Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgov Structured version   Visualization version   GIF version

Theorem symgov 18572
 Description: The value of the group operation of the symmetric group on 𝐴. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 28-Jan-2015.) (Revised by AV, 30-Mar-2024.)
Hypotheses
Ref Expression
symgov.1 𝐺 = (SymGrp‘𝐴)
symgov.2 𝐵 = (Base‘𝐺)
symgov.3 + = (+g𝐺)
Assertion
Ref Expression
symgov ((𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑋𝑌))

Proof of Theorem symgov
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 symgov.1 . . . 4 𝐺 = (SymGrp‘𝐴)
2 eqid 2759 . . . 4 (𝐴m 𝐴) = (𝐴m 𝐴)
3 symgov.3 . . . 4 + = (+g𝐺)
41, 2, 3symgplusg 18571 . . 3 + = (𝑓 ∈ (𝐴m 𝐴), 𝑔 ∈ (𝐴m 𝐴) ↦ (𝑓𝑔))
54a1i 11 . 2 ((𝑋𝐵𝑌𝐵) → + = (𝑓 ∈ (𝐴m 𝐴), 𝑔 ∈ (𝐴m 𝐴) ↦ (𝑓𝑔)))
6 simpl 487 . . . 4 ((𝑓 = 𝑋𝑔 = 𝑌) → 𝑓 = 𝑋)
7 simpr 489 . . . 4 ((𝑓 = 𝑋𝑔 = 𝑌) → 𝑔 = 𝑌)
86, 7coeq12d 5705 . . 3 ((𝑓 = 𝑋𝑔 = 𝑌) → (𝑓𝑔) = (𝑋𝑌))
98adantl 486 . 2 (((𝑋𝐵𝑌𝐵) ∧ (𝑓 = 𝑋𝑔 = 𝑌)) → (𝑓𝑔) = (𝑋𝑌))
10 symgov.2 . . . 4 𝐵 = (Base‘𝐺)
111, 10symgbasmap 18565 . . 3 (𝑋𝐵𝑋 ∈ (𝐴m 𝐴))
1211adantr 485 . 2 ((𝑋𝐵𝑌𝐵) → 𝑋 ∈ (𝐴m 𝐴))
131, 10symgbasmap 18565 . . 3 (𝑌𝐵𝑌 ∈ (𝐴m 𝐴))
1413adantl 486 . 2 ((𝑋𝐵𝑌𝐵) → 𝑌 ∈ (𝐴m 𝐴))
15 coexg 7640 . 2 ((𝑋𝐵𝑌𝐵) → (𝑋𝑌) ∈ V)
165, 9, 12, 14, 15ovmpod 7298 1 ((𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑋𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 400   = wceq 1539   ∈ wcel 2112  Vcvv 3410   ∘ ccom 5529  ‘cfv 6336  (class class class)co 7151   ∈ cmpo 7153   ↑m cmap 8417  Basecbs 16534  +gcplusg 16616  SymGrpcsymg 18555 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-oadd 8117  df-er 8300  df-map 8419  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-nn 11668  df-2 11730  df-3 11731  df-4 11732  df-5 11733  df-6 11734  df-7 11735  df-8 11736  df-9 11737  df-n0 11928  df-z 12014  df-uz 12276  df-fz 12933  df-struct 16536  df-ndx 16537  df-slot 16538  df-base 16540  df-sets 16541  df-ress 16542  df-plusg 16629  df-tset 16635  df-efmnd 18093  df-symg 18556 This theorem is referenced by:  symgcl  18573  symggrp  18588  symginv  18590  galactghm  18592  lactghmga  18593  gsumccatsymgsn  18614  symgsssg  18655  symgfisg  18656  symggen  18658  psgnunilem5  18682  psgnunilem2  18683  psgnco  20341  mdetralt  21301  mdetunilem7  21311  symgfcoeu  30870  symgcntz  30873  odpmco  30874  symgsubg  30875  fzto1st  30889  cyc3co2  30926  cycpmconjv  30928  cyc3evpm  30936  cyc3genpmlem  30937  cycpmconjs  30942  cyc3conja  30943  mdetpmtr1  31287  madjusmdetlem3  31293  madjusmdetlem4  31294  pgrpgt2nabl  45128
 Copyright terms: Public domain W3C validator