| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfzonelfzo | Structured version Visualization version GIF version | ||
| Description: If an element of a half-open integer range is not contained in the lower subrange, it must be in the upper subrange. (Contributed by Alexander van der Vekens, 30-Mar-2018.) |
| Ref | Expression |
|---|---|
| elfzonelfzo | ⊢ (𝑁 ∈ ℤ → ((𝐾 ∈ (𝑀..^𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → 𝐾 ∈ (𝑁..^𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzo2 13599 | . . 3 ⊢ (𝐾 ∈ (𝑀..^𝑅) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅)) | |
| 2 | simpr 484 | . . . . . 6 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
| 3 | eluzelz 12779 | . . . . . . . 8 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ ℤ) | |
| 4 | 3 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) → 𝐾 ∈ ℤ) |
| 5 | 4 | ad2antrr 726 | . . . . . 6 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ) |
| 6 | eluzelre 12780 | . . . . . . . . . . . . 13 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ ℝ) | |
| 7 | zre 12509 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 8 | ltnle 11229 | . . . . . . . . . . . . 13 ⊢ ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾 < 𝑁 ↔ ¬ 𝑁 ≤ 𝐾)) | |
| 9 | 6, 7, 8 | syl2an 596 | . . . . . . . . . . . 12 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 ↔ ¬ 𝑁 ≤ 𝐾)) |
| 10 | id 22 | . . . . . . . . . . . . . . 15 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) → (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) | |
| 11 | 10 | 3expa 1118 | . . . . . . . . . . . . . 14 ⊢ (((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) |
| 12 | elfzo2 13599 | . . . . . . . . . . . . . 14 ⊢ (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) | |
| 13 | 11, 12 | sylibr 234 | . . . . . . . . . . . . 13 ⊢ (((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → 𝐾 ∈ (𝑀..^𝑁)) |
| 14 | 13 | ex 412 | . . . . . . . . . . . 12 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 → 𝐾 ∈ (𝑀..^𝑁))) |
| 15 | 9, 14 | sylbird 260 | . . . . . . . . . . 11 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (¬ 𝑁 ≤ 𝐾 → 𝐾 ∈ (𝑀..^𝑁))) |
| 16 | 15 | con1d 145 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (¬ 𝐾 ∈ (𝑀..^𝑁) → 𝑁 ≤ 𝐾)) |
| 17 | 16 | ex 412 | . . . . . . . . 9 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝑁 ∈ ℤ → (¬ 𝐾 ∈ (𝑀..^𝑁) → 𝑁 ≤ 𝐾))) |
| 18 | 17 | com23 86 | . . . . . . . 8 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (¬ 𝐾 ∈ (𝑀..^𝑁) → (𝑁 ∈ ℤ → 𝑁 ≤ 𝐾))) |
| 19 | 18 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) → (¬ 𝐾 ∈ (𝑀..^𝑁) → (𝑁 ∈ ℤ → 𝑁 ≤ 𝐾))) |
| 20 | 19 | imp31 417 | . . . . . 6 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝑁 ≤ 𝐾) |
| 21 | eluz2 12775 | . . . . . 6 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ≤ 𝐾)) | |
| 22 | 2, 5, 20, 21 | syl3anbrc 1344 | . . . . 5 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ (ℤ≥‘𝑁)) |
| 23 | simpll2 1214 | . . . . 5 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝑅 ∈ ℤ) | |
| 24 | simpll3 1215 | . . . . 5 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝐾 < 𝑅) | |
| 25 | elfzo2 13599 | . . . . 5 ⊢ (𝐾 ∈ (𝑁..^𝑅) ↔ (𝐾 ∈ (ℤ≥‘𝑁) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅)) | |
| 26 | 22, 23, 24, 25 | syl3anbrc 1344 | . . . 4 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ (𝑁..^𝑅)) |
| 27 | 26 | ex 412 | . . 3 ⊢ (((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → (𝑁 ∈ ℤ → 𝐾 ∈ (𝑁..^𝑅))) |
| 28 | 1, 27 | sylanb 581 | . 2 ⊢ ((𝐾 ∈ (𝑀..^𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → (𝑁 ∈ ℤ → 𝐾 ∈ (𝑁..^𝑅))) |
| 29 | 28 | com12 32 | 1 ⊢ (𝑁 ∈ ℤ → ((𝐾 ∈ (𝑀..^𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → 𝐾 ∈ (𝑁..^𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ℝcr 11043 < clt 11184 ≤ cle 11185 ℤcz 12505 ℤ≥cuz 12769 ..^cfzo 13591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 |
| This theorem is referenced by: fzonfzoufzol 13707 pfxccatin12lem4 14667 pfxccatin12lem2a 14668 pfxccatin12lem1 14669 fourierdlem20 46118 |
| Copyright terms: Public domain | W3C validator |