MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzonelfzo Structured version   Visualization version   GIF version

Theorem elfzonelfzo 12893
Description: If an element of a half-open integer range is not contained in the lower subrange, it must be in the upper subrange. (Contributed by Alexander van der Vekens, 30-Mar-2018.)
Assertion
Ref Expression
elfzonelfzo (𝑁 ∈ ℤ → ((𝐾 ∈ (𝑀..^𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → 𝐾 ∈ (𝑁..^𝑅)))

Proof of Theorem elfzonelfzo
StepHypRef Expression
1 elfzo2 12796 . . 3 (𝐾 ∈ (𝑀..^𝑅) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅))
2 simpr 479 . . . . . 6 ((((𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
3 eluzelz 12006 . . . . . . . 8 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
433ad2ant1 1124 . . . . . . 7 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) → 𝐾 ∈ ℤ)
54ad2antrr 716 . . . . . 6 ((((𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ)
6 eluzelre 12007 . . . . . . . . . . . . 13 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℝ)
7 zre 11736 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
8 ltnle 10458 . . . . . . . . . . . . 13 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾 < 𝑁 ↔ ¬ 𝑁𝐾))
96, 7, 8syl2an 589 . . . . . . . . . . . 12 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 ↔ ¬ 𝑁𝐾))
10 id 22 . . . . . . . . . . . . . . 15 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) → (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))
11103expa 1108 . . . . . . . . . . . . . 14 (((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))
12 elfzo2 12796 . . . . . . . . . . . . . 14 (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))
1311, 12sylibr 226 . . . . . . . . . . . . 13 (((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → 𝐾 ∈ (𝑀..^𝑁))
1413ex 403 . . . . . . . . . . . 12 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁𝐾 ∈ (𝑀..^𝑁)))
159, 14sylbird 252 . . . . . . . . . . 11 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (¬ 𝑁𝐾𝐾 ∈ (𝑀..^𝑁)))
1615con1d 142 . . . . . . . . . 10 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (¬ 𝐾 ∈ (𝑀..^𝑁) → 𝑁𝐾))
1716ex 403 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → (𝑁 ∈ ℤ → (¬ 𝐾 ∈ (𝑀..^𝑁) → 𝑁𝐾)))
1817com23 86 . . . . . . . 8 (𝐾 ∈ (ℤ𝑀) → (¬ 𝐾 ∈ (𝑀..^𝑁) → (𝑁 ∈ ℤ → 𝑁𝐾)))
19183ad2ant1 1124 . . . . . . 7 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) → (¬ 𝐾 ∈ (𝑀..^𝑁) → (𝑁 ∈ ℤ → 𝑁𝐾)))
2019imp31 410 . . . . . 6 ((((𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝑁𝐾)
21 eluz2 12002 . . . . . 6 (𝐾 ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁𝐾))
222, 5, 20, 21syl3anbrc 1400 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ (ℤ𝑁))
23 simpll2 1228 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝑅 ∈ ℤ)
24 simpll3 1230 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝐾 < 𝑅)
25 elfzo2 12796 . . . . 5 (𝐾 ∈ (𝑁..^𝑅) ↔ (𝐾 ∈ (ℤ𝑁) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅))
2622, 23, 24, 25syl3anbrc 1400 . . . 4 ((((𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ (𝑁..^𝑅))
2726ex 403 . . 3 (((𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → (𝑁 ∈ ℤ → 𝐾 ∈ (𝑁..^𝑅)))
281, 27sylanb 576 . 2 ((𝐾 ∈ (𝑀..^𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → (𝑁 ∈ ℤ → 𝐾 ∈ (𝑁..^𝑅)))
2928com12 32 1 (𝑁 ∈ ℤ → ((𝐾 ∈ (𝑀..^𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → 𝐾 ∈ (𝑁..^𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1071  wcel 2107   class class class wbr 4888  cfv 6137  (class class class)co 6924  cr 10273   < clt 10413  cle 10414  cz 11732  cuz 11996  ..^cfzo 12788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11379  df-n0 11647  df-z 11733  df-uz 11997  df-fz 12648  df-fzo 12789
This theorem is referenced by:  fzonfzoufzol  12894  swrdccatin12lem1  13856  swrdccatin12lem2a  13857  pfxccatin12lem1  13858  swrdccatin12lem2bOLD  13859  fourierdlem20  41281
  Copyright terms: Public domain W3C validator