MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruclem3 Structured version   Visualization version   GIF version

Theorem ruclem3 15588
Description: Lemma for ruc 15598. The constructed interval [𝑋, 𝑌] always excludes 𝑀. (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
ruc.1 (𝜑𝐹:ℕ⟶ℝ)
ruc.2 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
ruclem1.3 (𝜑𝐴 ∈ ℝ)
ruclem1.4 (𝜑𝐵 ∈ ℝ)
ruclem1.5 (𝜑𝑀 ∈ ℝ)
ruclem1.6 𝑋 = (1st ‘(⟨𝐴, 𝐵𝐷𝑀))
ruclem1.7 𝑌 = (2nd ‘(⟨𝐴, 𝐵𝐷𝑀))
ruclem2.8 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
ruclem3 (𝜑 → (𝑀 < 𝑋𝑌 < 𝑀))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑥,𝑦   𝑚,𝐹,𝑥,𝑦   𝑚,𝑀,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑚)   𝐷(𝑥,𝑦,𝑚)   𝑋(𝑥,𝑦,𝑚)   𝑌(𝑥,𝑦,𝑚)

Proof of Theorem ruclem3
StepHypRef Expression
1 ruclem1.5 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
2 ruclem1.3 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
3 ruclem1.4 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
42, 3readdcld 10672 . . . . . . . . . 10 (𝜑 → (𝐴 + 𝐵) ∈ ℝ)
54rehalfcld 11887 . . . . . . . . 9 (𝜑 → ((𝐴 + 𝐵) / 2) ∈ ℝ)
61, 5lenltd 10788 . . . . . . . 8 (𝜑 → (𝑀 ≤ ((𝐴 + 𝐵) / 2) ↔ ¬ ((𝐴 + 𝐵) / 2) < 𝑀))
7 ruclem2.8 . . . . . . . . . . 11 (𝜑𝐴 < 𝐵)
8 avglt2 11879 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
92, 3, 8syl2anc 586 . . . . . . . . . . 11 (𝜑 → (𝐴 < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < 𝐵))
107, 9mpbid 234 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝐵) / 2) < 𝐵)
11 avglt1 11878 . . . . . . . . . . 11 ((((𝐴 + 𝐵) / 2) ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 + 𝐵) / 2) < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
125, 3, 11syl2anc 586 . . . . . . . . . 10 (𝜑 → (((𝐴 + 𝐵) / 2) < 𝐵 ↔ ((𝐴 + 𝐵) / 2) < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
1310, 12mpbid 234 . . . . . . . . 9 (𝜑 → ((𝐴 + 𝐵) / 2) < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
145, 3readdcld 10672 . . . . . . . . . . 11 (𝜑 → (((𝐴 + 𝐵) / 2) + 𝐵) ∈ ℝ)
1514rehalfcld 11887 . . . . . . . . . 10 (𝜑 → ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ ℝ)
16 lelttr 10733 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ ((𝐴 + 𝐵) / 2) ∈ ℝ ∧ ((((𝐴 + 𝐵) / 2) + 𝐵) / 2) ∈ ℝ) → ((𝑀 ≤ ((𝐴 + 𝐵) / 2) ∧ ((𝐴 + 𝐵) / 2) < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) → 𝑀 < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
171, 5, 15, 16syl3anc 1367 . . . . . . . . 9 (𝜑 → ((𝑀 ≤ ((𝐴 + 𝐵) / 2) ∧ ((𝐴 + 𝐵) / 2) < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) → 𝑀 < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
1813, 17mpan2d 692 . . . . . . . 8 (𝜑 → (𝑀 ≤ ((𝐴 + 𝐵) / 2) → 𝑀 < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
196, 18sylbird 262 . . . . . . 7 (𝜑 → (¬ ((𝐴 + 𝐵) / 2) < 𝑀𝑀 < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
2019imp 409 . . . . . 6 ((𝜑 ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑀) → 𝑀 < ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
21 ruc.1 . . . . . . . . 9 (𝜑𝐹:ℕ⟶ℝ)
22 ruc.2 . . . . . . . . 9 (𝜑𝐷 = (𝑥 ∈ (ℝ × ℝ), 𝑦 ∈ ℝ ↦ (((1st𝑥) + (2nd𝑥)) / 2) / 𝑚if(𝑚 < 𝑦, ⟨(1st𝑥), 𝑚⟩, ⟨((𝑚 + (2nd𝑥)) / 2), (2nd𝑥)⟩)))
23 ruclem1.6 . . . . . . . . 9 𝑋 = (1st ‘(⟨𝐴, 𝐵𝐷𝑀))
24 ruclem1.7 . . . . . . . . 9 𝑌 = (2nd ‘(⟨𝐴, 𝐵𝐷𝑀))
2521, 22, 2, 3, 1, 23, 24ruclem1 15586 . . . . . . . 8 (𝜑 → ((⟨𝐴, 𝐵𝐷𝑀) ∈ (ℝ × ℝ) ∧ 𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) ∧ 𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵)))
2625simp2d 1139 . . . . . . 7 (𝜑𝑋 = if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)))
27 iffalse 4478 . . . . . . 7 (¬ ((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, 𝐴, ((((𝐴 + 𝐵) / 2) + 𝐵) / 2)) = ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
2826, 27sylan9eq 2878 . . . . . 6 ((𝜑 ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑀) → 𝑋 = ((((𝐴 + 𝐵) / 2) + 𝐵) / 2))
2920, 28breqtrrd 5096 . . . . 5 ((𝜑 ∧ ¬ ((𝐴 + 𝐵) / 2) < 𝑀) → 𝑀 < 𝑋)
3029ex 415 . . . 4 (𝜑 → (¬ ((𝐴 + 𝐵) / 2) < 𝑀𝑀 < 𝑋))
3130con1d 147 . . 3 (𝜑 → (¬ 𝑀 < 𝑋 → ((𝐴 + 𝐵) / 2) < 𝑀))
3225simp3d 1140 . . . . . 6 (𝜑𝑌 = if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵))
33 iftrue 4475 . . . . . 6 (((𝐴 + 𝐵) / 2) < 𝑀 → if(((𝐴 + 𝐵) / 2) < 𝑀, ((𝐴 + 𝐵) / 2), 𝐵) = ((𝐴 + 𝐵) / 2))
3432, 33sylan9eq 2878 . . . . 5 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) < 𝑀) → 𝑌 = ((𝐴 + 𝐵) / 2))
35 simpr 487 . . . . 5 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) < 𝑀) → ((𝐴 + 𝐵) / 2) < 𝑀)
3634, 35eqbrtrd 5090 . . . 4 ((𝜑 ∧ ((𝐴 + 𝐵) / 2) < 𝑀) → 𝑌 < 𝑀)
3736ex 415 . . 3 (𝜑 → (((𝐴 + 𝐵) / 2) < 𝑀𝑌 < 𝑀))
3831, 37syld 47 . 2 (𝜑 → (¬ 𝑀 < 𝑋𝑌 < 𝑀))
3938orrd 859 1 (𝜑 → (𝑀 < 𝑋𝑌 < 𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  csb 3885  ifcif 4469  cop 4575   class class class wbr 5068   × cxp 5555  wf 6353  cfv 6357  (class class class)co 7158  cmpo 7160  1st c1st 7689  2nd c2nd 7690  cr 10538   + caddc 10542   < clt 10677  cle 10678   / cdiv 11299  cn 11640  2c2 11695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-2 11703
This theorem is referenced by:  ruclem12  15596
  Copyright terms: Public domain W3C validator