MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzonelfzo Structured version   Visualization version   GIF version

Theorem elfzonelfzo 13680
Description: If an element of a half-open integer range is not contained in the lower subrange, it must be in the upper subrange. (Contributed by Alexander van der Vekens, 30-Mar-2018.)
Assertion
Ref Expression
elfzonelfzo (𝑁 ∈ ℤ → ((𝐾 ∈ (𝑀..^𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → 𝐾 ∈ (𝑁..^𝑅)))

Proof of Theorem elfzonelfzo
StepHypRef Expression
1 elfzo2 13581 . . 3 (𝐾 ∈ (𝑀..^𝑅) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅))
2 simpr 486 . . . . . 6 ((((𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
3 eluzelz 12778 . . . . . . . 8 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
433ad2ant1 1134 . . . . . . 7 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) → 𝐾 ∈ ℤ)
54ad2antrr 725 . . . . . 6 ((((𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ)
6 eluzelre 12779 . . . . . . . . . . . . 13 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℝ)
7 zre 12508 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
8 ltnle 11239 . . . . . . . . . . . . 13 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾 < 𝑁 ↔ ¬ 𝑁𝐾))
96, 7, 8syl2an 597 . . . . . . . . . . . 12 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 ↔ ¬ 𝑁𝐾))
10 id 22 . . . . . . . . . . . . . . 15 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) → (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))
11103expa 1119 . . . . . . . . . . . . . 14 (((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))
12 elfzo2 13581 . . . . . . . . . . . . . 14 (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))
1311, 12sylibr 233 . . . . . . . . . . . . 13 (((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → 𝐾 ∈ (𝑀..^𝑁))
1413ex 414 . . . . . . . . . . . 12 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁𝐾 ∈ (𝑀..^𝑁)))
159, 14sylbird 260 . . . . . . . . . . 11 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (¬ 𝑁𝐾𝐾 ∈ (𝑀..^𝑁)))
1615con1d 145 . . . . . . . . . 10 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (¬ 𝐾 ∈ (𝑀..^𝑁) → 𝑁𝐾))
1716ex 414 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → (𝑁 ∈ ℤ → (¬ 𝐾 ∈ (𝑀..^𝑁) → 𝑁𝐾)))
1817com23 86 . . . . . . . 8 (𝐾 ∈ (ℤ𝑀) → (¬ 𝐾 ∈ (𝑀..^𝑁) → (𝑁 ∈ ℤ → 𝑁𝐾)))
19183ad2ant1 1134 . . . . . . 7 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) → (¬ 𝐾 ∈ (𝑀..^𝑁) → (𝑁 ∈ ℤ → 𝑁𝐾)))
2019imp31 419 . . . . . 6 ((((𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝑁𝐾)
21 eluz2 12774 . . . . . 6 (𝐾 ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁𝐾))
222, 5, 20, 21syl3anbrc 1344 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ (ℤ𝑁))
23 simpll2 1214 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝑅 ∈ ℤ)
24 simpll3 1215 . . . . 5 ((((𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝐾 < 𝑅)
25 elfzo2 13581 . . . . 5 (𝐾 ∈ (𝑁..^𝑅) ↔ (𝐾 ∈ (ℤ𝑁) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅))
2622, 23, 24, 25syl3anbrc 1344 . . . 4 ((((𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ (𝑁..^𝑅))
2726ex 414 . . 3 (((𝐾 ∈ (ℤ𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → (𝑁 ∈ ℤ → 𝐾 ∈ (𝑁..^𝑅)))
281, 27sylanb 582 . 2 ((𝐾 ∈ (𝑀..^𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → (𝑁 ∈ ℤ → 𝐾 ∈ (𝑁..^𝑅)))
2928com12 32 1 (𝑁 ∈ ℤ → ((𝐾 ∈ (𝑀..^𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → 𝐾 ∈ (𝑁..^𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088  wcel 2107   class class class wbr 5106  cfv 6497  (class class class)co 7358  cr 11055   < clt 11194  cle 11195  cz 12504  cuz 12768  ..^cfzo 13573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-n0 12419  df-z 12505  df-uz 12769  df-fz 13431  df-fzo 13574
This theorem is referenced by:  fzonfzoufzol  13681  pfxccatin12lem4  14620  pfxccatin12lem2a  14621  pfxccatin12lem1  14622  fourierdlem20  44454
  Copyright terms: Public domain W3C validator