| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfzonelfzo | Structured version Visualization version GIF version | ||
| Description: If an element of a half-open integer range is not contained in the lower subrange, it must be in the upper subrange. (Contributed by Alexander van der Vekens, 30-Mar-2018.) |
| Ref | Expression |
|---|---|
| elfzonelfzo | ⊢ (𝑁 ∈ ℤ → ((𝐾 ∈ (𝑀..^𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → 𝐾 ∈ (𝑁..^𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzo2 13702 | . . 3 ⊢ (𝐾 ∈ (𝑀..^𝑅) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅)) | |
| 2 | simpr 484 | . . . . . 6 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
| 3 | eluzelz 12888 | . . . . . . . 8 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ ℤ) | |
| 4 | 3 | 3ad2ant1 1134 | . . . . . . 7 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) → 𝐾 ∈ ℤ) |
| 5 | 4 | ad2antrr 726 | . . . . . 6 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ) |
| 6 | eluzelre 12889 | . . . . . . . . . . . . 13 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ ℝ) | |
| 7 | zre 12617 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 8 | ltnle 11340 | . . . . . . . . . . . . 13 ⊢ ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾 < 𝑁 ↔ ¬ 𝑁 ≤ 𝐾)) | |
| 9 | 6, 7, 8 | syl2an 596 | . . . . . . . . . . . 12 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 ↔ ¬ 𝑁 ≤ 𝐾)) |
| 10 | id 22 | . . . . . . . . . . . . . . 15 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) → (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) | |
| 11 | 10 | 3expa 1119 | . . . . . . . . . . . . . 14 ⊢ (((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) |
| 12 | elfzo2 13702 | . . . . . . . . . . . . . 14 ⊢ (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) | |
| 13 | 11, 12 | sylibr 234 | . . . . . . . . . . . . 13 ⊢ (((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → 𝐾 ∈ (𝑀..^𝑁)) |
| 14 | 13 | ex 412 | . . . . . . . . . . . 12 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 → 𝐾 ∈ (𝑀..^𝑁))) |
| 15 | 9, 14 | sylbird 260 | . . . . . . . . . . 11 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (¬ 𝑁 ≤ 𝐾 → 𝐾 ∈ (𝑀..^𝑁))) |
| 16 | 15 | con1d 145 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (¬ 𝐾 ∈ (𝑀..^𝑁) → 𝑁 ≤ 𝐾)) |
| 17 | 16 | ex 412 | . . . . . . . . 9 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝑁 ∈ ℤ → (¬ 𝐾 ∈ (𝑀..^𝑁) → 𝑁 ≤ 𝐾))) |
| 18 | 17 | com23 86 | . . . . . . . 8 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (¬ 𝐾 ∈ (𝑀..^𝑁) → (𝑁 ∈ ℤ → 𝑁 ≤ 𝐾))) |
| 19 | 18 | 3ad2ant1 1134 | . . . . . . 7 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) → (¬ 𝐾 ∈ (𝑀..^𝑁) → (𝑁 ∈ ℤ → 𝑁 ≤ 𝐾))) |
| 20 | 19 | imp31 417 | . . . . . 6 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝑁 ≤ 𝐾) |
| 21 | eluz2 12884 | . . . . . 6 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ≤ 𝐾)) | |
| 22 | 2, 5, 20, 21 | syl3anbrc 1344 | . . . . 5 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ (ℤ≥‘𝑁)) |
| 23 | simpll2 1214 | . . . . 5 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝑅 ∈ ℤ) | |
| 24 | simpll3 1215 | . . . . 5 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝐾 < 𝑅) | |
| 25 | elfzo2 13702 | . . . . 5 ⊢ (𝐾 ∈ (𝑁..^𝑅) ↔ (𝐾 ∈ (ℤ≥‘𝑁) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅)) | |
| 26 | 22, 23, 24, 25 | syl3anbrc 1344 | . . . 4 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ (𝑁..^𝑅)) |
| 27 | 26 | ex 412 | . . 3 ⊢ (((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → (𝑁 ∈ ℤ → 𝐾 ∈ (𝑁..^𝑅))) |
| 28 | 1, 27 | sylanb 581 | . 2 ⊢ ((𝐾 ∈ (𝑀..^𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → (𝑁 ∈ ℤ → 𝐾 ∈ (𝑁..^𝑅))) |
| 29 | 28 | com12 32 | 1 ⊢ (𝑁 ∈ ℤ → ((𝐾 ∈ (𝑀..^𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → 𝐾 ∈ (𝑁..^𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 ℝcr 11154 < clt 11295 ≤ cle 11296 ℤcz 12613 ℤ≥cuz 12878 ..^cfzo 13694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-fzo 13695 |
| This theorem is referenced by: fzonfzoufzol 13809 pfxccatin12lem4 14764 pfxccatin12lem2a 14765 pfxccatin12lem1 14766 fourierdlem20 46142 |
| Copyright terms: Public domain | W3C validator |