| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imcld | Structured version Visualization version GIF version | ||
| Description: The imaginary part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| recld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| imcld | ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | imcl 15084 | . 2 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6514 ℂcc 11073 ℝcr 11074 ℑcim 15071 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-cj 15072 df-re 15073 df-im 15074 |
| This theorem is referenced by: rlimrecl 15553 resincl 16115 sin01bnd 16160 recld2 24710 mbfeqa 25551 mbfss 25554 mbfmulc2re 25556 mbfadd 25569 mbfmulc2 25571 mbflim 25576 mbfmul 25634 iblcn 25707 itgcnval 25708 itgre 25709 itgim 25710 iblneg 25711 itgneg 25712 ibladd 25729 itgadd 25733 iblabs 25737 itgmulc2 25742 bddiblnc 25750 aaliou2b 26256 efif1olem3 26460 eff1olem 26464 logimclad 26488 abslogimle 26489 logrnaddcl 26490 lognegb 26506 logcj 26522 efiarg 26523 cosargd 26524 argregt0 26526 argrege0 26527 argimgt0 26528 argimlt0 26529 logimul 26530 abslogle 26534 tanarg 26535 logcnlem2 26559 logcnlem3 26560 logcnlem4 26561 logcnlem5 26562 logcn 26563 dvloglem 26564 logf1o2 26566 efopnlem1 26572 efopnlem2 26573 cxpsqrtlem 26618 abscxpbnd 26670 ang180lem2 26727 lawcos 26733 isosctrlem1 26735 isosctrlem2 26736 asinneg 26803 asinsinlem 26808 atanlogaddlem 26830 atanlogsublem 26832 atanlogsub 26833 basellem3 27000 re0cj 32674 constrconj 33742 constrimcl 33767 constrmulcl 33768 sqsscirc2 33906 ibladdnc 37678 itgaddnc 37681 iblabsnc 37685 iblmulc2nc 37686 itgmulc2nc 37689 ftc1anclem2 37695 ftc1anclem6 37699 ftc1anclem8 37701 cntotbnd 37797 isosctrlem1ALT 44930 dstregt0 45287 absimnre 45479 absimlere 45482 cnrefiisplem 45834 sigarim 46856 readdcnnred 47308 resubcnnred 47309 cndivrenred 47311 |
| Copyright terms: Public domain | W3C validator |