| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngccoALTV | Structured version Visualization version GIF version | ||
| Description: Composition in the category of non-unital rings. (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.) |
| Ref | Expression |
|---|---|
| rngcbasALTV.c | ⊢ 𝐶 = (RngCatALTV‘𝑈) |
| rngcbasALTV.b | ⊢ 𝐵 = (Base‘𝐶) |
| rngcbasALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rngccofvalALTV.o | ⊢ · = (comp‘𝐶) |
| rngccoALTV.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| rngccoALTV.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| rngccoALTV.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| rngccoALTV.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋 RngHom 𝑌)) |
| rngccoALTV.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌 RngHom 𝑍)) |
| Ref | Expression |
|---|---|
| rngccoALTV | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcbasALTV.c | . . . 4 ⊢ 𝐶 = (RngCatALTV‘𝑈) | |
| 2 | rngcbasALTV.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | rngcbasALTV.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 4 | rngccofvalALTV.o | . . . 4 ⊢ · = (comp‘𝐶) | |
| 5 | 1, 2, 3, 4 | rngccofvalALTV 48255 | . . 3 ⊢ (𝜑 → · = (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHom (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))) |
| 6 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑣 = 〈𝑋, 𝑌〉) | |
| 7 | 6 | fveq2d 6862 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘𝑣) = (2nd ‘〈𝑋, 𝑌〉)) |
| 8 | rngccoALTV.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | rngccoALTV.y | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 10 | op2ndg 7981 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) | |
| 11 | 8, 9, 10 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
| 12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
| 13 | 7, 12 | eqtrd 2764 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘𝑣) = 𝑌) |
| 14 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑧 = 𝑍) | |
| 15 | 13, 14 | oveq12d 7405 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → ((2nd ‘𝑣) RngHom 𝑧) = (𝑌 RngHom 𝑍)) |
| 16 | 6 | fveq2d 6862 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (1st ‘𝑣) = (1st ‘〈𝑋, 𝑌〉)) |
| 17 | op1stg 7980 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) | |
| 18 | 8, 9, 17 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (1st ‘〈𝑋, 𝑌〉) = 𝑋) |
| 19 | 18 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) |
| 20 | 16, 19 | eqtrd 2764 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (1st ‘𝑣) = 𝑋) |
| 21 | 20, 13 | oveq12d 7405 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → ((1st ‘𝑣) RngHom (2nd ‘𝑣)) = (𝑋 RngHom 𝑌)) |
| 22 | eqidd 2730 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑔 ∘ 𝑓) = (𝑔 ∘ 𝑓)) | |
| 23 | 15, 21, 22 | mpoeq123dv 7464 | . . 3 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑔 ∈ ((2nd ‘𝑣) RngHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHom (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)) = (𝑔 ∈ (𝑌 RngHom 𝑍), 𝑓 ∈ (𝑋 RngHom 𝑌) ↦ (𝑔 ∘ 𝑓))) |
| 24 | opelxpi 5675 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) | |
| 25 | 8, 9, 24 | syl2anc 584 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
| 26 | rngccoALTV.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 27 | ovex 7420 | . . . . 5 ⊢ (𝑌 RngHom 𝑍) ∈ V | |
| 28 | ovex 7420 | . . . . 5 ⊢ (𝑋 RngHom 𝑌) ∈ V | |
| 29 | 27, 28 | mpoex 8058 | . . . 4 ⊢ (𝑔 ∈ (𝑌 RngHom 𝑍), 𝑓 ∈ (𝑋 RngHom 𝑌) ↦ (𝑔 ∘ 𝑓)) ∈ V |
| 30 | 29 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑔 ∈ (𝑌 RngHom 𝑍), 𝑓 ∈ (𝑋 RngHom 𝑌) ↦ (𝑔 ∘ 𝑓)) ∈ V) |
| 31 | 5, 23, 25, 26, 30 | ovmpod 7541 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 · 𝑍) = (𝑔 ∈ (𝑌 RngHom 𝑍), 𝑓 ∈ (𝑋 RngHom 𝑌) ↦ (𝑔 ∘ 𝑓))) |
| 32 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → 𝑔 = 𝐺) | |
| 33 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → 𝑓 = 𝐹) | |
| 34 | 32, 33 | coeq12d 5828 | . 2 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → (𝑔 ∘ 𝑓) = (𝐺 ∘ 𝐹)) |
| 35 | rngccoALTV.g | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝑌 RngHom 𝑍)) | |
| 36 | rngccoALTV.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑋 RngHom 𝑌)) | |
| 37 | coexg 7905 | . . 3 ⊢ ((𝐺 ∈ (𝑌 RngHom 𝑍) ∧ 𝐹 ∈ (𝑋 RngHom 𝑌)) → (𝐺 ∘ 𝐹) ∈ V) | |
| 38 | 35, 36, 37 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ V) |
| 39 | 31, 34, 35, 36, 38 | ovmpod 7541 | 1 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 〈cop 4595 × cxp 5636 ∘ ccom 5642 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 1st c1st 7966 2nd c2nd 7967 Basecbs 17179 compcco 17232 RngHom crnghm 20343 RngCatALTVcrngcALTV 48248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-hom 17244 df-cco 17245 df-rngcALTV 48249 |
| This theorem is referenced by: rngccatidALTV 48257 rngcsectALTV 48260 rhmsubcALTVlem4 48269 |
| Copyright terms: Public domain | W3C validator |