Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > symgov | Structured version Visualization version GIF version |
Description: The value of the group operation of the symmetric group on 𝐴. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 28-Jan-2015.) (Revised by AV, 30-Mar-2024.) |
Ref | Expression |
---|---|
symgov.1 | ⊢ 𝐺 = (SymGrp‘𝐴) |
symgov.2 | ⊢ 𝐵 = (Base‘𝐺) |
symgov.3 | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
symgov | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑋 ∘ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgov.1 | . . . 4 ⊢ 𝐺 = (SymGrp‘𝐴) | |
2 | eqid 2759 | . . . 4 ⊢ (𝐴 ↑m 𝐴) = (𝐴 ↑m 𝐴) | |
3 | symgov.3 | . . . 4 ⊢ + = (+g‘𝐺) | |
4 | 1, 2, 3 | symgplusg 18571 | . . 3 ⊢ + = (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) |
5 | 4 | a1i 11 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → + = (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))) |
6 | simpl 487 | . . . 4 ⊢ ((𝑓 = 𝑋 ∧ 𝑔 = 𝑌) → 𝑓 = 𝑋) | |
7 | simpr 489 | . . . 4 ⊢ ((𝑓 = 𝑋 ∧ 𝑔 = 𝑌) → 𝑔 = 𝑌) | |
8 | 6, 7 | coeq12d 5705 | . . 3 ⊢ ((𝑓 = 𝑋 ∧ 𝑔 = 𝑌) → (𝑓 ∘ 𝑔) = (𝑋 ∘ 𝑌)) |
9 | 8 | adantl 486 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑓 = 𝑋 ∧ 𝑔 = 𝑌)) → (𝑓 ∘ 𝑔) = (𝑋 ∘ 𝑌)) |
10 | symgov.2 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
11 | 1, 10 | symgbasmap 18565 | . . 3 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (𝐴 ↑m 𝐴)) |
12 | 11 | adantr 485 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ (𝐴 ↑m 𝐴)) |
13 | 1, 10 | symgbasmap 18565 | . . 3 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ (𝐴 ↑m 𝐴)) |
14 | 13 | adantl 486 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ (𝐴 ↑m 𝐴)) |
15 | coexg 7640 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∘ 𝑌) ∈ V) | |
16 | 5, 9, 12, 14, 15 | ovmpod 7298 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑋 ∘ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 Vcvv 3410 ∘ ccom 5529 ‘cfv 6336 (class class class)co 7151 ∈ cmpo 7153 ↑m cmap 8417 Basecbs 16534 +gcplusg 16616 SymGrpcsymg 18555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-oadd 8117 df-er 8300 df-map 8419 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-nn 11668 df-2 11730 df-3 11731 df-4 11732 df-5 11733 df-6 11734 df-7 11735 df-8 11736 df-9 11737 df-n0 11928 df-z 12014 df-uz 12276 df-fz 12933 df-struct 16536 df-ndx 16537 df-slot 16538 df-base 16540 df-sets 16541 df-ress 16542 df-plusg 16629 df-tset 16635 df-efmnd 18093 df-symg 18556 |
This theorem is referenced by: symgcl 18573 symggrp 18588 symginv 18590 galactghm 18592 lactghmga 18593 gsumccatsymgsn 18614 symgsssg 18655 symgfisg 18656 symggen 18658 psgnunilem5 18682 psgnunilem2 18683 psgnco 20341 mdetralt 21301 mdetunilem7 21311 symgfcoeu 30870 symgcntz 30873 odpmco 30874 symgsubg 30875 fzto1st 30889 cyc3co2 30926 cycpmconjv 30928 cyc3evpm 30936 cyc3genpmlem 30937 cycpmconjs 30942 cyc3conja 30943 mdetpmtr1 31287 madjusmdetlem3 31293 madjusmdetlem4 31294 pgrpgt2nabl 45128 |
Copyright terms: Public domain | W3C validator |