| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > symgov | Structured version Visualization version GIF version | ||
| Description: The value of the group operation of the symmetric group on 𝐴. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 28-Jan-2015.) (Revised by AV, 30-Mar-2024.) |
| Ref | Expression |
|---|---|
| symgov.1 | ⊢ 𝐺 = (SymGrp‘𝐴) |
| symgov.2 | ⊢ 𝐵 = (Base‘𝐺) |
| symgov.3 | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| symgov | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑋 ∘ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgov.1 | . . . 4 ⊢ 𝐺 = (SymGrp‘𝐴) | |
| 2 | eqid 2729 | . . . 4 ⊢ (𝐴 ↑m 𝐴) = (𝐴 ↑m 𝐴) | |
| 3 | symgov.3 | . . . 4 ⊢ + = (+g‘𝐺) | |
| 4 | 1, 2, 3 | symgplusg 19298 | . . 3 ⊢ + = (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔)) |
| 5 | 4 | a1i 11 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → + = (𝑓 ∈ (𝐴 ↑m 𝐴), 𝑔 ∈ (𝐴 ↑m 𝐴) ↦ (𝑓 ∘ 𝑔))) |
| 6 | simpl 482 | . . . 4 ⊢ ((𝑓 = 𝑋 ∧ 𝑔 = 𝑌) → 𝑓 = 𝑋) | |
| 7 | simpr 484 | . . . 4 ⊢ ((𝑓 = 𝑋 ∧ 𝑔 = 𝑌) → 𝑔 = 𝑌) | |
| 8 | 6, 7 | coeq12d 5818 | . . 3 ⊢ ((𝑓 = 𝑋 ∧ 𝑔 = 𝑌) → (𝑓 ∘ 𝑔) = (𝑋 ∘ 𝑌)) |
| 9 | 8 | adantl 481 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑓 = 𝑋 ∧ 𝑔 = 𝑌)) → (𝑓 ∘ 𝑔) = (𝑋 ∘ 𝑌)) |
| 10 | symgov.2 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 11 | 1, 10 | symgbasmap 19292 | . . 3 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (𝐴 ↑m 𝐴)) |
| 12 | 11 | adantr 480 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ (𝐴 ↑m 𝐴)) |
| 13 | 1, 10 | symgbasmap 19292 | . . 3 ⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ (𝐴 ↑m 𝐴)) |
| 14 | 13 | adantl 481 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ (𝐴 ↑m 𝐴)) |
| 15 | coexg 7885 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∘ 𝑌) ∈ V) | |
| 16 | 5, 9, 12, 14, 15 | ovmpod 7521 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑋 ∘ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∘ ccom 5635 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 ↑m cmap 8776 Basecbs 17156 +gcplusg 17197 SymGrpcsymg 19284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-nn 12165 df-2 12227 df-3 12228 df-4 12229 df-5 12230 df-6 12231 df-7 12232 df-8 12233 df-9 12234 df-n0 12421 df-z 12508 df-uz 12772 df-fz 13447 df-struct 17094 df-sets 17111 df-slot 17129 df-ndx 17141 df-base 17157 df-ress 17178 df-plusg 17210 df-tset 17216 df-efmnd 18779 df-symg 19285 |
| This theorem is referenced by: symgcl 19300 symggrp 19315 symginv 19317 galactghm 19319 lactghmga 19320 gsumccatsymgsn 19341 symgsssg 19382 symgfisg 19383 symggen 19385 psgnunilem5 19409 psgnunilem2 19410 psgnco 21526 mdetralt 22529 mdetunilem7 22539 symgfcoeu 33055 symgcntz 33058 odpmco 33059 symgsubg 33060 fzto1st 33076 cyc3co2 33113 cycpmconjv 33115 cyc3evpm 33123 cyc3genpmlem 33124 cycpmconjs 33129 cyc3conja 33130 mdetpmtr1 33807 madjusmdetlem3 33813 madjusmdetlem4 33814 pgrpgt2nabl 48348 |
| Copyright terms: Public domain | W3C validator |