![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > itcovalsucov | Structured version Visualization version GIF version |
Description: The value of the function that returns the n-th iterate of a function with regard to composition at a successor. (Contributed by AV, 4-May-2024.) |
Ref | Expression |
---|---|
itcovalsucov | β’ ((πΉ β π β§ π β β0 β§ ((IterCompβπΉ)βπ) = πΊ) β ((IterCompβπΉ)β(π + 1)) = (πΉ β πΊ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itcovalsuc 47440 | . 2 β’ ((πΉ β π β§ π β β0 β§ ((IterCompβπΉ)βπ) = πΊ) β ((IterCompβπΉ)β(π + 1)) = (πΊ(π β V, π β V β¦ (πΉ β π))πΉ)) | |
2 | eqidd 2731 | . . 3 β’ ((πΉ β π β§ π β β0 β§ ((IterCompβπΉ)βπ) = πΊ) β (π β V, π β V β¦ (πΉ β π)) = (π β V, π β V β¦ (πΉ β π))) | |
3 | coeq2 5857 | . . . 4 β’ (π = πΊ β (πΉ β π) = (πΉ β πΊ)) | |
4 | 3 | ad2antrl 724 | . . 3 β’ (((πΉ β π β§ π β β0 β§ ((IterCompβπΉ)βπ) = πΊ) β§ (π = πΊ β§ π = πΉ)) β (πΉ β π) = (πΉ β πΊ)) |
5 | id 22 | . . . . . 6 β’ (πΊ = ((IterCompβπΉ)βπ) β πΊ = ((IterCompβπΉ)βπ)) | |
6 | fvex 6903 | . . . . . 6 β’ ((IterCompβπΉ)βπ) β V | |
7 | 5, 6 | eqeltrdi 2839 | . . . . 5 β’ (πΊ = ((IterCompβπΉ)βπ) β πΊ β V) |
8 | 7 | eqcoms 2738 | . . . 4 β’ (((IterCompβπΉ)βπ) = πΊ β πΊ β V) |
9 | 8 | 3ad2ant3 1133 | . . 3 β’ ((πΉ β π β§ π β β0 β§ ((IterCompβπΉ)βπ) = πΊ) β πΊ β V) |
10 | elex 3491 | . . . 4 β’ (πΉ β π β πΉ β V) | |
11 | 10 | 3ad2ant1 1131 | . . 3 β’ ((πΉ β π β§ π β β0 β§ ((IterCompβπΉ)βπ) = πΊ) β πΉ β V) |
12 | 8 | anim2i 615 | . . . . 5 β’ ((πΉ β π β§ ((IterCompβπΉ)βπ) = πΊ) β (πΉ β π β§ πΊ β V)) |
13 | 12 | 3adant2 1129 | . . . 4 β’ ((πΉ β π β§ π β β0 β§ ((IterCompβπΉ)βπ) = πΊ) β (πΉ β π β§ πΊ β V)) |
14 | coexg 7922 | . . . 4 β’ ((πΉ β π β§ πΊ β V) β (πΉ β πΊ) β V) | |
15 | 13, 14 | syl 17 | . . 3 β’ ((πΉ β π β§ π β β0 β§ ((IterCompβπΉ)βπ) = πΊ) β (πΉ β πΊ) β V) |
16 | 2, 4, 9, 11, 15 | ovmpod 7562 | . 2 β’ ((πΉ β π β§ π β β0 β§ ((IterCompβπΉ)βπ) = πΊ) β (πΊ(π β V, π β V β¦ (πΉ β π))πΉ) = (πΉ β πΊ)) |
17 | 1, 16 | eqtrd 2770 | 1 β’ ((πΉ β π β§ π β β0 β§ ((IterCompβπΉ)βπ) = πΊ) β ((IterCompβπΉ)β(π + 1)) = (πΉ β πΊ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 Vcvv 3472 β ccom 5679 βcfv 6542 (class class class)co 7411 β cmpo 7413 1c1 11113 + caddc 11115 β0cn0 12476 IterCompcitco 47430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-seq 13971 df-itco 47432 |
This theorem is referenced by: itcovalendof 47442 itcovalpclem2 47444 itcovalt2lem2 47449 ackvalsucsucval 47461 |
Copyright terms: Public domain | W3C validator |