| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imcld | Structured version Visualization version GIF version | ||
| Description: The imaginary part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| recld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| imcld | ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | imcl 15053 | . 2 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6499 ℂcc 11042 ℝcr 11043 ℑcim 15040 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-cj 15041 df-re 15042 df-im 15043 |
| This theorem is referenced by: rlimrecl 15522 resincl 16084 sin01bnd 16129 recld2 24736 mbfeqa 25577 mbfss 25580 mbfmulc2re 25582 mbfadd 25595 mbfmulc2 25597 mbflim 25602 mbfmul 25660 iblcn 25733 itgcnval 25734 itgre 25735 itgim 25736 iblneg 25737 itgneg 25738 ibladd 25755 itgadd 25759 iblabs 25763 itgmulc2 25768 bddiblnc 25776 aaliou2b 26282 efif1olem3 26486 eff1olem 26490 logimclad 26514 abslogimle 26515 logrnaddcl 26516 lognegb 26532 logcj 26548 efiarg 26549 cosargd 26550 argregt0 26552 argrege0 26553 argimgt0 26554 argimlt0 26555 logimul 26556 abslogle 26560 tanarg 26561 logcnlem2 26585 logcnlem3 26586 logcnlem4 26587 logcnlem5 26588 logcn 26589 dvloglem 26590 logf1o2 26592 efopnlem1 26598 efopnlem2 26599 cxpsqrtlem 26644 abscxpbnd 26696 ang180lem2 26753 lawcos 26759 isosctrlem1 26761 isosctrlem2 26762 asinneg 26829 asinsinlem 26834 atanlogaddlem 26856 atanlogsublem 26858 atanlogsub 26859 basellem3 27026 re0cj 32717 constrconj 33728 constrimcl 33753 constrmulcl 33754 sqsscirc2 33892 ibladdnc 37664 itgaddnc 37667 iblabsnc 37671 iblmulc2nc 37672 itgmulc2nc 37675 ftc1anclem2 37681 ftc1anclem6 37685 ftc1anclem8 37687 cntotbnd 37783 isosctrlem1ALT 44916 dstregt0 45273 absimnre 45465 absimlere 45468 cnrefiisplem 45820 sigarim 46842 readdcnnred 47297 resubcnnred 47298 cndivrenred 47300 |
| Copyright terms: Public domain | W3C validator |