MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem3 Structured version   Visualization version   GIF version

Theorem ruclem3 16177
Description: Lemma for ruc 16187. The constructed interval [𝑋, 𝑌] always excludes 𝑀. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruclem1.3 (𝜑𝐴 ∈ ℝ)
ruclem1.4 (𝜑𝐵 ∈ ℝ)
ruclem1.5 (𝜑𝑀 ∈ ℝ)
ruclem1.6 𝑋 = (1st ‘(⟨𝐴, 𝐵𝐷𝑀))
ruclem1.7 𝑌 = (2nd ‘(⟨𝐴, 𝐵𝐷𝑀))
ruclem2.8 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
ruclem3 (𝜑 → (𝑀 < 𝑋𝑌 < 𝑀))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑥,𝑦   𝑚,𝐹,𝑥,𝑦   𝑚,𝑀,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)   𝑋(𝑥,𝑦,𝑚)   𝑌(𝑥,𝑦,𝑚)

Proof of Theorem ruclem3
StepHypRef Expression
1 ruclem1.5 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
2 ruclem1.3 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
3 ruclem1.4 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
42, 3readdcld 11179 . . . . . . . . . 10 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
54rehalfcld 12405 . . . . . . . . 9 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ)
61, 5lenltd 11296 . . . . . . . 8 (𝜑 → (𝑀 ≤ ((𝐴 + 𝐵) / 2) ↔ ¬ ((𝐴 + 𝐵) / 2) < 𝑀))
7 ruclem2.8 . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
8 avglt2 12397 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
92, 3, 8syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
107, 9mpbid 232 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝐵) / 2) < 𝐵)
11 avglt1 12396 . . . . . . . . . . 11 ((((𝐴 + 𝐵) / 2) ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) / 2) < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
125, 3, 11syl2anc 584 . . . . . . . . . 10 (𝜑 → (((𝐴 + 𝐵) / 2) < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
1310, 12mpbid 232 . . . . . . . . 9 (𝜑 → ((𝐴 + 𝐵) / 2) < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
145, 3readdcld 11179 . . . . . . . . . . 11 (𝜑 → (((𝐴 + 𝐵) / 2) + 𝐵) ∈ ℝ)
1514rehalfcld 12405 . . . . . . . . . 10 (𝜑 → ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ ℝ)
16 lelttr 11240 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ ((𝐴 + 𝐵) / 2) ∈ ℝ ∧ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ ℝ) → ((𝑀 ≤ ((𝐴 + 𝐵) / 2) ∧ ((𝐴 + 𝐵) / 2) < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) → 𝑀 < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
171, 5, 15, 16syl3anc 1373 . . . . . . . . 9 (𝜑 → ((𝑀 ≤ ((𝐴 + 𝐵) / 2) ∧ ((𝐴 + 𝐵) / 2) < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) → 𝑀 < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
1813, 17mpan2d 694 . . . . . . . 8 (𝜑 → (𝑀 ≤ ((𝐴 + 𝐵) / 2) → 𝑀 < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
196, 18sylbird 260 . . . . . . 7 (𝜑 → (¬ ((𝐴 + 𝐵) / 2) < 𝑀𝑀 < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
2019imp 406 . . . . . 6 ((𝜑 ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑀) → 𝑀 < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
21 ruc.1 . . . . . . . . 9 (𝜑𝐹:ℕ⟶ℝ)
22 ruc.2 . . . . . . . . 9 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
23 ruclem1.6 . . . . . . . . 9 𝑋 = (1st ‘(⟨𝐴, 𝐵𝐷𝑀))
24 ruclem1.7 . . . . . . . . 9 𝑌 = (2nd ‘(⟨𝐴, 𝐵𝐷𝑀))
2521, 22, 2, 3, 1, 23, 24ruclem1 16175 . . . . . . . 8 (𝜑 → ((⟨𝐴, 𝐵𝐷𝑀) ∈ (ℝ × ℝ) ∧ 𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) ∧ 𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵)))
2625simp2d 1143 . . . . . . 7 (𝜑𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
27 iffalse 4493 . . . . . . 7 (¬ ((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) = ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
2826, 27sylan9eq 2784 . . . . . 6 ((𝜑 ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑀) → 𝑋 = ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
2920, 28breqtrrd 5130 . . . . 5 ((𝜑 ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑀) → 𝑀 < 𝑋)
3029ex 412 . . . 4 (𝜑 → (¬ ((𝐴 + 𝐵) / 2) < 𝑀𝑀 < 𝑋))
3130con1d 145 . . 3 (𝜑 → (¬ 𝑀 < 𝑋 → ((𝐴 + 𝐵) / 2) < 𝑀))
3225simp3d 1144 . . . . . 6 (𝜑𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
33 iftrue 4490 . . . . . 6 (((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) = ((𝐴 + 𝐵) / 2))
3432, 33sylan9eq 2784 . . . . 5 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) < 𝑀) → 𝑌 = ((𝐴 + 𝐵) / 2))
35 simpr 484 . . . . 5 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) < 𝑀) → ((𝐴 + 𝐵) / 2) < 𝑀)
3634, 35eqbrtrd 5124 . . . 4 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) < 𝑀) → 𝑌 < 𝑀)
3736ex 412 . . 3 (𝜑 → (((𝐴 + 𝐵) / 2) < 𝑀𝑌 < 𝑀))
3831, 37syld 47 . 2 (𝜑 → (¬ 𝑀 < 𝑋𝑌 < 𝑀))
3938orrd 863 1 (𝜑 → (𝑀 < 𝑋𝑌 < 𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  csb 3859  ifcif 4484  cop 4591   class class class wbr 5102   × cxp 5629  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946  cr 11043   + caddc 11047   < clt 11184  cle 11185   / cdiv 11811  cn 12162  2c2 12217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225
This theorem is referenced by:  ruclem12  16185
  Copyright terms: Public domain W3C validator