![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfzonelfzo | Structured version Visualization version GIF version |
Description: If an element of a half-open integer range is not contained in the lower subrange, it must be in the upper subrange. (Contributed by Alexander van der Vekens, 30-Mar-2018.) |
Ref | Expression |
---|---|
elfzonelfzo | ⊢ (𝑁 ∈ ℤ → ((𝐾 ∈ (𝑀..^𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → 𝐾 ∈ (𝑁..^𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzo2 12796 | . . 3 ⊢ (𝐾 ∈ (𝑀..^𝑅) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅)) | |
2 | simpr 479 | . . . . . 6 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
3 | eluzelz 12006 | . . . . . . . 8 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ ℤ) | |
4 | 3 | 3ad2ant1 1124 | . . . . . . 7 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) → 𝐾 ∈ ℤ) |
5 | 4 | ad2antrr 716 | . . . . . 6 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ) |
6 | eluzelre 12007 | . . . . . . . . . . . . 13 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ ℝ) | |
7 | zre 11736 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
8 | ltnle 10458 | . . . . . . . . . . . . 13 ⊢ ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾 < 𝑁 ↔ ¬ 𝑁 ≤ 𝐾)) | |
9 | 6, 7, 8 | syl2an 589 | . . . . . . . . . . . 12 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 ↔ ¬ 𝑁 ≤ 𝐾)) |
10 | id 22 | . . . . . . . . . . . . . . 15 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) → (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) | |
11 | 10 | 3expa 1108 | . . . . . . . . . . . . . 14 ⊢ (((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) |
12 | elfzo2 12796 | . . . . . . . . . . . . . 14 ⊢ (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) | |
13 | 11, 12 | sylibr 226 | . . . . . . . . . . . . 13 ⊢ (((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → 𝐾 ∈ (𝑀..^𝑁)) |
14 | 13 | ex 403 | . . . . . . . . . . . 12 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 → 𝐾 ∈ (𝑀..^𝑁))) |
15 | 9, 14 | sylbird 252 | . . . . . . . . . . 11 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (¬ 𝑁 ≤ 𝐾 → 𝐾 ∈ (𝑀..^𝑁))) |
16 | 15 | con1d 142 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (¬ 𝐾 ∈ (𝑀..^𝑁) → 𝑁 ≤ 𝐾)) |
17 | 16 | ex 403 | . . . . . . . . 9 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝑁 ∈ ℤ → (¬ 𝐾 ∈ (𝑀..^𝑁) → 𝑁 ≤ 𝐾))) |
18 | 17 | com23 86 | . . . . . . . 8 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (¬ 𝐾 ∈ (𝑀..^𝑁) → (𝑁 ∈ ℤ → 𝑁 ≤ 𝐾))) |
19 | 18 | 3ad2ant1 1124 | . . . . . . 7 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) → (¬ 𝐾 ∈ (𝑀..^𝑁) → (𝑁 ∈ ℤ → 𝑁 ≤ 𝐾))) |
20 | 19 | imp31 410 | . . . . . 6 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝑁 ≤ 𝐾) |
21 | eluz2 12002 | . . . . . 6 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ≤ 𝐾)) | |
22 | 2, 5, 20, 21 | syl3anbrc 1400 | . . . . 5 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ (ℤ≥‘𝑁)) |
23 | simpll2 1228 | . . . . 5 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝑅 ∈ ℤ) | |
24 | simpll3 1230 | . . . . 5 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝐾 < 𝑅) | |
25 | elfzo2 12796 | . . . . 5 ⊢ (𝐾 ∈ (𝑁..^𝑅) ↔ (𝐾 ∈ (ℤ≥‘𝑁) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅)) | |
26 | 22, 23, 24, 25 | syl3anbrc 1400 | . . . 4 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ (𝑁..^𝑅)) |
27 | 26 | ex 403 | . . 3 ⊢ (((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → (𝑁 ∈ ℤ → 𝐾 ∈ (𝑁..^𝑅))) |
28 | 1, 27 | sylanb 576 | . 2 ⊢ ((𝐾 ∈ (𝑀..^𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → (𝑁 ∈ ℤ → 𝐾 ∈ (𝑁..^𝑅))) |
29 | 28 | com12 32 | 1 ⊢ (𝑁 ∈ ℤ → ((𝐾 ∈ (𝑀..^𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → 𝐾 ∈ (𝑁..^𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 ∈ wcel 2107 class class class wbr 4888 ‘cfv 6137 (class class class)co 6924 ℝcr 10273 < clt 10413 ≤ cle 10414 ℤcz 11732 ℤ≥cuz 11996 ..^cfzo 12788 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11379 df-n0 11647 df-z 11733 df-uz 11997 df-fz 12648 df-fzo 12789 |
This theorem is referenced by: fzonfzoufzol 12894 swrdccatin12lem1 13856 swrdccatin12lem2a 13857 pfxccatin12lem1 13858 swrdccatin12lem2bOLD 13859 fourierdlem20 41281 |
Copyright terms: Public domain | W3C validator |