| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngccoALTV | Structured version Visualization version GIF version | ||
| Description: Composition in the category of non-unital rings. (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.) |
| Ref | Expression |
|---|---|
| rngcbasALTV.c | ⊢ 𝐶 = (RngCatALTV‘𝑈) |
| rngcbasALTV.b | ⊢ 𝐵 = (Base‘𝐶) |
| rngcbasALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rngccofvalALTV.o | ⊢ · = (comp‘𝐶) |
| rngccoALTV.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| rngccoALTV.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| rngccoALTV.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| rngccoALTV.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋 RngHom 𝑌)) |
| rngccoALTV.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌 RngHom 𝑍)) |
| Ref | Expression |
|---|---|
| rngccoALTV | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcbasALTV.c | . . . 4 ⊢ 𝐶 = (RngCatALTV‘𝑈) | |
| 2 | rngcbasALTV.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | rngcbasALTV.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 4 | rngccofvalALTV.o | . . . 4 ⊢ · = (comp‘𝐶) | |
| 5 | 1, 2, 3, 4 | rngccofvalALTV 48251 | . . 3 ⊢ (𝜑 → · = (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHom (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))) |
| 6 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑣 = 〈𝑋, 𝑌〉) | |
| 7 | 6 | fveq2d 6844 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘𝑣) = (2nd ‘〈𝑋, 𝑌〉)) |
| 8 | rngccoALTV.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | rngccoALTV.y | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 10 | op2ndg 7960 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) | |
| 11 | 8, 9, 10 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
| 12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
| 13 | 7, 12 | eqtrd 2764 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘𝑣) = 𝑌) |
| 14 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑧 = 𝑍) | |
| 15 | 13, 14 | oveq12d 7387 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → ((2nd ‘𝑣) RngHom 𝑧) = (𝑌 RngHom 𝑍)) |
| 16 | 6 | fveq2d 6844 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (1st ‘𝑣) = (1st ‘〈𝑋, 𝑌〉)) |
| 17 | op1stg 7959 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) | |
| 18 | 8, 9, 17 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (1st ‘〈𝑋, 𝑌〉) = 𝑋) |
| 19 | 18 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) |
| 20 | 16, 19 | eqtrd 2764 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (1st ‘𝑣) = 𝑋) |
| 21 | 20, 13 | oveq12d 7387 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → ((1st ‘𝑣) RngHom (2nd ‘𝑣)) = (𝑋 RngHom 𝑌)) |
| 22 | eqidd 2730 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑔 ∘ 𝑓) = (𝑔 ∘ 𝑓)) | |
| 23 | 15, 21, 22 | mpoeq123dv 7444 | . . 3 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑔 ∈ ((2nd ‘𝑣) RngHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHom (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)) = (𝑔 ∈ (𝑌 RngHom 𝑍), 𝑓 ∈ (𝑋 RngHom 𝑌) ↦ (𝑔 ∘ 𝑓))) |
| 24 | opelxpi 5668 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) | |
| 25 | 8, 9, 24 | syl2anc 584 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
| 26 | rngccoALTV.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 27 | ovex 7402 | . . . . 5 ⊢ (𝑌 RngHom 𝑍) ∈ V | |
| 28 | ovex 7402 | . . . . 5 ⊢ (𝑋 RngHom 𝑌) ∈ V | |
| 29 | 27, 28 | mpoex 8037 | . . . 4 ⊢ (𝑔 ∈ (𝑌 RngHom 𝑍), 𝑓 ∈ (𝑋 RngHom 𝑌) ↦ (𝑔 ∘ 𝑓)) ∈ V |
| 30 | 29 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑔 ∈ (𝑌 RngHom 𝑍), 𝑓 ∈ (𝑋 RngHom 𝑌) ↦ (𝑔 ∘ 𝑓)) ∈ V) |
| 31 | 5, 23, 25, 26, 30 | ovmpod 7521 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 · 𝑍) = (𝑔 ∈ (𝑌 RngHom 𝑍), 𝑓 ∈ (𝑋 RngHom 𝑌) ↦ (𝑔 ∘ 𝑓))) |
| 32 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → 𝑔 = 𝐺) | |
| 33 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → 𝑓 = 𝐹) | |
| 34 | 32, 33 | coeq12d 5818 | . 2 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → (𝑔 ∘ 𝑓) = (𝐺 ∘ 𝐹)) |
| 35 | rngccoALTV.g | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝑌 RngHom 𝑍)) | |
| 36 | rngccoALTV.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑋 RngHom 𝑌)) | |
| 37 | coexg 7885 | . . 3 ⊢ ((𝐺 ∈ (𝑌 RngHom 𝑍) ∧ 𝐹 ∈ (𝑋 RngHom 𝑌)) → (𝐺 ∘ 𝐹) ∈ V) | |
| 38 | 35, 36, 37 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ V) |
| 39 | 31, 34, 35, 36, 38 | ovmpod 7521 | 1 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 〈cop 4591 × cxp 5629 ∘ ccom 5635 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 1st c1st 7945 2nd c2nd 7946 Basecbs 17155 compcco 17208 RngHom crnghm 20354 RngCatALTVcrngcALTV 48244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-hom 17220 df-cco 17221 df-rngcALTV 48245 |
| This theorem is referenced by: rngccatidALTV 48253 rngcsectALTV 48256 rhmsubcALTVlem4 48265 |
| Copyright terms: Public domain | W3C validator |