![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngccoALTV | Structured version Visualization version GIF version |
Description: Composition in the category of non-unital rings. (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.) |
Ref | Expression |
---|---|
rngcbasALTV.c | ⊢ 𝐶 = (RngCatALTV‘𝑈) |
rngcbasALTV.b | ⊢ 𝐵 = (Base‘𝐶) |
rngcbasALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngccofvalALTV.o | ⊢ · = (comp‘𝐶) |
rngccoALTV.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
rngccoALTV.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
rngccoALTV.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
rngccoALTV.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋 RngHom 𝑌)) |
rngccoALTV.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌 RngHom 𝑍)) |
Ref | Expression |
---|---|
rngccoALTV | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcbasALTV.c | . . . 4 ⊢ 𝐶 = (RngCatALTV‘𝑈) | |
2 | rngcbasALTV.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
3 | rngcbasALTV.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
4 | rngccofvalALTV.o | . . . 4 ⊢ · = (comp‘𝐶) | |
5 | 1, 2, 3, 4 | rngccofvalALTV 47323 | . . 3 ⊢ (𝜑 → · = (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHom (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))) |
6 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑣 = 〈𝑋, 𝑌〉) | |
7 | 6 | fveq2d 6896 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘𝑣) = (2nd ‘〈𝑋, 𝑌〉)) |
8 | rngccoALTV.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | rngccoALTV.y | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
10 | op2ndg 8001 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) | |
11 | 8, 9, 10 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
13 | 7, 12 | eqtrd 2768 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘𝑣) = 𝑌) |
14 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑧 = 𝑍) | |
15 | 13, 14 | oveq12d 7433 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → ((2nd ‘𝑣) RngHom 𝑧) = (𝑌 RngHom 𝑍)) |
16 | 6 | fveq2d 6896 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (1st ‘𝑣) = (1st ‘〈𝑋, 𝑌〉)) |
17 | op1stg 8000 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) | |
18 | 8, 9, 17 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → (1st ‘〈𝑋, 𝑌〉) = 𝑋) |
19 | 18 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) |
20 | 16, 19 | eqtrd 2768 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (1st ‘𝑣) = 𝑋) |
21 | 20, 13 | oveq12d 7433 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → ((1st ‘𝑣) RngHom (2nd ‘𝑣)) = (𝑋 RngHom 𝑌)) |
22 | eqidd 2729 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑔 ∘ 𝑓) = (𝑔 ∘ 𝑓)) | |
23 | 15, 21, 22 | mpoeq123dv 7490 | . . 3 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑔 ∈ ((2nd ‘𝑣) RngHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHom (2nd ‘𝑣)) ↦ (𝑔 ∘ 𝑓)) = (𝑔 ∈ (𝑌 RngHom 𝑍), 𝑓 ∈ (𝑋 RngHom 𝑌) ↦ (𝑔 ∘ 𝑓))) |
24 | opelxpi 5710 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) | |
25 | 8, 9, 24 | syl2anc 583 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
26 | rngccoALTV.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
27 | ovex 7448 | . . . . 5 ⊢ (𝑌 RngHom 𝑍) ∈ V | |
28 | ovex 7448 | . . . . 5 ⊢ (𝑋 RngHom 𝑌) ∈ V | |
29 | 27, 28 | mpoex 8079 | . . . 4 ⊢ (𝑔 ∈ (𝑌 RngHom 𝑍), 𝑓 ∈ (𝑋 RngHom 𝑌) ↦ (𝑔 ∘ 𝑓)) ∈ V |
30 | 29 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑔 ∈ (𝑌 RngHom 𝑍), 𝑓 ∈ (𝑋 RngHom 𝑌) ↦ (𝑔 ∘ 𝑓)) ∈ V) |
31 | 5, 23, 25, 26, 30 | ovmpod 7568 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 · 𝑍) = (𝑔 ∈ (𝑌 RngHom 𝑍), 𝑓 ∈ (𝑋 RngHom 𝑌) ↦ (𝑔 ∘ 𝑓))) |
32 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → 𝑔 = 𝐺) | |
33 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → 𝑓 = 𝐹) | |
34 | 32, 33 | coeq12d 5862 | . 2 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → (𝑔 ∘ 𝑓) = (𝐺 ∘ 𝐹)) |
35 | rngccoALTV.g | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝑌 RngHom 𝑍)) | |
36 | rngccoALTV.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑋 RngHom 𝑌)) | |
37 | coexg 7932 | . . 3 ⊢ ((𝐺 ∈ (𝑌 RngHom 𝑍) ∧ 𝐹 ∈ (𝑋 RngHom 𝑌)) → (𝐺 ∘ 𝐹) ∈ V) | |
38 | 35, 36, 37 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ V) |
39 | 31, 34, 35, 36, 38 | ovmpod 7568 | 1 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3470 〈cop 4631 × cxp 5671 ∘ ccom 5677 ‘cfv 6543 (class class class)co 7415 ∈ cmpo 7417 1st c1st 7986 2nd c2nd 7987 Basecbs 17174 compcco 17239 RngHom crnghm 20367 RngCatALTVcrngcALTV 47316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-1st 7988 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-z 12584 df-dec 12703 df-uz 12848 df-fz 13512 df-struct 17110 df-slot 17145 df-ndx 17157 df-base 17175 df-hom 17251 df-cco 17252 df-rngcALTV 47317 |
This theorem is referenced by: rngccatidALTV 47325 rngcsectALTV 47328 rhmsubcALTVlem4 47337 |
Copyright terms: Public domain | W3C validator |