Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngccoALTV | Structured version Visualization version GIF version |
Description: Composition in the category of non-unital rings. (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.) |
Ref | Expression |
---|---|
rngcbasALTV.c | ⊢ 𝐶 = (RngCatALTV‘𝑈) |
rngcbasALTV.b | ⊢ 𝐵 = (Base‘𝐶) |
rngcbasALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngccofvalALTV.o | ⊢ · = (comp‘𝐶) |
rngccoALTV.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
rngccoALTV.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
rngccoALTV.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
rngccoALTV.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋 RngHomo 𝑌)) |
rngccoALTV.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌 RngHomo 𝑍)) |
Ref | Expression |
---|---|
rngccoALTV | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcbasALTV.c | . . . 4 ⊢ 𝐶 = (RngCatALTV‘𝑈) | |
2 | rngcbasALTV.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
3 | rngcbasALTV.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
4 | rngccofvalALTV.o | . . . 4 ⊢ · = (comp‘𝐶) | |
5 | 1, 2, 3, 4 | rngccofvalALTV 45804 | . . 3 ⊢ (𝜑 → · = (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))) |
6 | simprl 768 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑣 = 〈𝑋, 𝑌〉) | |
7 | 6 | fveq2d 6813 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘𝑣) = (2nd ‘〈𝑋, 𝑌〉)) |
8 | rngccoALTV.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | rngccoALTV.y | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
10 | op2ndg 7887 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) | |
11 | 8, 9, 10 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
12 | 11 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
13 | 7, 12 | eqtrd 2777 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘𝑣) = 𝑌) |
14 | simprr 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑧 = 𝑍) | |
15 | 13, 14 | oveq12d 7331 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → ((2nd ‘𝑣) RngHomo 𝑧) = (𝑌 RngHomo 𝑍)) |
16 | 6 | fveq2d 6813 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (1st ‘𝑣) = (1st ‘〈𝑋, 𝑌〉)) |
17 | op1stg 7886 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) | |
18 | 8, 9, 17 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (1st ‘〈𝑋, 𝑌〉) = 𝑋) |
19 | 18 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) |
20 | 16, 19 | eqtrd 2777 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (1st ‘𝑣) = 𝑋) |
21 | 20, 13 | oveq12d 7331 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) = (𝑋 RngHomo 𝑌)) |
22 | eqidd 2738 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑔 ∘ 𝑓) = (𝑔 ∘ 𝑓)) | |
23 | 15, 21, 22 | mpoeq123dv 7388 | . . 3 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑔 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)) = (𝑔 ∈ (𝑌 RngHomo 𝑍), 𝑓 ∈ (𝑋 RngHomo 𝑌) ↦ (𝑔 ∘ 𝑓))) |
24 | opelxpi 5642 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) | |
25 | 8, 9, 24 | syl2anc 584 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
26 | rngccoALTV.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
27 | ovex 7346 | . . . . 5 ⊢ (𝑌 RngHomo 𝑍) ∈ V | |
28 | ovex 7346 | . . . . 5 ⊢ (𝑋 RngHomo 𝑌) ∈ V | |
29 | 27, 28 | mpoex 7963 | . . . 4 ⊢ (𝑔 ∈ (𝑌 RngHomo 𝑍), 𝑓 ∈ (𝑋 RngHomo 𝑌) ↦ (𝑔 ∘ 𝑓)) ∈ V |
30 | 29 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑔 ∈ (𝑌 RngHomo 𝑍), 𝑓 ∈ (𝑋 RngHomo 𝑌) ↦ (𝑔 ∘ 𝑓)) ∈ V) |
31 | 5, 23, 25, 26, 30 | ovmpod 7463 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 · 𝑍) = (𝑔 ∈ (𝑌 RngHomo 𝑍), 𝑓 ∈ (𝑋 RngHomo 𝑌) ↦ (𝑔 ∘ 𝑓))) |
32 | simprl 768 | . . 3 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → 𝑔 = 𝐺) | |
33 | simprr 770 | . . 3 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → 𝑓 = 𝐹) | |
34 | 32, 33 | coeq12d 5791 | . 2 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → (𝑔 ∘ 𝑓) = (𝐺 ∘ 𝐹)) |
35 | rngccoALTV.g | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝑌 RngHomo 𝑍)) | |
36 | rngccoALTV.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑋 RngHomo 𝑌)) | |
37 | coexg 7819 | . . 3 ⊢ ((𝐺 ∈ (𝑌 RngHomo 𝑍) ∧ 𝐹 ∈ (𝑋 RngHomo 𝑌)) → (𝐺 ∘ 𝐹) ∈ V) | |
38 | 35, 36, 37 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ V) |
39 | 31, 34, 35, 36, 38 | ovmpod 7463 | 1 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 Vcvv 3441 〈cop 4575 × cxp 5603 ∘ ccom 5609 ‘cfv 6463 (class class class)co 7313 ∈ cmpo 7315 1st c1st 7872 2nd c2nd 7873 Basecbs 16979 compcco 17041 RngHomo crngh 45702 RngCatALTVcrngcALTV 45775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-tp 4574 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-1st 7874 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-1o 8342 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-fin 8783 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-2 12106 df-3 12107 df-4 12108 df-5 12109 df-6 12110 df-7 12111 df-8 12112 df-9 12113 df-n0 12304 df-z 12390 df-dec 12508 df-uz 12653 df-fz 13310 df-struct 16915 df-slot 16950 df-ndx 16962 df-base 16980 df-hom 17053 df-cco 17054 df-rngcALTV 45777 |
This theorem is referenced by: rngccatidALTV 45806 rngcsectALTV 45809 rhmsubcALTVlem4 45924 |
Copyright terms: Public domain | W3C validator |