Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngccoALTV Structured version   Visualization version   GIF version

Theorem rngccoALTV 42573
Description: Composition in the category of non-unital rings. (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.)
Hypotheses
Ref Expression
rngcbasALTV.c 𝐶 = (RngCatALTV‘𝑈)
rngcbasALTV.b 𝐵 = (Base‘𝐶)
rngcbasALTV.u (𝜑𝑈𝑉)
rngccofvalALTV.o · = (comp‘𝐶)
rngccoALTV.x (𝜑𝑋𝐵)
rngccoALTV.y (𝜑𝑌𝐵)
rngccoALTV.z (𝜑𝑍𝐵)
rngccoALTV.f (𝜑𝐹 ∈ (𝑋 RngHomo 𝑌))
rngccoALTV.g (𝜑𝐺 ∈ (𝑌 RngHomo 𝑍))
Assertion
Ref Expression
rngccoALTV (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))

Proof of Theorem rngccoALTV
Dummy variables 𝑓 𝑔 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngcbasALTV.c . . . 4 𝐶 = (RngCatALTV‘𝑈)
2 rngcbasALTV.b . . . 4 𝐵 = (Base‘𝐶)
3 rngcbasALTV.u . . . 4 (𝜑𝑈𝑉)
4 rngccofvalALTV.o . . . 4 · = (comp‘𝐶)
51, 2, 3, 4rngccofvalALTV 42572 . . 3 (𝜑· = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓))))
6 simprl 778 . . . . . . 7 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑣 = ⟨𝑋, 𝑌⟩)
76fveq2d 6421 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑣) = (2nd ‘⟨𝑋, 𝑌⟩))
8 rngccoALTV.x . . . . . . . 8 (𝜑𝑋𝐵)
9 rngccoALTV.y . . . . . . . 8 (𝜑𝑌𝐵)
10 op2ndg 7420 . . . . . . . 8 ((𝑋𝐵𝑌𝐵) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
118, 9, 10syl2anc 575 . . . . . . 7 (𝜑 → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
1211adantr 468 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
137, 12eqtrd 2851 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑣) = 𝑌)
14 simprr 780 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑧 = 𝑍)
1513, 14oveq12d 6901 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → ((2nd𝑣) RngHomo 𝑧) = (𝑌 RngHomo 𝑍))
166fveq2d 6421 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (1st𝑣) = (1st ‘⟨𝑋, 𝑌⟩))
17 op1stg 7419 . . . . . . . 8 ((𝑋𝐵𝑌𝐵) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
188, 9, 17syl2anc 575 . . . . . . 7 (𝜑 → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
1918adantr 468 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2016, 19eqtrd 2851 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (1st𝑣) = 𝑋)
2120, 13oveq12d 6901 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → ((1st𝑣) RngHomo (2nd𝑣)) = (𝑋 RngHomo 𝑌))
22 eqidd 2818 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑔𝑓) = (𝑔𝑓))
2315, 21, 22mpt2eq123dv 6956 . . 3 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑔 ∈ ((2nd𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st𝑣) RngHomo (2nd𝑣)) ↦ (𝑔𝑓)) = (𝑔 ∈ (𝑌 RngHomo 𝑍), 𝑓 ∈ (𝑋 RngHomo 𝑌) ↦ (𝑔𝑓)))
24 opelxpi 5361 . . . 4 ((𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
258, 9, 24syl2anc 575 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
26 rngccoALTV.z . . 3 (𝜑𝑍𝐵)
27 ovex 6915 . . . . 5 (𝑌 RngHomo 𝑍) ∈ V
28 ovex 6915 . . . . 5 (𝑋 RngHomo 𝑌) ∈ V
2927, 28mpt2ex 7489 . . . 4 (𝑔 ∈ (𝑌 RngHomo 𝑍), 𝑓 ∈ (𝑋 RngHomo 𝑌) ↦ (𝑔𝑓)) ∈ V
3029a1i 11 . . 3 (𝜑 → (𝑔 ∈ (𝑌 RngHomo 𝑍), 𝑓 ∈ (𝑋 RngHomo 𝑌) ↦ (𝑔𝑓)) ∈ V)
315, 23, 25, 26, 30ovmpt2d 7027 . 2 (𝜑 → (⟨𝑋, 𝑌· 𝑍) = (𝑔 ∈ (𝑌 RngHomo 𝑍), 𝑓 ∈ (𝑋 RngHomo 𝑌) ↦ (𝑔𝑓)))
32 simprl 778 . . 3 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑔 = 𝐺)
33 simprr 780 . . 3 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑓 = 𝐹)
3432, 33coeq12d 5501 . 2 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (𝑔𝑓) = (𝐺𝐹))
35 rngccoALTV.g . 2 (𝜑𝐺 ∈ (𝑌 RngHomo 𝑍))
36 rngccoALTV.f . 2 (𝜑𝐹 ∈ (𝑋 RngHomo 𝑌))
37 coexg 7356 . . 3 ((𝐺 ∈ (𝑌 RngHomo 𝑍) ∧ 𝐹 ∈ (𝑋 RngHomo 𝑌)) → (𝐺𝐹) ∈ V)
3835, 36, 37syl2anc 575 . 2 (𝜑 → (𝐺𝐹) ∈ V)
3931, 34, 35, 36, 38ovmpt2d 7027 1 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1637  wcel 2157  Vcvv 3402  cop 4387   × cxp 5322  ccom 5328  cfv 6110  (class class class)co 6883  cmpt2 6885  1st c1st 7405  2nd c2nd 7406  Basecbs 16087  compcco 16184   RngHomo crngh 42470  RngCatALTVcrngcALTV 42543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-rep 4977  ax-sep 4988  ax-nul 4996  ax-pow 5048  ax-pr 5109  ax-un 7188  ax-cnex 10286  ax-resscn 10287  ax-1cn 10288  ax-icn 10289  ax-addcl 10290  ax-addrcl 10291  ax-mulcl 10292  ax-mulrcl 10293  ax-mulcom 10294  ax-addass 10295  ax-mulass 10296  ax-distr 10297  ax-i2m1 10298  ax-1ne0 10299  ax-1rid 10300  ax-rnegex 10301  ax-rrecex 10302  ax-cnre 10303  ax-pre-lttri 10304  ax-pre-lttrn 10305  ax-pre-ltadd 10306  ax-pre-mulgt0 10307
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-uni 4642  df-int 4681  df-iun 4725  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5232  df-eprel 5237  df-po 5245  df-so 5246  df-fr 5283  df-we 5285  df-xp 5330  df-rel 5331  df-cnv 5332  df-co 5333  df-dm 5334  df-rn 5335  df-res 5336  df-ima 5337  df-pred 5906  df-ord 5952  df-on 5953  df-lim 5954  df-suc 5955  df-iota 6073  df-fun 6112  df-fn 6113  df-f 6114  df-f1 6115  df-fo 6116  df-f1o 6117  df-fv 6118  df-riota 6844  df-ov 6886  df-oprab 6887  df-mpt2 6888  df-om 7305  df-1st 7407  df-2nd 7408  df-wrecs 7651  df-recs 7713  df-rdg 7751  df-1o 7805  df-oadd 7809  df-er 7988  df-en 8202  df-dom 8203  df-sdom 8204  df-fin 8205  df-pnf 10370  df-mnf 10371  df-xr 10372  df-ltxr 10373  df-le 10374  df-sub 10562  df-neg 10563  df-nn 11315  df-2 11375  df-3 11376  df-4 11377  df-5 11378  df-6 11379  df-7 11380  df-8 11381  df-9 11382  df-n0 11579  df-z 11663  df-dec 11779  df-uz 11924  df-fz 12569  df-struct 16089  df-ndx 16090  df-slot 16091  df-base 16093  df-hom 16196  df-cco 16197  df-rngcALTV 42545
This theorem is referenced by:  rngccatidALTV  42574  rngcsectALTV  42577  rhmsubcALTVlem4  42692
  Copyright terms: Public domain W3C validator