MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setcco Structured version   Visualization version   GIF version

Theorem setcco 17714
Description: Composition in the category of sets. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
setcbas.c 𝐶 = (SetCat‘𝑈)
setcbas.u (𝜑𝑈𝑉)
setcco.o · = (comp‘𝐶)
setcco.x (𝜑𝑋𝑈)
setcco.y (𝜑𝑌𝑈)
setcco.z (𝜑𝑍𝑈)
setcco.f (𝜑𝐹:𝑋𝑌)
setcco.g (𝜑𝐺:𝑌𝑍)
Assertion
Ref Expression
setcco (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))

Proof of Theorem setcco
Dummy variables 𝑓 𝑔 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 setcbas.c . . . 4 𝐶 = (SetCat‘𝑈)
2 setcbas.u . . . 4 (𝜑𝑈𝑉)
3 setcco.o . . . 4 · = (comp‘𝐶)
41, 2, 3setccofval 17713 . . 3 (𝜑· = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓))))
5 simprr 769 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑧 = 𝑍)
6 simprl 767 . . . . . . 7 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑣 = ⟨𝑋, 𝑌⟩)
76fveq2d 6760 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑣) = (2nd ‘⟨𝑋, 𝑌⟩))
8 setcco.x . . . . . . . 8 (𝜑𝑋𝑈)
9 setcco.y . . . . . . . 8 (𝜑𝑌𝑈)
10 op2ndg 7817 . . . . . . . 8 ((𝑋𝑈𝑌𝑈) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
118, 9, 10syl2anc 583 . . . . . . 7 (𝜑 → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
1211adantr 480 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
137, 12eqtrd 2778 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑣) = 𝑌)
145, 13oveq12d 7273 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑧m (2nd𝑣)) = (𝑍m 𝑌))
156fveq2d 6760 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (1st𝑣) = (1st ‘⟨𝑋, 𝑌⟩))
16 op1stg 7816 . . . . . . . 8 ((𝑋𝑈𝑌𝑈) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
178, 9, 16syl2anc 583 . . . . . . 7 (𝜑 → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
1817adantr 480 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
1915, 18eqtrd 2778 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (1st𝑣) = 𝑋)
2013, 19oveq12d 7273 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → ((2nd𝑣) ↑m (1st𝑣)) = (𝑌m 𝑋))
21 eqidd 2739 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑔𝑓) = (𝑔𝑓))
2214, 20, 21mpoeq123dv 7328 . . 3 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓)) = (𝑔 ∈ (𝑍m 𝑌), 𝑓 ∈ (𝑌m 𝑋) ↦ (𝑔𝑓)))
238, 9opelxpd 5618 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝑈 × 𝑈))
24 setcco.z . . 3 (𝜑𝑍𝑈)
25 ovex 7288 . . . . 5 (𝑍m 𝑌) ∈ V
26 ovex 7288 . . . . 5 (𝑌m 𝑋) ∈ V
2725, 26mpoex 7893 . . . 4 (𝑔 ∈ (𝑍m 𝑌), 𝑓 ∈ (𝑌m 𝑋) ↦ (𝑔𝑓)) ∈ V
2827a1i 11 . . 3 (𝜑 → (𝑔 ∈ (𝑍m 𝑌), 𝑓 ∈ (𝑌m 𝑋) ↦ (𝑔𝑓)) ∈ V)
294, 22, 23, 24, 28ovmpod 7403 . 2 (𝜑 → (⟨𝑋, 𝑌· 𝑍) = (𝑔 ∈ (𝑍m 𝑌), 𝑓 ∈ (𝑌m 𝑋) ↦ (𝑔𝑓)))
30 simprl 767 . . 3 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑔 = 𝐺)
31 simprr 769 . . 3 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑓 = 𝐹)
3230, 31coeq12d 5762 . 2 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (𝑔𝑓) = (𝐺𝐹))
33 setcco.g . . 3 (𝜑𝐺:𝑌𝑍)
3424, 9elmapd 8587 . . 3 (𝜑 → (𝐺 ∈ (𝑍m 𝑌) ↔ 𝐺:𝑌𝑍))
3533, 34mpbird 256 . 2 (𝜑𝐺 ∈ (𝑍m 𝑌))
36 setcco.f . . 3 (𝜑𝐹:𝑋𝑌)
379, 8elmapd 8587 . . 3 (𝜑 → (𝐹 ∈ (𝑌m 𝑋) ↔ 𝐹:𝑋𝑌))
3836, 37mpbird 256 . 2 (𝜑𝐹 ∈ (𝑌m 𝑋))
39 coexg 7750 . . 3 ((𝐺 ∈ (𝑍m 𝑌) ∧ 𝐹 ∈ (𝑌m 𝑋)) → (𝐺𝐹) ∈ V)
4035, 38, 39syl2anc 583 . 2 (𝜑 → (𝐺𝐹) ∈ V)
4129, 32, 35, 38, 40ovmpod 7403 1 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cop 4564   × cxp 5578  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  1st c1st 7802  2nd c2nd 7803  m cmap 8573  compcco 16900  SetCatcsetc 17706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-hom 16912  df-cco 16913  df-setc 17707
This theorem is referenced by:  setccatid  17715  setcmon  17718  setcepi  17719  setcsect  17720  resssetc  17723  funcestrcsetclem9  17781  funcsetcestrclem9  17796  hofcllem  17892  yonedalem4c  17911  yonedalem3b  17913  yonedainv  17915  funcringcsetcALTV2lem9  45490  funcringcsetclem9ALTV  45513
  Copyright terms: Public domain W3C validator