| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imcld | Structured version Visualization version GIF version | ||
| Description: The imaginary part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| recld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| imcld | ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | imcl 15130 | . 2 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6531 ℂcc 11127 ℝcr 11128 ℑcim 15117 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-cj 15118 df-re 15119 df-im 15120 |
| This theorem is referenced by: rlimrecl 15596 resincl 16158 sin01bnd 16203 recld2 24754 mbfeqa 25596 mbfss 25599 mbfmulc2re 25601 mbfadd 25614 mbfmulc2 25616 mbflim 25621 mbfmul 25679 iblcn 25752 itgcnval 25753 itgre 25754 itgim 25755 iblneg 25756 itgneg 25757 ibladd 25774 itgadd 25778 iblabs 25782 itgmulc2 25787 bddiblnc 25795 aaliou2b 26301 efif1olem3 26505 eff1olem 26509 logimclad 26533 abslogimle 26534 logrnaddcl 26535 lognegb 26551 logcj 26567 efiarg 26568 cosargd 26569 argregt0 26571 argrege0 26572 argimgt0 26573 argimlt0 26574 logimul 26575 abslogle 26579 tanarg 26580 logcnlem2 26604 logcnlem3 26605 logcnlem4 26606 logcnlem5 26607 logcn 26608 dvloglem 26609 logf1o2 26611 efopnlem1 26617 efopnlem2 26618 cxpsqrtlem 26663 abscxpbnd 26715 ang180lem2 26772 lawcos 26778 isosctrlem1 26780 isosctrlem2 26781 asinneg 26848 asinsinlem 26853 atanlogaddlem 26875 atanlogsublem 26877 atanlogsub 26878 basellem3 27045 re0cj 32721 constrconj 33779 constrimcl 33804 constrmulcl 33805 sqsscirc2 33940 ibladdnc 37701 itgaddnc 37704 iblabsnc 37708 iblmulc2nc 37709 itgmulc2nc 37712 ftc1anclem2 37718 ftc1anclem6 37722 ftc1anclem8 37724 cntotbnd 37820 isosctrlem1ALT 44958 dstregt0 45310 absimnre 45503 absimlere 45506 cnrefiisplem 45858 sigarim 46880 readdcnnred 47332 resubcnnred 47333 cndivrenred 47335 |
| Copyright terms: Public domain | W3C validator |