MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem3 Structured version   Visualization version   GIF version

Theorem ruclem3 16115
Description: Lemma for ruc 16125. The constructed interval [𝑋, 𝑌] always excludes 𝑀. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruclem1.3 (𝜑𝐴 ∈ ℝ)
ruclem1.4 (𝜑𝐵 ∈ ℝ)
ruclem1.5 (𝜑𝑀 ∈ ℝ)
ruclem1.6 𝑋 = (1st ‘(⟨𝐴, 𝐵𝐷𝑀))
ruclem1.7 𝑌 = (2nd ‘(⟨𝐴, 𝐵𝐷𝑀))
ruclem2.8 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
ruclem3 (𝜑 → (𝑀 < 𝑋𝑌 < 𝑀))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑥,𝑦   𝑚,𝐹,𝑥,𝑦   𝑚,𝑀,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)   𝑋(𝑥,𝑦,𝑚)   𝑌(𝑥,𝑦,𝑚)

Proof of Theorem ruclem3
StepHypRef Expression
1 ruclem1.5 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
2 ruclem1.3 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
3 ruclem1.4 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
42, 3readdcld 11184 . . . . . . . . . 10 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
54rehalfcld 12400 . . . . . . . . 9 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ)
61, 5lenltd 11301 . . . . . . . 8 (𝜑 → (𝑀 ≤ ((𝐴 + 𝐵) / 2) ↔ ¬ ((𝐴 + 𝐵) / 2) < 𝑀))
7 ruclem2.8 . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
8 avglt2 12392 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
92, 3, 8syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
107, 9mpbid 231 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝐵) / 2) < 𝐵)
11 avglt1 12391 . . . . . . . . . . 11 ((((𝐴 + 𝐵) / 2) ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) / 2) < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
125, 3, 11syl2anc 584 . . . . . . . . . 10 (𝜑 → (((𝐴 + 𝐵) / 2) < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
1310, 12mpbid 231 . . . . . . . . 9 (𝜑 → ((𝐴 + 𝐵) / 2) < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
145, 3readdcld 11184 . . . . . . . . . . 11 (𝜑 → (((𝐴 + 𝐵) / 2) + 𝐵) ∈ ℝ)
1514rehalfcld 12400 . . . . . . . . . 10 (𝜑 → ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ ℝ)
16 lelttr 11245 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ ((𝐴 + 𝐵) / 2) ∈ ℝ ∧ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ ℝ) → ((𝑀 ≤ ((𝐴 + 𝐵) / 2) ∧ ((𝐴 + 𝐵) / 2) < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) → 𝑀 < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
171, 5, 15, 16syl3anc 1371 . . . . . . . . 9 (𝜑 → ((𝑀 ≤ ((𝐴 + 𝐵) / 2) ∧ ((𝐴 + 𝐵) / 2) < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) → 𝑀 < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
1813, 17mpan2d 692 . . . . . . . 8 (𝜑 → (𝑀 ≤ ((𝐴 + 𝐵) / 2) → 𝑀 < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
196, 18sylbird 259 . . . . . . 7 (𝜑 → (¬ ((𝐴 + 𝐵) / 2) < 𝑀𝑀 < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
2019imp 407 . . . . . 6 ((𝜑 ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑀) → 𝑀 < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
21 ruc.1 . . . . . . . . 9 (𝜑𝐹:ℕ⟶ℝ)
22 ruc.2 . . . . . . . . 9 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
23 ruclem1.6 . . . . . . . . 9 𝑋 = (1st ‘(⟨𝐴, 𝐵𝐷𝑀))
24 ruclem1.7 . . . . . . . . 9 𝑌 = (2nd ‘(⟨𝐴, 𝐵𝐷𝑀))
2521, 22, 2, 3, 1, 23, 24ruclem1 16113 . . . . . . . 8 (𝜑 → ((⟨𝐴, 𝐵𝐷𝑀) ∈ (ℝ × ℝ) ∧ 𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) ∧ 𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵)))
2625simp2d 1143 . . . . . . 7 (𝜑𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
27 iffalse 4495 . . . . . . 7 (¬ ((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) = ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
2826, 27sylan9eq 2796 . . . . . 6 ((𝜑 ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑀) → 𝑋 = ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
2920, 28breqtrrd 5133 . . . . 5 ((𝜑 ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑀) → 𝑀 < 𝑋)
3029ex 413 . . . 4 (𝜑 → (¬ ((𝐴 + 𝐵) / 2) < 𝑀𝑀 < 𝑋))
3130con1d 145 . . 3 (𝜑 → (¬ 𝑀 < 𝑋 → ((𝐴 + 𝐵) / 2) < 𝑀))
3225simp3d 1144 . . . . . 6 (𝜑𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
33 iftrue 4492 . . . . . 6 (((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) = ((𝐴 + 𝐵) / 2))
3432, 33sylan9eq 2796 . . . . 5 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) < 𝑀) → 𝑌 = ((𝐴 + 𝐵) / 2))
35 simpr 485 . . . . 5 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) < 𝑀) → ((𝐴 + 𝐵) / 2) < 𝑀)
3634, 35eqbrtrd 5127 . . . 4 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) < 𝑀) → 𝑌 < 𝑀)
3736ex 413 . . 3 (𝜑 → (((𝐴 + 𝐵) / 2) < 𝑀𝑌 < 𝑀))
3831, 37syld 47 . 2 (𝜑 → (¬ 𝑀 < 𝑋𝑌 < 𝑀))
3938orrd 861 1 (𝜑 → (𝑀 < 𝑋𝑌 < 𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  csb 3855  ifcif 4486  cop 4592   class class class wbr 5105   × cxp 5631  wf 6492  cfv 6496  (class class class)co 7357  cmpo 7359  1st c1st 7919  2nd c2nd 7920  cr 11050   + caddc 11054   < clt 11189  cle 11190   / cdiv 11812  cn 12153  2c2 12208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-2 12216
This theorem is referenced by:  ruclem12  16123
  Copyright terms: Public domain W3C validator