| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setcco | Structured version Visualization version GIF version | ||
| Description: Composition in the category of sets. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| setcbas.c | ⊢ 𝐶 = (SetCat‘𝑈) |
| setcbas.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| setcco.o | ⊢ · = (comp‘𝐶) |
| setcco.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| setcco.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| setcco.z | ⊢ (𝜑 → 𝑍 ∈ 𝑈) |
| setcco.f | ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
| setcco.g | ⊢ (𝜑 → 𝐺:𝑌⟶𝑍) |
| Ref | Expression |
|---|---|
| setcco | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setcbas.c | . . . 4 ⊢ 𝐶 = (SetCat‘𝑈) | |
| 2 | setcbas.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 3 | setcco.o | . . . 4 ⊢ · = (comp‘𝐶) | |
| 4 | 1, 2, 3 | setccofval 18100 | . . 3 ⊢ (𝜑 → · = (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ (𝑧 ↑m (2nd ‘𝑣)), 𝑓 ∈ ((2nd ‘𝑣) ↑m (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))) |
| 5 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑧 = 𝑍) | |
| 6 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑣 = 〈𝑋, 𝑌〉) | |
| 7 | 6 | fveq2d 6885 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘𝑣) = (2nd ‘〈𝑋, 𝑌〉)) |
| 8 | setcco.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
| 9 | setcco.y | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
| 10 | op2ndg 8006 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) | |
| 11 | 8, 9, 10 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
| 12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
| 13 | 7, 12 | eqtrd 2771 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘𝑣) = 𝑌) |
| 14 | 5, 13 | oveq12d 7428 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑧 ↑m (2nd ‘𝑣)) = (𝑍 ↑m 𝑌)) |
| 15 | 6 | fveq2d 6885 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (1st ‘𝑣) = (1st ‘〈𝑋, 𝑌〉)) |
| 16 | op1stg 8005 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) | |
| 17 | 8, 9, 16 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (1st ‘〈𝑋, 𝑌〉) = 𝑋) |
| 18 | 17 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) |
| 19 | 15, 18 | eqtrd 2771 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (1st ‘𝑣) = 𝑋) |
| 20 | 13, 19 | oveq12d 7428 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → ((2nd ‘𝑣) ↑m (1st ‘𝑣)) = (𝑌 ↑m 𝑋)) |
| 21 | eqidd 2737 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑔 ∘ 𝑓) = (𝑔 ∘ 𝑓)) | |
| 22 | 14, 20, 21 | mpoeq123dv 7487 | . . 3 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑔 ∈ (𝑧 ↑m (2nd ‘𝑣)), 𝑓 ∈ ((2nd ‘𝑣) ↑m (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)) = (𝑔 ∈ (𝑍 ↑m 𝑌), 𝑓 ∈ (𝑌 ↑m 𝑋) ↦ (𝑔 ∘ 𝑓))) |
| 23 | 8, 9 | opelxpd 5698 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝑈 × 𝑈)) |
| 24 | setcco.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑈) | |
| 25 | ovex 7443 | . . . . 5 ⊢ (𝑍 ↑m 𝑌) ∈ V | |
| 26 | ovex 7443 | . . . . 5 ⊢ (𝑌 ↑m 𝑋) ∈ V | |
| 27 | 25, 26 | mpoex 8083 | . . . 4 ⊢ (𝑔 ∈ (𝑍 ↑m 𝑌), 𝑓 ∈ (𝑌 ↑m 𝑋) ↦ (𝑔 ∘ 𝑓)) ∈ V |
| 28 | 27 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑔 ∈ (𝑍 ↑m 𝑌), 𝑓 ∈ (𝑌 ↑m 𝑋) ↦ (𝑔 ∘ 𝑓)) ∈ V) |
| 29 | 4, 22, 23, 24, 28 | ovmpod 7564 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 · 𝑍) = (𝑔 ∈ (𝑍 ↑m 𝑌), 𝑓 ∈ (𝑌 ↑m 𝑋) ↦ (𝑔 ∘ 𝑓))) |
| 30 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → 𝑔 = 𝐺) | |
| 31 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → 𝑓 = 𝐹) | |
| 32 | 30, 31 | coeq12d 5849 | . 2 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → (𝑔 ∘ 𝑓) = (𝐺 ∘ 𝐹)) |
| 33 | setcco.g | . . 3 ⊢ (𝜑 → 𝐺:𝑌⟶𝑍) | |
| 34 | 24, 9 | elmapd 8859 | . . 3 ⊢ (𝜑 → (𝐺 ∈ (𝑍 ↑m 𝑌) ↔ 𝐺:𝑌⟶𝑍)) |
| 35 | 33, 34 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝑍 ↑m 𝑌)) |
| 36 | setcco.f | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) | |
| 37 | 9, 8 | elmapd 8859 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (𝑌 ↑m 𝑋) ↔ 𝐹:𝑋⟶𝑌)) |
| 38 | 36, 37 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑌 ↑m 𝑋)) |
| 39 | coexg 7930 | . . 3 ⊢ ((𝐺 ∈ (𝑍 ↑m 𝑌) ∧ 𝐹 ∈ (𝑌 ↑m 𝑋)) → (𝐺 ∘ 𝐹) ∈ V) | |
| 40 | 35, 38, 39 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ V) |
| 41 | 29, 32, 35, 38, 40 | ovmpod 7564 | 1 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 〈cop 4612 × cxp 5657 ∘ ccom 5663 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 1st c1st 7991 2nd c2nd 7992 ↑m cmap 8845 compcco 17288 SetCatcsetc 18093 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-struct 17171 df-slot 17206 df-ndx 17218 df-base 17234 df-hom 17300 df-cco 17301 df-setc 18094 |
| This theorem is referenced by: setccatid 18102 setcmon 18105 setcepi 18106 setcsect 18107 resssetc 18110 funcestrcsetclem9 18165 funcsetcestrclem9 18180 hofcllem 18275 yonedalem4c 18294 yonedalem3b 18296 yonedainv 18298 funcringcsetcALTV2lem9 48240 funcringcsetclem9ALTV 48263 |
| Copyright terms: Public domain | W3C validator |