MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setcco Structured version   Visualization version   GIF version

Theorem setcco 17992
Description: Composition in the category of sets. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
setcbas.c 𝐶 = (SetCat‘𝑈)
setcbas.u (𝜑𝑈𝑉)
setcco.o · = (comp‘𝐶)
setcco.x (𝜑𝑋𝑈)
setcco.y (𝜑𝑌𝑈)
setcco.z (𝜑𝑍𝑈)
setcco.f (𝜑𝐹:𝑋𝑌)
setcco.g (𝜑𝐺:𝑌𝑍)
Assertion
Ref Expression
setcco (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))

Proof of Theorem setcco
Dummy variables 𝑓 𝑔 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 setcbas.c . . . 4 𝐶 = (SetCat‘𝑈)
2 setcbas.u . . . 4 (𝜑𝑈𝑉)
3 setcco.o . . . 4 · = (comp‘𝐶)
41, 2, 3setccofval 17991 . . 3 (𝜑· = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓))))
5 simprr 772 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑧 = 𝑍)
6 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑣 = ⟨𝑋, 𝑌⟩)
76fveq2d 6832 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑣) = (2nd ‘⟨𝑋, 𝑌⟩))
8 setcco.x . . . . . . . 8 (𝜑𝑋𝑈)
9 setcco.y . . . . . . . 8 (𝜑𝑌𝑈)
10 op2ndg 7940 . . . . . . . 8 ((𝑋𝑈𝑌𝑈) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
118, 9, 10syl2anc 584 . . . . . . 7 (𝜑 → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
1211adantr 480 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
137, 12eqtrd 2768 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑣) = 𝑌)
145, 13oveq12d 7370 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑧m (2nd𝑣)) = (𝑍m 𝑌))
156fveq2d 6832 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (1st𝑣) = (1st ‘⟨𝑋, 𝑌⟩))
16 op1stg 7939 . . . . . . . 8 ((𝑋𝑈𝑌𝑈) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
178, 9, 16syl2anc 584 . . . . . . 7 (𝜑 → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
1817adantr 480 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
1915, 18eqtrd 2768 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (1st𝑣) = 𝑋)
2013, 19oveq12d 7370 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → ((2nd𝑣) ↑m (1st𝑣)) = (𝑌m 𝑋))
21 eqidd 2734 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑔𝑓) = (𝑔𝑓))
2214, 20, 21mpoeq123dv 7427 . . 3 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓)) = (𝑔 ∈ (𝑍m 𝑌), 𝑓 ∈ (𝑌m 𝑋) ↦ (𝑔𝑓)))
238, 9opelxpd 5658 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝑈 × 𝑈))
24 setcco.z . . 3 (𝜑𝑍𝑈)
25 ovex 7385 . . . . 5 (𝑍m 𝑌) ∈ V
26 ovex 7385 . . . . 5 (𝑌m 𝑋) ∈ V
2725, 26mpoex 8017 . . . 4 (𝑔 ∈ (𝑍m 𝑌), 𝑓 ∈ (𝑌m 𝑋) ↦ (𝑔𝑓)) ∈ V
2827a1i 11 . . 3 (𝜑 → (𝑔 ∈ (𝑍m 𝑌), 𝑓 ∈ (𝑌m 𝑋) ↦ (𝑔𝑓)) ∈ V)
294, 22, 23, 24, 28ovmpod 7504 . 2 (𝜑 → (⟨𝑋, 𝑌· 𝑍) = (𝑔 ∈ (𝑍m 𝑌), 𝑓 ∈ (𝑌m 𝑋) ↦ (𝑔𝑓)))
30 simprl 770 . . 3 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑔 = 𝐺)
31 simprr 772 . . 3 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑓 = 𝐹)
3230, 31coeq12d 5808 . 2 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (𝑔𝑓) = (𝐺𝐹))
33 setcco.g . . 3 (𝜑𝐺:𝑌𝑍)
3424, 9elmapd 8770 . . 3 (𝜑 → (𝐺 ∈ (𝑍m 𝑌) ↔ 𝐺:𝑌𝑍))
3533, 34mpbird 257 . 2 (𝜑𝐺 ∈ (𝑍m 𝑌))
36 setcco.f . . 3 (𝜑𝐹:𝑋𝑌)
379, 8elmapd 8770 . . 3 (𝜑 → (𝐹 ∈ (𝑌m 𝑋) ↔ 𝐹:𝑋𝑌))
3836, 37mpbird 257 . 2 (𝜑𝐹 ∈ (𝑌m 𝑋))
39 coexg 7865 . . 3 ((𝐺 ∈ (𝑍m 𝑌) ∧ 𝐹 ∈ (𝑌m 𝑋)) → (𝐺𝐹) ∈ V)
4035, 38, 39syl2anc 584 . 2 (𝜑 → (𝐺𝐹) ∈ V)
4129, 32, 35, 38, 40ovmpod 7504 1 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  cop 4581   × cxp 5617  ccom 5623  wf 6482  cfv 6486  (class class class)co 7352  cmpo 7354  1st c1st 7925  2nd c2nd 7926  m cmap 8756  compcco 17175  SetCatcsetc 17984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-struct 17060  df-slot 17095  df-ndx 17107  df-base 17123  df-hom 17187  df-cco 17188  df-setc 17985
This theorem is referenced by:  setccatid  17993  setcmon  17996  setcepi  17997  setcsect  17998  resssetc  18001  funcestrcsetclem9  18056  funcsetcestrclem9  18071  hofcllem  18166  yonedalem4c  18185  yonedalem3b  18187  yonedainv  18189  funcringcsetcALTV2lem9  48422  funcringcsetclem9ALTV  48445
  Copyright terms: Public domain W3C validator