Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ringccoALTV Structured version   Visualization version   GIF version

Theorem ringccoALTV 46939
Description: Composition in the category of rings. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringcbasALTV.c 𝐢 = (RingCatALTVβ€˜π‘ˆ)
ringcbasALTV.b 𝐡 = (Baseβ€˜πΆ)
ringcbasALTV.u (πœ‘ β†’ π‘ˆ ∈ 𝑉)
ringccoALTV.o Β· = (compβ€˜πΆ)
ringccoALTV.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
ringccoALTV.y (πœ‘ β†’ π‘Œ ∈ 𝐡)
ringccoALTV.z (πœ‘ β†’ 𝑍 ∈ 𝐡)
ringccoALTV.f (πœ‘ β†’ 𝐹 ∈ (𝑋 RingHom π‘Œ))
ringccoALTV.g (πœ‘ β†’ 𝐺 ∈ (π‘Œ RingHom 𝑍))
Assertion
Ref Expression
ringccoALTV (πœ‘ β†’ (𝐺(βŸ¨π‘‹, π‘ŒβŸ© Β· 𝑍)𝐹) = (𝐺 ∘ 𝐹))

Proof of Theorem ringccoALTV
Dummy variables 𝑓 𝑔 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringcbasALTV.c . . . 4 𝐢 = (RingCatALTVβ€˜π‘ˆ)
2 ringcbasALTV.b . . . 4 𝐡 = (Baseβ€˜πΆ)
3 ringcbasALTV.u . . . 4 (πœ‘ β†’ π‘ˆ ∈ 𝑉)
4 ringccoALTV.o . . . 4 Β· = (compβ€˜πΆ)
51, 2, 3, 4ringccofvalALTV 46938 . . 3 (πœ‘ β†’ Β· = (𝑣 ∈ (𝐡 Γ— 𝐡), 𝑧 ∈ 𝐡 ↦ (𝑔 ∈ ((2nd β€˜π‘£) RingHom 𝑧), 𝑓 ∈ ((1st β€˜π‘£) RingHom (2nd β€˜π‘£)) ↦ (𝑔 ∘ 𝑓))))
6 simprl 769 . . . . . . 7 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ 𝑣 = βŸ¨π‘‹, π‘ŒβŸ©)
76fveq2d 6895 . . . . . 6 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (2nd β€˜π‘£) = (2nd β€˜βŸ¨π‘‹, π‘ŒβŸ©))
8 ringccoALTV.x . . . . . . . 8 (πœ‘ β†’ 𝑋 ∈ 𝐡)
9 ringccoALTV.y . . . . . . . 8 (πœ‘ β†’ π‘Œ ∈ 𝐡)
10 op2ndg 7987 . . . . . . . 8 ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (2nd β€˜βŸ¨π‘‹, π‘ŒβŸ©) = π‘Œ)
118, 9, 10syl2anc 584 . . . . . . 7 (πœ‘ β†’ (2nd β€˜βŸ¨π‘‹, π‘ŒβŸ©) = π‘Œ)
1211adantr 481 . . . . . 6 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (2nd β€˜βŸ¨π‘‹, π‘ŒβŸ©) = π‘Œ)
137, 12eqtrd 2772 . . . . 5 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (2nd β€˜π‘£) = π‘Œ)
14 simprr 771 . . . . 5 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ 𝑧 = 𝑍)
1513, 14oveq12d 7426 . . . 4 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ ((2nd β€˜π‘£) RingHom 𝑧) = (π‘Œ RingHom 𝑍))
166fveq2d 6895 . . . . . 6 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (1st β€˜π‘£) = (1st β€˜βŸ¨π‘‹, π‘ŒβŸ©))
17 op1stg 7986 . . . . . . . 8 ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (1st β€˜βŸ¨π‘‹, π‘ŒβŸ©) = 𝑋)
188, 9, 17syl2anc 584 . . . . . . 7 (πœ‘ β†’ (1st β€˜βŸ¨π‘‹, π‘ŒβŸ©) = 𝑋)
1918adantr 481 . . . . . 6 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (1st β€˜βŸ¨π‘‹, π‘ŒβŸ©) = 𝑋)
2016, 19eqtrd 2772 . . . . 5 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (1st β€˜π‘£) = 𝑋)
2120, 13oveq12d 7426 . . . 4 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ ((1st β€˜π‘£) RingHom (2nd β€˜π‘£)) = (𝑋 RingHom π‘Œ))
22 eqidd 2733 . . . 4 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (𝑔 ∘ 𝑓) = (𝑔 ∘ 𝑓))
2315, 21, 22mpoeq123dv 7483 . . 3 ((πœ‘ ∧ (𝑣 = βŸ¨π‘‹, π‘ŒβŸ© ∧ 𝑧 = 𝑍)) β†’ (𝑔 ∈ ((2nd β€˜π‘£) RingHom 𝑧), 𝑓 ∈ ((1st β€˜π‘£) RingHom (2nd β€˜π‘£)) ↦ (𝑔 ∘ 𝑓)) = (𝑔 ∈ (π‘Œ RingHom 𝑍), 𝑓 ∈ (𝑋 RingHom π‘Œ) ↦ (𝑔 ∘ 𝑓)))
24 opelxpi 5713 . . . 4 ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ βŸ¨π‘‹, π‘ŒβŸ© ∈ (𝐡 Γ— 𝐡))
258, 9, 24syl2anc 584 . . 3 (πœ‘ β†’ βŸ¨π‘‹, π‘ŒβŸ© ∈ (𝐡 Γ— 𝐡))
26 ringccoALTV.z . . 3 (πœ‘ β†’ 𝑍 ∈ 𝐡)
27 ovex 7441 . . . . 5 (π‘Œ RingHom 𝑍) ∈ V
28 ovex 7441 . . . . 5 (𝑋 RingHom π‘Œ) ∈ V
2927, 28mpoex 8065 . . . 4 (𝑔 ∈ (π‘Œ RingHom 𝑍), 𝑓 ∈ (𝑋 RingHom π‘Œ) ↦ (𝑔 ∘ 𝑓)) ∈ V
3029a1i 11 . . 3 (πœ‘ β†’ (𝑔 ∈ (π‘Œ RingHom 𝑍), 𝑓 ∈ (𝑋 RingHom π‘Œ) ↦ (𝑔 ∘ 𝑓)) ∈ V)
315, 23, 25, 26, 30ovmpod 7559 . 2 (πœ‘ β†’ (βŸ¨π‘‹, π‘ŒβŸ© Β· 𝑍) = (𝑔 ∈ (π‘Œ RingHom 𝑍), 𝑓 ∈ (𝑋 RingHom π‘Œ) ↦ (𝑔 ∘ 𝑓)))
32 simprl 769 . . 3 ((πœ‘ ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) β†’ 𝑔 = 𝐺)
33 simprr 771 . . 3 ((πœ‘ ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) β†’ 𝑓 = 𝐹)
3432, 33coeq12d 5864 . 2 ((πœ‘ ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) β†’ (𝑔 ∘ 𝑓) = (𝐺 ∘ 𝐹))
35 ringccoALTV.g . 2 (πœ‘ β†’ 𝐺 ∈ (π‘Œ RingHom 𝑍))
36 ringccoALTV.f . 2 (πœ‘ β†’ 𝐹 ∈ (𝑋 RingHom π‘Œ))
37 coexg 7919 . . 3 ((𝐺 ∈ (π‘Œ RingHom 𝑍) ∧ 𝐹 ∈ (𝑋 RingHom π‘Œ)) β†’ (𝐺 ∘ 𝐹) ∈ V)
3835, 36, 37syl2anc 584 . 2 (πœ‘ β†’ (𝐺 ∘ 𝐹) ∈ V)
3931, 34, 35, 36, 38ovmpod 7559 1 (πœ‘ β†’ (𝐺(βŸ¨π‘‹, π‘ŒβŸ© Β· 𝑍)𝐹) = (𝐺 ∘ 𝐹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474  βŸ¨cop 4634   Γ— cxp 5674   ∘ ccom 5680  β€˜cfv 6543  (class class class)co 7408   ∈ cmpo 7410  1st c1st 7972  2nd c2nd 7973  Basecbs 17143  compcco 17208   RingHom crh 20247  RingCatALTVcringcALTV 46892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-dec 12677  df-uz 12822  df-fz 13484  df-struct 17079  df-slot 17114  df-ndx 17126  df-base 17144  df-hom 17220  df-cco 17221  df-ringcALTV 46894
This theorem is referenced by:  ringccatidALTV  46940  ringcsectALTV  46943  funcringcsetclem9ALTV  46955
  Copyright terms: Public domain W3C validator