| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setcco | Structured version Visualization version GIF version | ||
| Description: Composition in the category of sets. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| setcbas.c | ⊢ 𝐶 = (SetCat‘𝑈) |
| setcbas.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| setcco.o | ⊢ · = (comp‘𝐶) |
| setcco.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| setcco.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| setcco.z | ⊢ (𝜑 → 𝑍 ∈ 𝑈) |
| setcco.f | ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
| setcco.g | ⊢ (𝜑 → 𝐺:𝑌⟶𝑍) |
| Ref | Expression |
|---|---|
| setcco | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setcbas.c | . . . 4 ⊢ 𝐶 = (SetCat‘𝑈) | |
| 2 | setcbas.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 3 | setcco.o | . . . 4 ⊢ · = (comp‘𝐶) | |
| 4 | 1, 2, 3 | setccofval 17986 | . . 3 ⊢ (𝜑 → · = (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ (𝑧 ↑m (2nd ‘𝑣)), 𝑓 ∈ ((2nd ‘𝑣) ↑m (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))) |
| 5 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑧 = 𝑍) | |
| 6 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑣 = 〈𝑋, 𝑌〉) | |
| 7 | 6 | fveq2d 6826 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘𝑣) = (2nd ‘〈𝑋, 𝑌〉)) |
| 8 | setcco.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
| 9 | setcco.y | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
| 10 | op2ndg 7934 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) | |
| 11 | 8, 9, 10 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
| 12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
| 13 | 7, 12 | eqtrd 2766 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘𝑣) = 𝑌) |
| 14 | 5, 13 | oveq12d 7364 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑧 ↑m (2nd ‘𝑣)) = (𝑍 ↑m 𝑌)) |
| 15 | 6 | fveq2d 6826 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (1st ‘𝑣) = (1st ‘〈𝑋, 𝑌〉)) |
| 16 | op1stg 7933 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) | |
| 17 | 8, 9, 16 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (1st ‘〈𝑋, 𝑌〉) = 𝑋) |
| 18 | 17 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) |
| 19 | 15, 18 | eqtrd 2766 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (1st ‘𝑣) = 𝑋) |
| 20 | 13, 19 | oveq12d 7364 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → ((2nd ‘𝑣) ↑m (1st ‘𝑣)) = (𝑌 ↑m 𝑋)) |
| 21 | eqidd 2732 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑔 ∘ 𝑓) = (𝑔 ∘ 𝑓)) | |
| 22 | 14, 20, 21 | mpoeq123dv 7421 | . . 3 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑔 ∈ (𝑧 ↑m (2nd ‘𝑣)), 𝑓 ∈ ((2nd ‘𝑣) ↑m (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)) = (𝑔 ∈ (𝑍 ↑m 𝑌), 𝑓 ∈ (𝑌 ↑m 𝑋) ↦ (𝑔 ∘ 𝑓))) |
| 23 | 8, 9 | opelxpd 5655 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝑈 × 𝑈)) |
| 24 | setcco.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑈) | |
| 25 | ovex 7379 | . . . . 5 ⊢ (𝑍 ↑m 𝑌) ∈ V | |
| 26 | ovex 7379 | . . . . 5 ⊢ (𝑌 ↑m 𝑋) ∈ V | |
| 27 | 25, 26 | mpoex 8011 | . . . 4 ⊢ (𝑔 ∈ (𝑍 ↑m 𝑌), 𝑓 ∈ (𝑌 ↑m 𝑋) ↦ (𝑔 ∘ 𝑓)) ∈ V |
| 28 | 27 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑔 ∈ (𝑍 ↑m 𝑌), 𝑓 ∈ (𝑌 ↑m 𝑋) ↦ (𝑔 ∘ 𝑓)) ∈ V) |
| 29 | 4, 22, 23, 24, 28 | ovmpod 7498 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 · 𝑍) = (𝑔 ∈ (𝑍 ↑m 𝑌), 𝑓 ∈ (𝑌 ↑m 𝑋) ↦ (𝑔 ∘ 𝑓))) |
| 30 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → 𝑔 = 𝐺) | |
| 31 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → 𝑓 = 𝐹) | |
| 32 | 30, 31 | coeq12d 5804 | . 2 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → (𝑔 ∘ 𝑓) = (𝐺 ∘ 𝐹)) |
| 33 | setcco.g | . . 3 ⊢ (𝜑 → 𝐺:𝑌⟶𝑍) | |
| 34 | 24, 9 | elmapd 8764 | . . 3 ⊢ (𝜑 → (𝐺 ∈ (𝑍 ↑m 𝑌) ↔ 𝐺:𝑌⟶𝑍)) |
| 35 | 33, 34 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝑍 ↑m 𝑌)) |
| 36 | setcco.f | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) | |
| 37 | 9, 8 | elmapd 8764 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (𝑌 ↑m 𝑋) ↔ 𝐹:𝑋⟶𝑌)) |
| 38 | 36, 37 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑌 ↑m 𝑋)) |
| 39 | coexg 7859 | . . 3 ⊢ ((𝐺 ∈ (𝑍 ↑m 𝑌) ∧ 𝐹 ∈ (𝑌 ↑m 𝑋)) → (𝐺 ∘ 𝐹) ∈ V) | |
| 40 | 35, 38, 39 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ V) |
| 41 | 29, 32, 35, 38, 40 | ovmpod 7498 | 1 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4582 × cxp 5614 ∘ ccom 5620 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 1st c1st 7919 2nd c2nd 7920 ↑m cmap 8750 compcco 17170 SetCatcsetc 17979 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-struct 17055 df-slot 17090 df-ndx 17102 df-base 17118 df-hom 17182 df-cco 17183 df-setc 17980 |
| This theorem is referenced by: setccatid 17988 setcmon 17991 setcepi 17992 setcsect 17993 resssetc 17996 funcestrcsetclem9 18051 funcsetcestrclem9 18066 hofcllem 18161 yonedalem4c 18180 yonedalem3b 18182 yonedainv 18184 funcringcsetcALTV2lem9 48328 funcringcsetclem9ALTV 48351 |
| Copyright terms: Public domain | W3C validator |