![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setcco | Structured version Visualization version GIF version |
Description: Composition in the category of sets. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
setcbas.c | ⊢ 𝐶 = (SetCat‘𝑈) |
setcbas.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
setcco.o | ⊢ · = (comp‘𝐶) |
setcco.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
setcco.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
setcco.z | ⊢ (𝜑 → 𝑍 ∈ 𝑈) |
setcco.f | ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
setcco.g | ⊢ (𝜑 → 𝐺:𝑌⟶𝑍) |
Ref | Expression |
---|---|
setcco | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setcbas.c | . . . 4 ⊢ 𝐶 = (SetCat‘𝑈) | |
2 | setcbas.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
3 | setcco.o | . . . 4 ⊢ · = (comp‘𝐶) | |
4 | 1, 2, 3 | setccofval 18019 | . . 3 ⊢ (𝜑 → · = (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ (𝑧 ↑m (2nd ‘𝑣)), 𝑓 ∈ ((2nd ‘𝑣) ↑m (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))) |
5 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑧 = 𝑍) | |
6 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑣 = 〈𝑋, 𝑌〉) | |
7 | 6 | fveq2d 6885 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘𝑣) = (2nd ‘〈𝑋, 𝑌〉)) |
8 | setcco.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
9 | setcco.y | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
10 | op2ndg 7975 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) | |
11 | 8, 9, 10 | syl2anc 585 | . . . . . . 7 ⊢ (𝜑 → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
12 | 11 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
13 | 7, 12 | eqtrd 2773 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘𝑣) = 𝑌) |
14 | 5, 13 | oveq12d 7414 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑧 ↑m (2nd ‘𝑣)) = (𝑍 ↑m 𝑌)) |
15 | 6 | fveq2d 6885 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (1st ‘𝑣) = (1st ‘〈𝑋, 𝑌〉)) |
16 | op1stg 7974 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) | |
17 | 8, 9, 16 | syl2anc 585 | . . . . . . 7 ⊢ (𝜑 → (1st ‘〈𝑋, 𝑌〉) = 𝑋) |
18 | 17 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) |
19 | 15, 18 | eqtrd 2773 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (1st ‘𝑣) = 𝑋) |
20 | 13, 19 | oveq12d 7414 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → ((2nd ‘𝑣) ↑m (1st ‘𝑣)) = (𝑌 ↑m 𝑋)) |
21 | eqidd 2734 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑔 ∘ 𝑓) = (𝑔 ∘ 𝑓)) | |
22 | 14, 20, 21 | mpoeq123dv 7471 | . . 3 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑔 ∈ (𝑧 ↑m (2nd ‘𝑣)), 𝑓 ∈ ((2nd ‘𝑣) ↑m (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)) = (𝑔 ∈ (𝑍 ↑m 𝑌), 𝑓 ∈ (𝑌 ↑m 𝑋) ↦ (𝑔 ∘ 𝑓))) |
23 | 8, 9 | opelxpd 5710 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝑈 × 𝑈)) |
24 | setcco.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑈) | |
25 | ovex 7429 | . . . . 5 ⊢ (𝑍 ↑m 𝑌) ∈ V | |
26 | ovex 7429 | . . . . 5 ⊢ (𝑌 ↑m 𝑋) ∈ V | |
27 | 25, 26 | mpoex 8053 | . . . 4 ⊢ (𝑔 ∈ (𝑍 ↑m 𝑌), 𝑓 ∈ (𝑌 ↑m 𝑋) ↦ (𝑔 ∘ 𝑓)) ∈ V |
28 | 27 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑔 ∈ (𝑍 ↑m 𝑌), 𝑓 ∈ (𝑌 ↑m 𝑋) ↦ (𝑔 ∘ 𝑓)) ∈ V) |
29 | 4, 22, 23, 24, 28 | ovmpod 7547 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 · 𝑍) = (𝑔 ∈ (𝑍 ↑m 𝑌), 𝑓 ∈ (𝑌 ↑m 𝑋) ↦ (𝑔 ∘ 𝑓))) |
30 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → 𝑔 = 𝐺) | |
31 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → 𝑓 = 𝐹) | |
32 | 30, 31 | coeq12d 5859 | . 2 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → (𝑔 ∘ 𝑓) = (𝐺 ∘ 𝐹)) |
33 | setcco.g | . . 3 ⊢ (𝜑 → 𝐺:𝑌⟶𝑍) | |
34 | 24, 9 | elmapd 8822 | . . 3 ⊢ (𝜑 → (𝐺 ∈ (𝑍 ↑m 𝑌) ↔ 𝐺:𝑌⟶𝑍)) |
35 | 33, 34 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝑍 ↑m 𝑌)) |
36 | setcco.f | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) | |
37 | 9, 8 | elmapd 8822 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (𝑌 ↑m 𝑋) ↔ 𝐹:𝑋⟶𝑌)) |
38 | 36, 37 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑌 ↑m 𝑋)) |
39 | coexg 7907 | . . 3 ⊢ ((𝐺 ∈ (𝑍 ↑m 𝑌) ∧ 𝐹 ∈ (𝑌 ↑m 𝑋)) → (𝐺 ∘ 𝐹) ∈ V) | |
40 | 35, 38, 39 | syl2anc 585 | . 2 ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ V) |
41 | 29, 32, 35, 38, 40 | ovmpod 7547 | 1 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3475 〈cop 4630 × cxp 5670 ∘ ccom 5676 ⟶wf 6531 ‘cfv 6535 (class class class)co 7396 ∈ cmpo 7398 1st c1st 7960 2nd c2nd 7961 ↑m cmap 8808 compcco 17196 SetCatcsetc 18012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 ax-cnex 11153 ax-resscn 11154 ax-1cn 11155 ax-icn 11156 ax-addcl 11157 ax-addrcl 11158 ax-mulcl 11159 ax-mulrcl 11160 ax-mulcom 11161 ax-addass 11162 ax-mulass 11163 ax-distr 11164 ax-i2m1 11165 ax-1ne0 11166 ax-1rid 11167 ax-rnegex 11168 ax-rrecex 11169 ax-cnre 11170 ax-pre-lttri 11171 ax-pre-lttrn 11172 ax-pre-ltadd 11173 ax-pre-mulgt0 11174 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4905 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6292 df-ord 6359 df-on 6360 df-lim 6361 df-suc 6362 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-riota 7352 df-ov 7399 df-oprab 7400 df-mpo 7401 df-om 7843 df-1st 7962 df-2nd 7963 df-frecs 8253 df-wrecs 8284 df-recs 8358 df-rdg 8397 df-1o 8453 df-er 8691 df-map 8810 df-en 8928 df-dom 8929 df-sdom 8930 df-fin 8931 df-pnf 11237 df-mnf 11238 df-xr 11239 df-ltxr 11240 df-le 11241 df-sub 11433 df-neg 11434 df-nn 12200 df-2 12262 df-3 12263 df-4 12264 df-5 12265 df-6 12266 df-7 12267 df-8 12268 df-9 12269 df-n0 12460 df-z 12546 df-dec 12665 df-uz 12810 df-fz 13472 df-struct 17067 df-slot 17102 df-ndx 17114 df-base 17132 df-hom 17208 df-cco 17209 df-setc 18013 |
This theorem is referenced by: setccatid 18021 setcmon 18024 setcepi 18025 setcsect 18026 resssetc 18029 funcestrcsetclem9 18087 funcsetcestrclem9 18102 hofcllem 18198 yonedalem4c 18217 yonedalem3b 18219 yonedainv 18221 funcringcsetcALTV2lem9 46782 funcringcsetclem9ALTV 46805 |
Copyright terms: Public domain | W3C validator |