Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imcld | Structured version Visualization version GIF version |
Description: The imaginary part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
recld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
imcld | ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | imcl 14831 | . 2 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 ‘cfv 6437 ℂcc 10878 ℝcr 10879 ℑcim 14818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rmo 3072 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-div 11642 df-2 12045 df-cj 14819 df-re 14820 df-im 14821 |
This theorem is referenced by: rlimrecl 15298 resincl 15858 sin01bnd 15903 recld2 23986 mbfeqa 24816 mbfss 24819 mbfmulc2re 24821 mbfadd 24834 mbfmulc2 24836 mbflim 24841 mbfmul 24900 iblcn 24972 itgcnval 24973 itgre 24974 itgim 24975 iblneg 24976 itgneg 24977 ibladd 24994 itgadd 24998 iblabs 25002 itgmulc2 25007 bddiblnc 25015 aaliou2b 25510 efif1olem3 25709 eff1olem 25713 logimclad 25737 abslogimle 25738 logrnaddcl 25739 lognegb 25754 logcj 25770 efiarg 25771 cosargd 25772 argregt0 25774 argrege0 25775 argimgt0 25776 argimlt0 25777 logimul 25778 abslogle 25782 tanarg 25783 logcnlem2 25807 logcnlem3 25808 logcnlem4 25809 logcnlem5 25810 logcn 25811 dvloglem 25812 logf1o2 25814 efopnlem1 25820 efopnlem2 25821 cxpsqrtlem 25866 abscxpbnd 25915 ang180lem2 25969 lawcos 25975 isosctrlem1 25977 isosctrlem2 25978 asinneg 26045 asinsinlem 26050 atanlogaddlem 26072 atanlogsublem 26074 atanlogsub 26075 basellem3 26241 sqsscirc2 31868 ibladdnc 35843 itgaddnc 35846 iblabsnc 35850 iblmulc2nc 35851 itgmulc2nc 35854 ftc1anclem2 35860 ftc1anclem6 35864 ftc1anclem8 35866 cntotbnd 35963 isosctrlem1ALT 42561 dstregt0 42827 absimnre 43024 absimlere 43027 cnrefiisplem 43377 sigarim 44378 readdcnnred 44806 resubcnnred 44807 cndivrenred 44809 |
Copyright terms: Public domain | W3C validator |