Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ringccoALTV Structured version   Visualization version   GIF version

Theorem ringccoALTV 48297
Description: Composition in the category of rings. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringcbasALTV.c 𝐶 = (RingCatALTV‘𝑈)
ringcbasALTV.b 𝐵 = (Base‘𝐶)
ringcbasALTV.u (𝜑𝑈𝑉)
ringccoALTV.o · = (comp‘𝐶)
ringccoALTV.x (𝜑𝑋𝐵)
ringccoALTV.y (𝜑𝑌𝐵)
ringccoALTV.z (𝜑𝑍𝐵)
ringccoALTV.f (𝜑𝐹 ∈ (𝑋 RingHom 𝑌))
ringccoALTV.g (𝜑𝐺 ∈ (𝑌 RingHom 𝑍))
Assertion
Ref Expression
ringccoALTV (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))

Proof of Theorem ringccoALTV
Dummy variables 𝑓 𝑔 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringcbasALTV.c . . . 4 𝐶 = (RingCatALTV‘𝑈)
2 ringcbasALTV.b . . . 4 𝐵 = (Base‘𝐶)
3 ringcbasALTV.u . . . 4 (𝜑𝑈𝑉)
4 ringccoALTV.o . . . 4 · = (comp‘𝐶)
51, 2, 3, 4ringccofvalALTV 48296 . . 3 (𝜑· = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RingHom 𝑧), 𝑓 ∈ ((1st𝑣) RingHom (2nd𝑣)) ↦ (𝑔𝑓))))
6 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑣 = ⟨𝑋, 𝑌⟩)
76fveq2d 6865 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑣) = (2nd ‘⟨𝑋, 𝑌⟩))
8 ringccoALTV.x . . . . . . . 8 (𝜑𝑋𝐵)
9 ringccoALTV.y . . . . . . . 8 (𝜑𝑌𝐵)
10 op2ndg 7984 . . . . . . . 8 ((𝑋𝐵𝑌𝐵) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
118, 9, 10syl2anc 584 . . . . . . 7 (𝜑 → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
1211adantr 480 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
137, 12eqtrd 2765 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑣) = 𝑌)
14 simprr 772 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑧 = 𝑍)
1513, 14oveq12d 7408 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → ((2nd𝑣) RingHom 𝑧) = (𝑌 RingHom 𝑍))
166fveq2d 6865 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (1st𝑣) = (1st ‘⟨𝑋, 𝑌⟩))
17 op1stg 7983 . . . . . . . 8 ((𝑋𝐵𝑌𝐵) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
188, 9, 17syl2anc 584 . . . . . . 7 (𝜑 → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
1918adantr 480 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2016, 19eqtrd 2765 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (1st𝑣) = 𝑋)
2120, 13oveq12d 7408 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → ((1st𝑣) RingHom (2nd𝑣)) = (𝑋 RingHom 𝑌))
22 eqidd 2731 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑔𝑓) = (𝑔𝑓))
2315, 21, 22mpoeq123dv 7467 . . 3 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑔 ∈ ((2nd𝑣) RingHom 𝑧), 𝑓 ∈ ((1st𝑣) RingHom (2nd𝑣)) ↦ (𝑔𝑓)) = (𝑔 ∈ (𝑌 RingHom 𝑍), 𝑓 ∈ (𝑋 RingHom 𝑌) ↦ (𝑔𝑓)))
24 opelxpi 5678 . . . 4 ((𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
258, 9, 24syl2anc 584 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
26 ringccoALTV.z . . 3 (𝜑𝑍𝐵)
27 ovex 7423 . . . . 5 (𝑌 RingHom 𝑍) ∈ V
28 ovex 7423 . . . . 5 (𝑋 RingHom 𝑌) ∈ V
2927, 28mpoex 8061 . . . 4 (𝑔 ∈ (𝑌 RingHom 𝑍), 𝑓 ∈ (𝑋 RingHom 𝑌) ↦ (𝑔𝑓)) ∈ V
3029a1i 11 . . 3 (𝜑 → (𝑔 ∈ (𝑌 RingHom 𝑍), 𝑓 ∈ (𝑋 RingHom 𝑌) ↦ (𝑔𝑓)) ∈ V)
315, 23, 25, 26, 30ovmpod 7544 . 2 (𝜑 → (⟨𝑋, 𝑌· 𝑍) = (𝑔 ∈ (𝑌 RingHom 𝑍), 𝑓 ∈ (𝑋 RingHom 𝑌) ↦ (𝑔𝑓)))
32 simprl 770 . . 3 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑔 = 𝐺)
33 simprr 772 . . 3 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑓 = 𝐹)
3432, 33coeq12d 5831 . 2 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (𝑔𝑓) = (𝐺𝐹))
35 ringccoALTV.g . 2 (𝜑𝐺 ∈ (𝑌 RingHom 𝑍))
36 ringccoALTV.f . 2 (𝜑𝐹 ∈ (𝑋 RingHom 𝑌))
37 coexg 7908 . . 3 ((𝐺 ∈ (𝑌 RingHom 𝑍) ∧ 𝐹 ∈ (𝑋 RingHom 𝑌)) → (𝐺𝐹) ∈ V)
3835, 36, 37syl2anc 584 . 2 (𝜑 → (𝐺𝐹) ∈ V)
3931, 34, 35, 36, 38ovmpod 7544 1 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cop 4598   × cxp 5639  ccom 5645  cfv 6514  (class class class)co 7390  cmpo 7392  1st c1st 7969  2nd c2nd 7970  Basecbs 17186  compcco 17239   RingHom crh 20385  RingCatALTVcringcALTV 48279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-hom 17251  df-cco 17252  df-ringcALTV 48280
This theorem is referenced by:  ringccatidALTV  48298  ringcsectALTV  48301  funcringcsetclem9ALTV  48313
  Copyright terms: Public domain W3C validator