MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgov Structured version   Visualization version   GIF version

Theorem symgov 19401
Description: The value of the group operation of the symmetric group on 𝐴. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 28-Jan-2015.) (Revised by AV, 30-Mar-2024.)
Hypotheses
Ref Expression
symgov.1 𝐺 = (SymGrp‘𝐴)
symgov.2 𝐵 = (Base‘𝐺)
symgov.3 + = (+g𝐺)
Assertion
Ref Expression
symgov ((𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑋𝑌))

Proof of Theorem symgov
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 symgov.1 . . . 4 𝐺 = (SymGrp‘𝐴)
2 eqid 2737 . . . 4 (𝐴m 𝐴) = (𝐴m 𝐴)
3 symgov.3 . . . 4 + = (+g𝐺)
41, 2, 3symgplusg 19400 . . 3 + = (𝑓 ∈ (𝐴m 𝐴), 𝑔 ∈ (𝐴m 𝐴) ↦ (𝑓𝑔))
54a1i 11 . 2 ((𝑋𝐵𝑌𝐵) → + = (𝑓 ∈ (𝐴m 𝐴), 𝑔 ∈ (𝐴m 𝐴) ↦ (𝑓𝑔)))
6 simpl 482 . . . 4 ((𝑓 = 𝑋𝑔 = 𝑌) → 𝑓 = 𝑋)
7 simpr 484 . . . 4 ((𝑓 = 𝑋𝑔 = 𝑌) → 𝑔 = 𝑌)
86, 7coeq12d 5875 . . 3 ((𝑓 = 𝑋𝑔 = 𝑌) → (𝑓𝑔) = (𝑋𝑌))
98adantl 481 . 2 (((𝑋𝐵𝑌𝐵) ∧ (𝑓 = 𝑋𝑔 = 𝑌)) → (𝑓𝑔) = (𝑋𝑌))
10 symgov.2 . . . 4 𝐵 = (Base‘𝐺)
111, 10symgbasmap 19394 . . 3 (𝑋𝐵𝑋 ∈ (𝐴m 𝐴))
1211adantr 480 . 2 ((𝑋𝐵𝑌𝐵) → 𝑋 ∈ (𝐴m 𝐴))
131, 10symgbasmap 19394 . . 3 (𝑌𝐵𝑌 ∈ (𝐴m 𝐴))
1413adantl 481 . 2 ((𝑋𝐵𝑌𝐵) → 𝑌 ∈ (𝐴m 𝐴))
15 coexg 7951 . 2 ((𝑋𝐵𝑌𝐵) → (𝑋𝑌) ∈ V)
165, 9, 12, 14, 15ovmpod 7585 1 ((𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑋𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  ccom 5689  cfv 6561  (class class class)co 7431  cmpo 7433  m cmap 8866  Basecbs 17247  +gcplusg 17297  SymGrpcsymg 19386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-tset 17316  df-efmnd 18882  df-symg 19387
This theorem is referenced by:  symgcl  19402  symggrp  19418  symginv  19420  galactghm  19422  lactghmga  19423  gsumccatsymgsn  19444  symgsssg  19485  symgfisg  19486  symggen  19488  psgnunilem5  19512  psgnunilem2  19513  psgnco  21601  mdetralt  22614  mdetunilem7  22624  symgfcoeu  33102  symgcntz  33105  odpmco  33106  symgsubg  33107  fzto1st  33123  cyc3co2  33160  cycpmconjv  33162  cyc3evpm  33170  cyc3genpmlem  33171  cycpmconjs  33176  cyc3conja  33177  mdetpmtr1  33822  madjusmdetlem3  33828  madjusmdetlem4  33829  pgrpgt2nabl  48282
  Copyright terms: Public domain W3C validator