MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzonfzoufzol Structured version   Visualization version   GIF version

Theorem fzonfzoufzol 13677
Description: If an element of a half-open integer range is not in the upper part of the range, it is in the lower part of the range. (Contributed by Alexander van der Vekens, 29-Oct-2018.)
Assertion
Ref Expression
fzonfzoufzol ((𝑀 ∈ ℤ ∧ 𝑀 < 𝑁𝐼 ∈ (0..^𝑁)) → (¬ 𝐼 ∈ ((𝑁𝑀)..^𝑁) → 𝐼 ∈ (0..^(𝑁𝑀))))

Proof of Theorem fzonfzoufzol
StepHypRef Expression
1 elfzoel2 13564 . . . . . . . 8 (𝐼 ∈ (0..^𝑁) → 𝑁 ∈ ℤ)
2 zsubcl 12520 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀) ∈ ℤ)
32ex 412 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑀 ∈ ℤ → (𝑁𝑀) ∈ ℤ))
41, 3syl 17 . . . . . . 7 (𝐼 ∈ (0..^𝑁) → (𝑀 ∈ ℤ → (𝑁𝑀) ∈ ℤ))
54impcom 407 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝐼 ∈ (0..^𝑁)) → (𝑁𝑀) ∈ ℤ)
653adant2 1131 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑀 < 𝑁𝐼 ∈ (0..^𝑁)) → (𝑁𝑀) ∈ ℤ)
76adantr 480 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑀 < 𝑁𝐼 ∈ (0..^𝑁)) ∧ ¬ 𝐼 ∈ (0..^(𝑁𝑀))) → (𝑁𝑀) ∈ ℤ)
8 simp3 1138 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑀 < 𝑁𝐼 ∈ (0..^𝑁)) → 𝐼 ∈ (0..^𝑁))
98anim1i 615 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑀 < 𝑁𝐼 ∈ (0..^𝑁)) ∧ ¬ 𝐼 ∈ (0..^(𝑁𝑀))) → (𝐼 ∈ (0..^𝑁) ∧ ¬ 𝐼 ∈ (0..^(𝑁𝑀))))
10 elfzonelfzo 13675 . . . 4 ((𝑁𝑀) ∈ ℤ → ((𝐼 ∈ (0..^𝑁) ∧ ¬ 𝐼 ∈ (0..^(𝑁𝑀))) → 𝐼 ∈ ((𝑁𝑀)..^𝑁)))
117, 9, 10sylc 65 . . 3 (((𝑀 ∈ ℤ ∧ 𝑀 < 𝑁𝐼 ∈ (0..^𝑁)) ∧ ¬ 𝐼 ∈ (0..^(𝑁𝑀))) → 𝐼 ∈ ((𝑁𝑀)..^𝑁))
1211ex 412 . 2 ((𝑀 ∈ ℤ ∧ 𝑀 < 𝑁𝐼 ∈ (0..^𝑁)) → (¬ 𝐼 ∈ (0..^(𝑁𝑀)) → 𝐼 ∈ ((𝑁𝑀)..^𝑁)))
1312con1d 145 1 ((𝑀 ∈ ℤ ∧ 𝑀 < 𝑁𝐼 ∈ (0..^𝑁)) → (¬ 𝐼 ∈ ((𝑁𝑀)..^𝑁) → 𝐼 ∈ (0..^(𝑁𝑀))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wcel 2111   class class class wbr 5093  (class class class)co 7352  0cc0 11012   < clt 11152  cmin 11350  cz 12474  ..^cfzo 13560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-n0 12388  df-z 12475  df-uz 12739  df-fz 13414  df-fzo 13561
This theorem is referenced by:  cshwidxmod  14716
  Copyright terms: Public domain W3C validator