Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfzonelfzo | Structured version Visualization version GIF version |
Description: If an element of a half-open integer range is not contained in the lower subrange, it must be in the upper subrange. (Contributed by Alexander van der Vekens, 30-Mar-2018.) |
Ref | Expression |
---|---|
elfzonelfzo | ⊢ (𝑁 ∈ ℤ → ((𝐾 ∈ (𝑀..^𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → 𝐾 ∈ (𝑁..^𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzo2 13418 | . . 3 ⊢ (𝐾 ∈ (𝑀..^𝑅) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅)) | |
2 | simpr 484 | . . . . . 6 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
3 | eluzelz 12620 | . . . . . . . 8 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ ℤ) | |
4 | 3 | 3ad2ant1 1131 | . . . . . . 7 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) → 𝐾 ∈ ℤ) |
5 | 4 | ad2antrr 722 | . . . . . 6 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ) |
6 | eluzelre 12621 | . . . . . . . . . . . . 13 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ ℝ) | |
7 | zre 12351 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
8 | ltnle 11082 | . . . . . . . . . . . . 13 ⊢ ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾 < 𝑁 ↔ ¬ 𝑁 ≤ 𝐾)) | |
9 | 6, 7, 8 | syl2an 595 | . . . . . . . . . . . 12 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 ↔ ¬ 𝑁 ≤ 𝐾)) |
10 | id 22 | . . . . . . . . . . . . . . 15 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) → (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) | |
11 | 10 | 3expa 1116 | . . . . . . . . . . . . . 14 ⊢ (((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) |
12 | elfzo2 13418 | . . . . . . . . . . . . . 14 ⊢ (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) | |
13 | 11, 12 | sylibr 233 | . . . . . . . . . . . . 13 ⊢ (((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → 𝐾 ∈ (𝑀..^𝑁)) |
14 | 13 | ex 412 | . . . . . . . . . . . 12 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 → 𝐾 ∈ (𝑀..^𝑁))) |
15 | 9, 14 | sylbird 259 | . . . . . . . . . . 11 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (¬ 𝑁 ≤ 𝐾 → 𝐾 ∈ (𝑀..^𝑁))) |
16 | 15 | con1d 145 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (¬ 𝐾 ∈ (𝑀..^𝑁) → 𝑁 ≤ 𝐾)) |
17 | 16 | ex 412 | . . . . . . . . 9 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝑁 ∈ ℤ → (¬ 𝐾 ∈ (𝑀..^𝑁) → 𝑁 ≤ 𝐾))) |
18 | 17 | com23 86 | . . . . . . . 8 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (¬ 𝐾 ∈ (𝑀..^𝑁) → (𝑁 ∈ ℤ → 𝑁 ≤ 𝐾))) |
19 | 18 | 3ad2ant1 1131 | . . . . . . 7 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) → (¬ 𝐾 ∈ (𝑀..^𝑁) → (𝑁 ∈ ℤ → 𝑁 ≤ 𝐾))) |
20 | 19 | imp31 417 | . . . . . 6 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝑁 ≤ 𝐾) |
21 | eluz2 12616 | . . . . . 6 ⊢ (𝐾 ∈ (ℤ≥‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ≤ 𝐾)) | |
22 | 2, 5, 20, 21 | syl3anbrc 1341 | . . . . 5 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ (ℤ≥‘𝑁)) |
23 | simpll2 1211 | . . . . 5 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝑅 ∈ ℤ) | |
24 | simpll3 1212 | . . . . 5 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝐾 < 𝑅) | |
25 | elfzo2 13418 | . . . . 5 ⊢ (𝐾 ∈ (𝑁..^𝑅) ↔ (𝐾 ∈ (ℤ≥‘𝑁) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅)) | |
26 | 22, 23, 24, 25 | syl3anbrc 1341 | . . . 4 ⊢ ((((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ (𝑁..^𝑅)) |
27 | 26 | ex 412 | . . 3 ⊢ (((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑅 ∈ ℤ ∧ 𝐾 < 𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → (𝑁 ∈ ℤ → 𝐾 ∈ (𝑁..^𝑅))) |
28 | 1, 27 | sylanb 580 | . 2 ⊢ ((𝐾 ∈ (𝑀..^𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → (𝑁 ∈ ℤ → 𝐾 ∈ (𝑁..^𝑅))) |
29 | 28 | com12 32 | 1 ⊢ (𝑁 ∈ ℤ → ((𝐾 ∈ (𝑀..^𝑅) ∧ ¬ 𝐾 ∈ (𝑀..^𝑁)) → 𝐾 ∈ (𝑁..^𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2101 class class class wbr 5077 ‘cfv 6447 (class class class)co 7295 ℝcr 10898 < clt 11037 ≤ cle 11038 ℤcz 12347 ℤ≥cuz 12610 ..^cfzo 13410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-1st 7851 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-er 8518 df-en 8754 df-dom 8755 df-sdom 8756 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-nn 12002 df-n0 12262 df-z 12348 df-uz 12611 df-fz 13268 df-fzo 13411 |
This theorem is referenced by: fzonfzoufzol 13518 pfxccatin12lem4 14467 pfxccatin12lem2a 14468 pfxccatin12lem1 14469 fourierdlem20 43703 |
Copyright terms: Public domain | W3C validator |