| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imcld | Structured version Visualization version GIF version | ||
| Description: The imaginary part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| recld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| imcld | ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | imcl 15018 | . 2 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6482 ℂcc 11007 ℝcr 11008 ℑcim 15005 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-cj 15006 df-re 15007 df-im 15008 |
| This theorem is referenced by: rlimrecl 15487 resincl 16049 sin01bnd 16094 recld2 24701 mbfeqa 25542 mbfss 25545 mbfmulc2re 25547 mbfadd 25560 mbfmulc2 25562 mbflim 25567 mbfmul 25625 iblcn 25698 itgcnval 25699 itgre 25700 itgim 25701 iblneg 25702 itgneg 25703 ibladd 25720 itgadd 25724 iblabs 25728 itgmulc2 25733 bddiblnc 25741 aaliou2b 26247 efif1olem3 26451 eff1olem 26455 logimclad 26479 abslogimle 26480 logrnaddcl 26481 lognegb 26497 logcj 26513 efiarg 26514 cosargd 26515 argregt0 26517 argrege0 26518 argimgt0 26519 argimlt0 26520 logimul 26521 abslogle 26525 tanarg 26526 logcnlem2 26550 logcnlem3 26551 logcnlem4 26552 logcnlem5 26553 logcn 26554 dvloglem 26555 logf1o2 26557 efopnlem1 26563 efopnlem2 26564 cxpsqrtlem 26609 abscxpbnd 26661 ang180lem2 26718 lawcos 26724 isosctrlem1 26726 isosctrlem2 26727 asinneg 26794 asinsinlem 26799 atanlogaddlem 26821 atanlogsublem 26823 atanlogsub 26824 basellem3 26991 re0cj 32696 constrconj 33728 constrimcl 33753 constrmulcl 33754 sqsscirc2 33892 ibladdnc 37677 itgaddnc 37680 iblabsnc 37684 iblmulc2nc 37685 itgmulc2nc 37688 ftc1anclem2 37694 ftc1anclem6 37698 ftc1anclem8 37700 cntotbnd 37796 isosctrlem1ALT 44927 dstregt0 45284 absimnre 45475 absimlere 45478 cnrefiisplem 45830 sigarim 46852 readdcnnred 47307 resubcnnred 47308 cndivrenred 47310 |
| Copyright terms: Public domain | W3C validator |