![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfzonelfzo | Structured version Visualization version GIF version |
Description: If an element of a half-open integer range is not contained in the lower subrange, it must be in the upper subrange. (Contributed by Alexander van der Vekens, 30-Mar-2018.) |
Ref | Expression |
---|---|
elfzonelfzo | ⊢ (𝑁 ∈ ℤ → ((𝐾 ∈ (𝑀..^𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → 𝐾 ∈ (𝑁..^𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzo2 13581 | . . 3 ⊢ (𝐾 ∈ (𝑀..^𝑅) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅)) | |
2 | simpr 486 | . . . . . 6 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
3 | eluzelz 12778 | . . . . . . . 8 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ ℤ) | |
4 | 3 | 3ad2ant1 1134 | . . . . . . 7 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) → 𝐾 ∈ ℤ) |
5 | 4 | ad2antrr 725 | . . . . . 6 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ) |
6 | eluzelre 12779 | . . . . . . . . . . . . 13 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ ℝ) | |
7 | zre 12508 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
8 | ltnle 11239 | . . . . . . . . . . . . 13 ⊢ ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾 < 𝑁 ↔ ¬ 𝑁 ≤ 𝐾)) | |
9 | 6, 7, 8 | syl2an 597 | . . . . . . . . . . . 12 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 ↔ ¬ 𝑁 ≤ 𝐾)) |
10 | id 22 | . . . . . . . . . . . . . . 15 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) → (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) | |
11 | 10 | 3expa 1119 | . . . . . . . . . . . . . 14 ⊢ (((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) |
12 | elfzo2 13581 | . . . . . . . . . . . . . 14 ⊢ (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) | |
13 | 11, 12 | sylibr 233 | . . . . . . . . . . . . 13 ⊢ (((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → 𝐾 ∈ (𝑀..^𝑁)) |
14 | 13 | ex 414 | . . . . . . . . . . . 12 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 → 𝐾 ∈ (𝑀..^𝑁))) |
15 | 9, 14 | sylbird 260 | . . . . . . . . . . 11 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (¬ 𝑁 ≤ 𝐾 → 𝐾 ∈ (𝑀..^𝑁))) |
16 | 15 | con1d 145 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (¬ 𝐾 ∈ (𝑀..^𝑁) → 𝑁 ≤ 𝐾)) |
17 | 16 | ex 414 | . . . . . . . . 9 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝑁 ∈ ℤ → (¬ 𝐾 ∈ (𝑀..^𝑁) → 𝑁 ≤ 𝐾))) |
18 | 17 | com23 86 | . . . . . . . 8 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (¬ 𝐾 ∈ (𝑀..^𝑁) → (𝑁 ∈ ℤ → 𝑁 ≤ 𝐾))) |
19 | 18 | 3ad2ant1 1134 | . . . . . . 7 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) → (¬ 𝐾 ∈ (𝑀..^𝑁) → (𝑁 ∈ ℤ → 𝑁 ≤ 𝐾))) |
20 | 19 | imp31 419 | . . . . . 6 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝑁 ≤ 𝐾) |
21 | eluz2 12774 | . . . . . 6 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ≤ 𝐾)) | |
22 | 2, 5, 20, 21 | syl3anbrc 1344 | . . . . 5 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ (ℤ≥‘𝑁)) |
23 | simpll2 1214 | . . . . 5 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝑅 ∈ ℤ) | |
24 | simpll3 1215 | . . . . 5 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝐾 < 𝑅) | |
25 | elfzo2 13581 | . . . . 5 ⊢ (𝐾 ∈ (𝑁..^𝑅) ↔ (𝐾 ∈ (ℤ≥‘𝑁) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅)) | |
26 | 22, 23, 24, 25 | syl3anbrc 1344 | . . . 4 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ (𝑁..^𝑅)) |
27 | 26 | ex 414 | . . 3 ⊢ (((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → (𝑁 ∈ ℤ → 𝐾 ∈ (𝑁..^𝑅))) |
28 | 1, 27 | sylanb 582 | . 2 ⊢ ((𝐾 ∈ (𝑀..^𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → (𝑁 ∈ ℤ → 𝐾 ∈ (𝑁..^𝑅))) |
29 | 28 | com12 32 | 1 ⊢ (𝑁 ∈ ℤ → ((𝐾 ∈ (𝑀..^𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → 𝐾 ∈ (𝑁..^𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 ∈ wcel 2107 class class class wbr 5106 ‘cfv 6497 (class class class)co 7358 ℝcr 11055 < clt 11194 ≤ cle 11195 ℤcz 12504 ℤ≥cuz 12768 ..^cfzo 13573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-nn 12159 df-n0 12419 df-z 12505 df-uz 12769 df-fz 13431 df-fzo 13574 |
This theorem is referenced by: fzonfzoufzol 13681 pfxccatin12lem4 14620 pfxccatin12lem2a 14621 pfxccatin12lem1 14622 fourierdlem20 44454 |
Copyright terms: Public domain | W3C validator |