Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imcld | Structured version Visualization version GIF version |
Description: The imaginary part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
recld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
imcld | ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | imcl 14531 | . 2 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 ‘cfv 6340 ℂcc 10586 ℝcr 10587 ℑcim 14518 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-po 5447 df-so 5448 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-2 11750 df-cj 14519 df-re 14520 df-im 14521 |
This theorem is referenced by: rlimrecl 14998 resincl 15554 sin01bnd 15599 recld2 23528 mbfeqa 24356 mbfss 24359 mbfmulc2re 24361 mbfadd 24374 mbfmulc2 24376 mbflim 24381 mbfmul 24439 iblcn 24511 itgcnval 24512 itgre 24513 itgim 24514 iblneg 24515 itgneg 24516 ibladd 24533 itgadd 24537 iblabs 24541 itgmulc2 24546 bddiblnc 24554 aaliou2b 25049 efif1olem3 25248 eff1olem 25252 logimclad 25276 abslogimle 25277 logrnaddcl 25278 lognegb 25293 logcj 25309 efiarg 25310 cosargd 25311 argregt0 25313 argrege0 25314 argimgt0 25315 argimlt0 25316 logimul 25317 abslogle 25321 tanarg 25322 logcnlem2 25346 logcnlem3 25347 logcnlem4 25348 logcnlem5 25349 logcn 25350 dvloglem 25351 logf1o2 25353 efopnlem1 25359 efopnlem2 25360 cxpsqrtlem 25405 abscxpbnd 25454 ang180lem2 25508 lawcos 25514 isosctrlem1 25516 isosctrlem2 25517 asinneg 25584 asinsinlem 25589 atanlogaddlem 25611 atanlogsublem 25613 atanlogsub 25614 basellem3 25780 sqsscirc2 31392 ibladdnc 35428 itgaddnc 35431 iblabsnc 35435 iblmulc2nc 35436 itgmulc2nc 35439 ftc1anclem2 35445 ftc1anclem6 35449 ftc1anclem8 35451 cntotbnd 35548 isosctrlem1ALT 42048 dstregt0 42315 absimnre 42517 absimlere 42520 cnrefiisplem 42872 sigarim 43866 readdcnnred 44277 resubcnnred 44278 cndivrenred 44280 |
Copyright terms: Public domain | W3C validator |