| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvdseq | Structured version Visualization version GIF version | ||
| Description: If two nonnegative integers divide each other, they must be equal. (Contributed by Mario Carneiro, 30-May-2014.) (Proof shortened by AV, 7-Aug-2021.) |
| Ref | Expression |
|---|---|
| dvdseq | ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 ∥ 𝑁 ∧ 𝑁 ∥ 𝑀)) → 𝑀 = 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsabseq 16224 | . 2 ⊢ ((𝑀 ∥ 𝑁 ∧ 𝑁 ∥ 𝑀) → (abs‘𝑀) = (abs‘𝑁)) | |
| 2 | nn0re 12390 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ) | |
| 3 | nn0ge0 12406 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ0 → 0 ≤ 𝑀) | |
| 4 | 2, 3 | absidd 15330 | . . . . . 6 ⊢ (𝑀 ∈ ℕ0 → (abs‘𝑀) = 𝑀) |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (abs‘𝑀) = 𝑀) |
| 6 | 5 | eqcomd 2737 | . . . 4 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → 𝑀 = (abs‘𝑀)) |
| 7 | 6 | adantr 480 | . . 3 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ (abs‘𝑀) = (abs‘𝑁)) → 𝑀 = (abs‘𝑀)) |
| 8 | simpr 484 | . . 3 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ (abs‘𝑀) = (abs‘𝑁)) → (abs‘𝑀) = (abs‘𝑁)) | |
| 9 | nn0re 12390 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 10 | nn0ge0 12406 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
| 11 | 9, 10 | absidd 15330 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (abs‘𝑁) = 𝑁) |
| 12 | 11 | ad2antlr 727 | . . 3 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ (abs‘𝑀) = (abs‘𝑁)) → (abs‘𝑁) = 𝑁) |
| 13 | 7, 8, 12 | 3eqtrd 2770 | . 2 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ (abs‘𝑀) = (abs‘𝑁)) → 𝑀 = 𝑁) |
| 14 | 1, 13 | sylan2 593 | 1 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 ∥ 𝑁 ∧ 𝑁 ∥ 𝑀)) → 𝑀 = 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ‘cfv 6481 ℕ0cn0 12381 abscabs 15141 ∥ cdvds 16163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 |
| This theorem is referenced by: dvds1 16230 dvdsext 16232 mulgcd 16459 lcmgcdeq 16523 rpmulgcd2 16567 isprm6 16625 pc11 16792 pcprmpw2 16794 odeq 19462 odadd 19762 gexexlem 19764 lt6abl 19807 cyggex2 19809 ablfacrp2 19981 ablfac1c 19985 ablfac1eu 19987 znidomb 21498 mpodvdsmulf1o 27131 dvdsmulf1o 27133 |
| Copyright terms: Public domain | W3C validator |