Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcovalsucov Structured version   Visualization version   GIF version

Theorem itcovalsucov 46014
Description: The value of the function that returns the n-th iterate of a function with regard to composition at a successor. (Contributed by AV, 4-May-2024.)
Assertion
Ref Expression
itcovalsucov ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → ((IterComp‘𝐹)‘(𝑌 + 1)) = (𝐹𝐺))

Proof of Theorem itcovalsucov
Dummy variables 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itcovalsuc 46013 . 2 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → ((IterComp‘𝐹)‘(𝑌 + 1)) = (𝐺(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔))𝐹))
2 eqidd 2739 . . 3 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)) = (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)))
3 coeq2 5767 . . . 4 (𝑔 = 𝐺 → (𝐹𝑔) = (𝐹𝐺))
43ad2antrl 725 . . 3 (((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) ∧ (𝑔 = 𝐺𝑗 = 𝐹)) → (𝐹𝑔) = (𝐹𝐺))
5 id 22 . . . . . 6 (𝐺 = ((IterComp‘𝐹)‘𝑌) → 𝐺 = ((IterComp‘𝐹)‘𝑌))
6 fvex 6787 . . . . . 6 ((IterComp‘𝐹)‘𝑌) ∈ V
75, 6eqeltrdi 2847 . . . . 5 (𝐺 = ((IterComp‘𝐹)‘𝑌) → 𝐺 ∈ V)
87eqcoms 2746 . . . 4 (((IterComp‘𝐹)‘𝑌) = 𝐺𝐺 ∈ V)
983ad2ant3 1134 . . 3 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → 𝐺 ∈ V)
10 elex 3450 . . . 4 (𝐹𝑉𝐹 ∈ V)
11103ad2ant1 1132 . . 3 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → 𝐹 ∈ V)
128anim2i 617 . . . . 5 ((𝐹𝑉 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (𝐹𝑉𝐺 ∈ V))
13123adant2 1130 . . . 4 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (𝐹𝑉𝐺 ∈ V))
14 coexg 7776 . . . 4 ((𝐹𝑉𝐺 ∈ V) → (𝐹𝐺) ∈ V)
1513, 14syl 17 . . 3 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (𝐹𝐺) ∈ V)
162, 4, 9, 11, 15ovmpod 7425 . 2 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (𝐺(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔))𝐹) = (𝐹𝐺))
171, 16eqtrd 2778 1 ((𝐹𝑉𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → ((IterComp‘𝐹)‘(𝑌 + 1)) = (𝐹𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  ccom 5593  cfv 6433  (class class class)co 7275  cmpo 7277  1c1 10872   + caddc 10874  0cn0 12233  IterCompcitco 46003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-seq 13722  df-itco 46005
This theorem is referenced by:  itcovalendof  46015  itcovalpclem2  46017  itcovalt2lem2  46022  ackvalsucsucval  46034
  Copyright terms: Public domain W3C validator