| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > itcovalsucov | Structured version Visualization version GIF version | ||
| Description: The value of the function that returns the n-th iterate of a function with regard to composition at a successor. (Contributed by AV, 4-May-2024.) |
| Ref | Expression |
|---|---|
| itcovalsucov | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → ((IterComp‘𝐹)‘(𝑌 + 1)) = (𝐹 ∘ 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itcovalsuc 48792 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → ((IterComp‘𝐹)‘(𝑌 + 1)) = (𝐺(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔))𝐹)) | |
| 2 | eqidd 2734 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔)) = (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔))) | |
| 3 | coeq2 5802 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝐹 ∘ 𝑔) = (𝐹 ∘ 𝐺)) | |
| 4 | 3 | ad2antrl 728 | . . 3 ⊢ (((𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) ∧ (𝑔 = 𝐺 ∧ 𝑗 = 𝐹)) → (𝐹 ∘ 𝑔) = (𝐹 ∘ 𝐺)) |
| 5 | id 22 | . . . . . 6 ⊢ (𝐺 = ((IterComp‘𝐹)‘𝑌) → 𝐺 = ((IterComp‘𝐹)‘𝑌)) | |
| 6 | fvex 6841 | . . . . . 6 ⊢ ((IterComp‘𝐹)‘𝑌) ∈ V | |
| 7 | 5, 6 | eqeltrdi 2841 | . . . . 5 ⊢ (𝐺 = ((IterComp‘𝐹)‘𝑌) → 𝐺 ∈ V) |
| 8 | 7 | eqcoms 2741 | . . . 4 ⊢ (((IterComp‘𝐹)‘𝑌) = 𝐺 → 𝐺 ∈ V) |
| 9 | 8 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → 𝐺 ∈ V) |
| 10 | elex 3458 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
| 11 | 10 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → 𝐹 ∈ V) |
| 12 | 8 | anim2i 617 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ V)) |
| 13 | 12 | 3adant2 1131 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ V)) |
| 14 | coexg 7865 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ V) → (𝐹 ∘ 𝐺) ∈ V) | |
| 15 | 13, 14 | syl 17 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (𝐹 ∘ 𝐺) ∈ V) |
| 16 | 2, 4, 9, 11, 15 | ovmpod 7504 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → (𝐺(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹 ∘ 𝑔))𝐹) = (𝐹 ∘ 𝐺)) |
| 17 | 1, 16 | eqtrd 2768 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ((IterComp‘𝐹)‘𝑌) = 𝐺) → ((IterComp‘𝐹)‘(𝑌 + 1)) = (𝐹 ∘ 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∘ ccom 5623 ‘cfv 6486 (class class class)co 7352 ∈ cmpo 7354 1c1 11014 + caddc 11016 ℕ0cn0 12388 IterCompcitco 48782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-seq 13911 df-itco 48784 |
| This theorem is referenced by: itcovalendof 48794 itcovalpclem2 48796 itcovalt2lem2 48801 ackvalsucsucval 48813 |
| Copyright terms: Public domain | W3C validator |