Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngccoALTV Structured version   Visualization version   GIF version

Theorem rngccoALTV 45805
Description: Composition in the category of non-unital rings. (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.)
Hypotheses
Ref Expression
rngcbasALTV.c 𝐶 = (RngCatALTV‘𝑈)
rngcbasALTV.b 𝐵 = (Base‘𝐶)
rngcbasALTV.u (𝜑𝑈𝑉)
rngccofvalALTV.o · = (comp‘𝐶)
rngccoALTV.x (𝜑𝑋𝐵)
rngccoALTV.y (𝜑𝑌𝐵)
rngccoALTV.z (𝜑𝑍𝐵)
rngccoALTV.f (𝜑𝐹 ∈ (𝑋 RngHomo 𝑌))
rngccoALTV.g (𝜑𝐺 ∈ (𝑌 RngHomo 𝑍))
Assertion
Ref Expression
rngccoALTV (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))

Proof of Theorem rngccoALTV
Dummy variables 𝑓 𝑔 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngcbasALTV.c . . . 4 𝐶 = (RngCatALTV‘𝑈)
2 rngcbasALTV.b . . . 4 𝐵 = (Base‘𝐶)
3 rngcbasALTV.u . . . 4 (𝜑𝑈𝑉)
4 rngccofvalALTV.o . . . 4 · = (comp‘𝐶)
51, 2, 3, 4rngccofvalALTV 45804 . . 3 (𝜑· = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓))))
6 simprl 768 . . . . . . 7 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑣 = ⟨𝑋, 𝑌⟩)
76fveq2d 6813 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑣) = (2nd ‘⟨𝑋, 𝑌⟩))
8 rngccoALTV.x . . . . . . . 8 (𝜑𝑋𝐵)
9 rngccoALTV.y . . . . . . . 8 (𝜑𝑌𝐵)
10 op2ndg 7887 . . . . . . . 8 ((𝑋𝐵𝑌𝐵) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
118, 9, 10syl2anc 584 . . . . . . 7 (𝜑 → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
1211adantr 481 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
137, 12eqtrd 2777 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑣) = 𝑌)
14 simprr 770 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑧 = 𝑍)
1513, 14oveq12d 7331 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → ((2nd𝑣) RngHomo 𝑧) = (𝑌 RngHomo 𝑍))
166fveq2d 6813 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (1st𝑣) = (1st ‘⟨𝑋, 𝑌⟩))
17 op1stg 7886 . . . . . . . 8 ((𝑋𝐵𝑌𝐵) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
188, 9, 17syl2anc 584 . . . . . . 7 (𝜑 → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
1918adantr 481 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2016, 19eqtrd 2777 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (1st𝑣) = 𝑋)
2120, 13oveq12d 7331 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → ((1st𝑣) RngHomo (2nd𝑣)) = (𝑋 RngHomo 𝑌))
22 eqidd 2738 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑔𝑓) = (𝑔𝑓))
2315, 21, 22mpoeq123dv 7388 . . 3 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓)) = (𝑔 ∈ (𝑌 RngHomo 𝑍), 𝑓 ∈ (𝑋 RngHomo 𝑌) ↦ (𝑔𝑓)))
24 opelxpi 5642 . . . 4 ((𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
258, 9, 24syl2anc 584 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
26 rngccoALTV.z . . 3 (𝜑𝑍𝐵)
27 ovex 7346 . . . . 5 (𝑌 RngHomo 𝑍) ∈ V
28 ovex 7346 . . . . 5 (𝑋 RngHomo 𝑌) ∈ V
2927, 28mpoex 7963 . . . 4 (𝑔 ∈ (𝑌 RngHomo 𝑍), 𝑓 ∈ (𝑋 RngHomo 𝑌) ↦ (𝑔𝑓)) ∈ V
3029a1i 11 . . 3 (𝜑 → (𝑔 ∈ (𝑌 RngHomo 𝑍), 𝑓 ∈ (𝑋 RngHomo 𝑌) ↦ (𝑔𝑓)) ∈ V)
315, 23, 25, 26, 30ovmpod 7463 . 2 (𝜑 → (⟨𝑋, 𝑌· 𝑍) = (𝑔 ∈ (𝑌 RngHomo 𝑍), 𝑓 ∈ (𝑋 RngHomo 𝑌) ↦ (𝑔𝑓)))
32 simprl 768 . . 3 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑔 = 𝐺)
33 simprr 770 . . 3 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑓 = 𝐹)
3432, 33coeq12d 5791 . 2 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (𝑔𝑓) = (𝐺𝐹))
35 rngccoALTV.g . 2 (𝜑𝐺 ∈ (𝑌 RngHomo 𝑍))
36 rngccoALTV.f . 2 (𝜑𝐹 ∈ (𝑋 RngHomo 𝑌))
37 coexg 7819 . . 3 ((𝐺 ∈ (𝑌 RngHomo 𝑍) ∧ 𝐹 ∈ (𝑋 RngHomo 𝑌)) → (𝐺𝐹) ∈ V)
3835, 36, 37syl2anc 584 . 2 (𝜑 → (𝐺𝐹) ∈ V)
3931, 34, 35, 36, 38ovmpod 7463 1 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  Vcvv 3441  cop 4575   × cxp 5603  ccom 5609  cfv 6463  (class class class)co 7313  cmpo 7315  1st c1st 7872  2nd c2nd 7873  Basecbs 16979  compcco 17041   RngHomo crngh 45702  RngCatALTVcrngcALTV 45775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4849  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-om 7756  df-1st 7874  df-2nd 7875  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-1o 8342  df-er 8544  df-en 8780  df-dom 8781  df-sdom 8782  df-fin 8783  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-nn 12044  df-2 12106  df-3 12107  df-4 12108  df-5 12109  df-6 12110  df-7 12111  df-8 12112  df-9 12113  df-n0 12304  df-z 12390  df-dec 12508  df-uz 12653  df-fz 13310  df-struct 16915  df-slot 16950  df-ndx 16962  df-base 16980  df-hom 17053  df-cco 17054  df-rngcALTV 45777
This theorem is referenced by:  rngccatidALTV  45806  rngcsectALTV  45809  rhmsubcALTVlem4  45924
  Copyright terms: Public domain W3C validator