![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > itcovalsucov | Structured version Visualization version GIF version |
Description: The value of the function that returns the n-th iterate of a function with regard to composition at a successor. (Contributed by AV, 4-May-2024.) |
Ref | Expression |
---|---|
itcovalsucov | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → ((IterComp‘𝐹)‘(𝑌 + 1)) = (𝐹 ∘ 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itcovalsuc 47001 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → ((IterComp‘𝐹)‘(𝑌 + 1)) = (𝐺(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔))𝐹)) | |
2 | eqidd 2732 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)) = (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔))) | |
3 | coeq2 5850 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝐹 ∘ 𝑔) = (𝐹 ∘ 𝐺)) | |
4 | 3 | ad2antrl 726 | . . 3 ⊢ (((𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) ∧ (𝑔 = 𝐺 ∧ 𝑗 = 𝐹)) → (𝐹 ∘ 𝑔) = (𝐹 ∘ 𝐺)) |
5 | id 22 | . . . . . 6 ⊢ (𝐺 = ((IterComp‘𝐹)‘𝑌) → 𝐺 = ((IterComp‘𝐹)‘𝑌)) | |
6 | fvex 6891 | . . . . . 6 ⊢ ((IterComp‘𝐹)‘𝑌) ∈ V | |
7 | 5, 6 | eqeltrdi 2840 | . . . . 5 ⊢ (𝐺 = ((IterComp‘𝐹)‘𝑌) → 𝐺 ∈ V) |
8 | 7 | eqcoms 2739 | . . . 4 ⊢ (((IterComp‘𝐹)‘𝑌) = 𝐺 → 𝐺 ∈ V) |
9 | 8 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → 𝐺 ∈ V) |
10 | elex 3491 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
11 | 10 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → 𝐹 ∈ V) |
12 | 8 | anim2i 617 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ V)) |
13 | 12 | 3adant2 1131 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ V)) |
14 | coexg 7902 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ V) → (𝐹 ∘ 𝐺) ∈ V) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (𝐹 ∘ 𝐺) ∈ V) |
16 | 2, 4, 9, 11, 15 | ovmpod 7543 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (𝐺(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔))𝐹) = (𝐹 ∘ 𝐺)) |
17 | 1, 16 | eqtrd 2771 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → ((IterComp‘𝐹)‘(𝑌 + 1)) = (𝐹 ∘ 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 Vcvv 3473 ∘ ccom 5673 ‘cfv 6532 (class class class)co 7393 ∈ cmpo 7395 1c1 11093 + caddc 11095 ℕ0cn0 12454 IterCompcitco 46991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-inf2 9618 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-er 8686 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-nn 12195 df-n0 12455 df-z 12541 df-uz 12805 df-seq 13949 df-itco 46993 |
This theorem is referenced by: itcovalendof 47003 itcovalpclem2 47005 itcovalt2lem2 47010 ackvalsucsucval 47022 |
Copyright terms: Public domain | W3C validator |