| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imcld | Structured version Visualization version GIF version | ||
| Description: The imaginary part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| recld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| imcld | ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | imcl 15054 | . 2 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6499 ℂcc 11044 ℝcr 11045 ℑcim 15041 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-div 11814 df-nn 12165 df-2 12227 df-cj 15042 df-re 15043 df-im 15044 |
| This theorem is referenced by: rlimrecl 15523 resincl 16085 sin01bnd 16130 recld2 24737 mbfeqa 25578 mbfss 25581 mbfmulc2re 25583 mbfadd 25596 mbfmulc2 25598 mbflim 25603 mbfmul 25661 iblcn 25734 itgcnval 25735 itgre 25736 itgim 25737 iblneg 25738 itgneg 25739 ibladd 25756 itgadd 25760 iblabs 25764 itgmulc2 25769 bddiblnc 25777 aaliou2b 26283 efif1olem3 26487 eff1olem 26491 logimclad 26515 abslogimle 26516 logrnaddcl 26517 lognegb 26533 logcj 26549 efiarg 26550 cosargd 26551 argregt0 26553 argrege0 26554 argimgt0 26555 argimlt0 26556 logimul 26557 abslogle 26561 tanarg 26562 logcnlem2 26586 logcnlem3 26587 logcnlem4 26588 logcnlem5 26589 logcn 26590 dvloglem 26591 logf1o2 26593 efopnlem1 26599 efopnlem2 26600 cxpsqrtlem 26645 abscxpbnd 26697 ang180lem2 26754 lawcos 26760 isosctrlem1 26762 isosctrlem2 26763 asinneg 26830 asinsinlem 26835 atanlogaddlem 26857 atanlogsublem 26859 atanlogsub 26860 basellem3 27027 re0cj 32718 constrconj 33729 constrimcl 33754 constrmulcl 33755 sqsscirc2 33893 ibladdnc 37665 itgaddnc 37668 iblabsnc 37672 iblmulc2nc 37673 itgmulc2nc 37676 ftc1anclem2 37682 ftc1anclem6 37686 ftc1anclem8 37688 cntotbnd 37784 isosctrlem1ALT 44917 dstregt0 45274 absimnre 45466 absimlere 45469 cnrefiisplem 45821 sigarim 46843 readdcnnred 47298 resubcnnred 47299 cndivrenred 47301 |
| Copyright terms: Public domain | W3C validator |