![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symgov | Structured version Visualization version GIF version |
Description: The value of the group operation of the symmetric group on 𝐴. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 28-Jan-2015.) (Revised by AV, 30-Mar-2024.) |
Ref | Expression |
---|---|
symgov.1 | ⊢ 𝐺 = (SymGrp‘𝐴) |
symgov.2 | ⊢ 𝐵 = (Base‘𝐺) |
symgov.3 | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
symgov | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑋 ∘ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgov.1 | . . . 4 ⊢ 𝐺 = (SymGrp‘𝐴) | |
2 | eqid 2732 | . . . 4 ⊢ (𝐴 ↑m 𝐴) = (𝐴 ↑m 𝐴) | |
3 | symgov.3 | . . . 4 ⊢ + = (+g‘𝐺) | |
4 | 1, 2, 3 | symgplusg 19291 | . . 3 ⊢ + = (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) |
5 | 4 | a1i 11 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → + = (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))) |
6 | simpl 483 | . . . 4 ⊢ ((𝑓 = 𝑋 ∧ 𝑔 = 𝑌) → 𝑓 = 𝑋) | |
7 | simpr 485 | . . . 4 ⊢ ((𝑓 = 𝑋 ∧ 𝑔 = 𝑌) → 𝑔 = 𝑌) | |
8 | 6, 7 | coeq12d 5864 | . . 3 ⊢ ((𝑓 = 𝑋 ∧ 𝑔 = 𝑌) → (𝑓 ∘ 𝑔) = (𝑋 ∘ 𝑌)) |
9 | 8 | adantl 482 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑓 = 𝑋 ∧ 𝑔 = 𝑌)) → (𝑓 ∘ 𝑔) = (𝑋 ∘ 𝑌)) |
10 | symgov.2 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
11 | 1, 10 | symgbasmap 19285 | . . 3 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (𝐴 ↑m 𝐴)) |
12 | 11 | adantr 481 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ (𝐴 ↑m 𝐴)) |
13 | 1, 10 | symgbasmap 19285 | . . 3 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ (𝐴 ↑m 𝐴)) |
14 | 13 | adantl 482 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ (𝐴 ↑m 𝐴)) |
15 | coexg 7922 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∘ 𝑌) ∈ V) | |
16 | 5, 9, 12, 14, 15 | ovmpod 7562 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑋 ∘ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∘ ccom 5680 ‘cfv 6543 (class class class)co 7411 ∈ cmpo 7413 ↑m cmap 8822 Basecbs 17148 +gcplusg 17201 SymGrpcsymg 19275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-tset 17220 df-efmnd 18786 df-symg 19276 |
This theorem is referenced by: symgcl 19293 symggrp 19309 symginv 19311 galactghm 19313 lactghmga 19314 gsumccatsymgsn 19335 symgsssg 19376 symgfisg 19377 symggen 19379 psgnunilem5 19403 psgnunilem2 19404 psgnco 21355 mdetralt 22330 mdetunilem7 22340 symgfcoeu 32501 symgcntz 32504 odpmco 32505 symgsubg 32506 fzto1st 32520 cyc3co2 32557 cycpmconjv 32559 cyc3evpm 32567 cyc3genpmlem 32568 cycpmconjs 32573 cyc3conja 32574 mdetpmtr1 33089 madjusmdetlem3 33095 madjusmdetlem4 33096 pgrpgt2nabl 47131 |
Copyright terms: Public domain | W3C validator |