Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ringccoALTV Structured version   Visualization version   GIF version

Theorem ringccoALTV 47478
Description: Composition in the category of rings. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringcbasALTV.c 𝐢 = (RingCatALTVβ€˜π‘ˆ)
ringcbasALTV.b 𝐡 = (Baseβ€˜πΆ)
ringcbasALTV.u (πœ‘ β†’ π‘ˆ ∈ 𝑉)
ringccoALTV.o Β· = (compβ€˜πΆ)
ringccoALTV.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
ringccoALTV.y (πœ‘ β†’ π‘Œ ∈ 𝐡)
ringccoALTV.z (πœ‘ β†’ 𝑍 ∈ 𝐡)
ringccoALTV.f (πœ‘ β†’ 𝐹 ∈ (𝑋 RingHom π‘Œ))
ringccoALTV.g (πœ‘ β†’ 𝐺 ∈ (π‘Œ RingHom 𝑍))
Assertion
Ref Expression
ringccoALTV (πœ‘ β†’ (𝐺(βŸ¨π‘‹, π‘ŒβŸ© Β· 𝑍)𝐹) = (𝐺 ∘ 𝐹))

Proof of Theorem ringccoALTV
Dummy variables 𝑓 𝑔 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringcbasALTV.c . . . 4 𝐢 = (RingCatALTVβ€˜π‘ˆ)
2 ringcbasALTV.b . . . 4 𝐡 = (Baseβ€˜πΆ)
3 ringcbasALTV.u . . . 4 (πœ‘ β†’ π‘ˆ ∈ 𝑉)
4 ringccoALTV.o . . . 4 Β· = (compβ€˜πΆ)
51, 2, 3, 4ringccofvalALTV 47477 . . 3 (πœ‘ β†’ Β· = (𝑣 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ (𝑔 ∈ ((2nd β€˜π‘£) RingHom 𝑧), 𝑓 ∈ ((1st β€˜π‘£) RingHom (2nd β€˜π‘£)) ↦ (𝑔 ∘ 𝑓))))
6 simprl 769 . . . . . . 7 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ 𝑣 = βŸ¨π‘‹, π‘ŒβŸ©)
76fveq2d 6895 . . . . . 6 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (2nd β€˜π‘£) = (2nd β€˜βŸ¨π‘‹, π‘ŒβŸ©))
8 ringccoALTV.x . . . . . . . 8 (πœ‘ β†’ 𝑋 ∈ 𝐡)
9 ringccoALTV.y . . . . . . . 8 (πœ‘ β†’ π‘Œ ∈ 𝐡)
10 op2ndg 8002 . . . . . . . 8 ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (2nd β€˜βŸ¨π‘‹, π‘ŒβŸ©) = π‘Œ)
118, 9, 10syl2anc 582 . . . . . . 7 (πœ‘ β†’ (2nd β€˜βŸ¨π‘‹, π‘ŒβŸ©) = π‘Œ)
1211adantr 479 . . . . . 6 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (2nd β€˜βŸ¨π‘‹, π‘ŒβŸ©) = π‘Œ)
137, 12eqtrd 2765 . . . . 5 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (2nd β€˜π‘£) = π‘Œ)
14 simprr 771 . . . . 5 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ 𝑧 = 𝑍)
1513, 14oveq12d 7433 . . . 4 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ ((2nd β€˜π‘£) RingHom 𝑧) = (π‘Œ RingHom 𝑍))
166fveq2d 6895 . . . . . 6 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (1st β€˜π‘£) = (1st β€˜βŸ¨π‘‹, π‘ŒβŸ©))
17 op1stg 8001 . . . . . . . 8 ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (1st β€˜βŸ¨π‘‹, π‘ŒβŸ©) = 𝑋)
188, 9, 17syl2anc 582 . . . . . . 7 (πœ‘ β†’ (1st β€˜βŸ¨π‘‹, π‘ŒβŸ©) = 𝑋)
1918adantr 479 . . . . . 6 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (1st β€˜βŸ¨π‘‹, π‘ŒβŸ©) = 𝑋)
2016, 19eqtrd 2765 . . . . 5 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (1st β€˜π‘£) = 𝑋)
2120, 13oveq12d 7433 . . . 4 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ ((1st β€˜π‘£) RingHom (2nd β€˜π‘£)) = (𝑋 RingHom π‘Œ))
22 eqidd 2726 . . . 4 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (𝑔 ∘ 𝑓) = (𝑔 ∘ 𝑓))
2315, 21, 22mpoeq123dv 7491 . . 3 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (𝑔 ∈ ((2nd β€˜π‘£) RingHom 𝑧), 𝑓 ∈ ((1st β€˜π‘£) RingHom (2nd β€˜π‘£)) ↦ (𝑔 ∘ 𝑓)) = (𝑔 ∈ (π‘Œ RingHom 𝑍), 𝑓 ∈ (𝑋 RingHom π‘Œ) ↦ (𝑔 ∘ 𝑓)))
24 opelxpi 5709 . . . 4 ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ βŸ¨π‘‹, π‘ŒβŸ© ∈ (𝐡 Γ— 𝐡))
258, 9, 24syl2anc 582 . . 3 (πœ‘ β†’ βŸ¨π‘‹, π‘ŒβŸ© ∈ (𝐡 Γ— 𝐡))
26 ringccoALTV.z . . 3 (πœ‘ β†’ 𝑍 ∈ 𝐡)
27 ovex 7448 . . . . 5 (π‘Œ RingHom 𝑍) ∈ V
28 ovex 7448 . . . . 5 (𝑋 RingHom π‘Œ) ∈ V
2927, 28mpoex 8080 . . . 4 (𝑔 ∈ (π‘Œ RingHom 𝑍), 𝑓 ∈ (𝑋 RingHom π‘Œ) ↦ (𝑔 ∘ 𝑓)) ∈ V
3029a1i 11 . . 3 (πœ‘ β†’ (𝑔 ∈ (π‘Œ RingHom 𝑍), 𝑓 ∈ (𝑋 RingHom π‘Œ) ↦ (𝑔 ∘ 𝑓)) ∈ V)
315, 23, 25, 26, 30ovmpod 7569 . 2 (πœ‘ β†’ (βŸ¨π‘‹, π‘ŒβŸ© Β· 𝑍) = (𝑔 ∈ (π‘Œ RingHom 𝑍), 𝑓 ∈ (𝑋 RingHom π‘Œ) ↦ (𝑔 ∘ 𝑓)))
32 simprl 769 . . 3 ((πœ‘ ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) β†’ 𝑔 = 𝐺)
33 simprr 771 . . 3 ((πœ‘ ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) β†’ 𝑓 = 𝐹)
3432, 33coeq12d 5861 . 2 ((πœ‘ ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) β†’ (𝑔 ∘ 𝑓) = (𝐺 ∘ 𝐹))
35 ringccoALTV.g . 2 (πœ‘ β†’ 𝐺 ∈ (π‘Œ RingHom 𝑍))
36 ringccoALTV.f . 2 (πœ‘ β†’ 𝐹 ∈ (𝑋 RingHom π‘Œ))
37 coexg 7933 . . 3 ((𝐺 ∈ (π‘Œ RingHom 𝑍) ∧ 𝐹 ∈ (𝑋 RingHom π‘Œ)) β†’ (𝐺 ∘ 𝐹) ∈ V)
3835, 36, 37syl2anc 582 . 2 (πœ‘ β†’ (𝐺 ∘ 𝐹) ∈ V)
3931, 34, 35, 36, 38ovmpod 7569 1 (πœ‘ β†’ (𝐺(βŸ¨π‘‹, π‘ŒβŸ© Β· 𝑍)𝐹) = (𝐺 ∘ 𝐹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098  Vcvv 3463  βŸ¨cop 4630   Γ— cxp 5670   ∘ ccom 5676  β€˜cfv 6542  (class class class)co 7415   ∈ cmpo 7417  1st c1st 7987  2nd c2nd 7988  Basecbs 17177  compcco 17242   RingHom crh 20410  RingCatALTVcringcALTV 47460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12501  df-z 12587  df-dec 12706  df-uz 12851  df-fz 13515  df-struct 17113  df-slot 17148  df-ndx 17160  df-base 17178  df-hom 17254  df-cco 17255  df-ringcALTV 47461
This theorem is referenced by:  ringccatidALTV  47479  ringcsectALTV  47482  funcringcsetclem9ALTV  47494
  Copyright terms: Public domain W3C validator