (𝐵 / 𝐴) ∈ ℝ)
41eldifad 3836 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
5 recnaddnred.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
65recnd 10467 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
7 cndivrenred.n . . . . . . 7 (𝜑𝐴 ≠ 0)
84, 6, 7divcld 11216 . . . . . 6 (𝜑 → (𝐵 / 𝐴) ∈ ℂ)
9 reim0b 14338 . . . . . 6 ((𝐵 / 𝐴) ∈ ℂ → ((𝐵 / 𝐴) ∈ ℝ ↔ (ℑ‘(𝐵 / 𝐴)) = 0))
108, 9syl 17 . . . . 5 (𝜑 → ((𝐵 / 𝐴) ∈ ℝ ↔ (ℑ‘(𝐵 / 𝐴)) = 0))
114imcld 14414 . . . . . . . 8 (𝜑 → (ℑ‘𝐵) ∈ ℝ)
1211recnd 10467 . . . . . . 7 (𝜑 → (ℑ‘𝐵) ∈ ℂ)
1312, 6, 7diveq0ad 11226 . . . . . 6 (𝜑 → (((ℑ‘𝐵) / 𝐴) = 0 ↔ (ℑ‘𝐵) = 0))
145, 4, 7imdivd 14449 . . . . . . 7 (𝜑 → (ℑ‘(𝐵 / 𝐴)) = ((ℑ‘𝐵) / 𝐴))
1514eqeq1d 2775 . . . . . 6 (𝜑 → ((ℑ‘(𝐵 / 𝐴)) = 0 ↔ ((ℑ‘𝐵) / 𝐴) = 0))
16 reim0b 14338 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵 ∈ ℝ ↔ (ℑ‘𝐵) = 0))
174, 16syl 17 . . . . . 6 (𝜑 → (𝐵 ∈ ℝ ↔ (ℑ‘𝐵) = 0))
1813, 15, 173bitr4d 303 . . . . 5 (𝜑 → ((ℑ‘(𝐵 / 𝐴)) = 0 ↔ 𝐵 ∈ ℝ))
1910, 18bitrd 271 . . . 4 (𝜑 → ((𝐵 / 𝐴) ∈ ℝ ↔ 𝐵 ∈ ℝ))
2019notbid 310 . . 3 (𝜑 → (¬ (𝐵 / 𝐴) ∈ ℝ ↔ ¬ 𝐵 ∈ ℝ))
213, 20syl5bb 275 . 2 (𝜑 → ((𝐵 / 𝐴) ∉ ℝ ↔ ¬ 𝐵 ∈ ℝ))
222, 21mpbird 249 1 (𝜑 → (𝐵 / 𝐴) ∉ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198   = wceq 1508  wcel 2051  wne 2962  wnel 3068  cdif 3821  cfv 6186  (class class class)co 6975  cc 10332  cr 10333  0cc0 10334   / cdiv 11097  cim 14317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-op 4443  df-uni 4710  df-br 4927  df-opab 4989  df-mpt 5006  df-id 5309  df-po 5323  df-so 5324  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-er 8088  df-en 8306  df-dom 8307  df-sdom 8308  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-div 11098  df-2 11502  df-cj 14318  df-re 14319  df-im 14320
This theorem is referenced by:  requad01  43184
  Copyright terms: Public domain W3C validator