![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imcld | Structured version Visualization version GIF version |
Description: The imaginary part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
recld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
imcld | ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | imcl 14192 | . 2 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 ‘cfv 6101 ℂcc 10222 ℝcr 10223 ℑcim 14179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-po 5233 df-so 5234 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-2 11376 df-cj 14180 df-re 14181 df-im 14182 |
This theorem is referenced by: rlimrecl 14652 resincl 15206 sin01bnd 15251 recld2 22945 mbfeqa 23751 mbfss 23754 mbfmulc2re 23756 mbfadd 23769 mbfmulc2 23771 mbflim 23776 mbfmul 23834 iblcn 23906 itgcnval 23907 itgre 23908 itgim 23909 iblneg 23910 itgneg 23911 ibladd 23928 itgadd 23932 iblabs 23936 itgmulc2 23941 aaliou2b 24437 efif1olem3 24632 eff1olem 24636 logimclad 24660 abslogimle 24661 logrnaddcl 24662 lognegb 24677 logcj 24693 efiarg 24694 cosargd 24695 argregt0 24697 argrege0 24698 argimgt0 24699 argimlt0 24700 logimul 24701 abslogle 24705 tanarg 24706 logcnlem2 24730 logcnlem3 24731 logcnlem4 24732 logcnlem5 24733 logcn 24734 dvloglem 24735 logf1o2 24737 efopnlem1 24743 efopnlem2 24744 cxpsqrtlem 24789 abscxpbnd 24838 ang180lem2 24892 lawcos 24898 isosctrlem1 24900 isosctrlem2 24901 asinneg 24965 asinsinlem 24970 atanlogaddlem 24992 atanlogsublem 24994 atanlogsub 24995 basellem3 25161 sqsscirc2 30471 ibladdnc 33955 itgaddnc 33958 iblabsnc 33962 iblmulc2nc 33963 itgmulc2nc 33966 bddiblnc 33968 ftc1anclem2 33974 ftc1anclem6 33978 ftc1anclem8 33980 cntotbnd 34082 isosctrlem1ALT 39926 dstregt0 40235 absimnre 40446 absimlere 40449 cnrefiisplem 40795 sigarim 41782 |
Copyright terms: Public domain | W3C validator |