MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finsumvtxdg2ssteplem2 Structured version   Visualization version   GIF version

Theorem finsumvtxdg2ssteplem2 29527
Description: Lemma for finsumvtxdg2sstep 29530. (Contributed by AV, 12-Dec-2021.)
Hypotheses
Ref Expression
finsumvtxdg2sstep.v 𝑉 = (Vtx‘𝐺)
finsumvtxdg2sstep.e 𝐸 = (iEdg‘𝐺)
finsumvtxdg2sstep.k 𝐾 = (𝑉 ∖ {𝑁})
finsumvtxdg2sstep.i 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
finsumvtxdg2sstep.p 𝑃 = (𝐸𝐼)
finsumvtxdg2sstep.s 𝑆 = ⟨𝐾, 𝑃
finsumvtxdg2ssteplem.j 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
Assertion
Ref Expression
finsumvtxdg2ssteplem2 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((VtxDeg‘𝐺)‘𝑁) = ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})))
Distinct variable groups:   𝑖,𝐸   𝑖,𝐺   𝑖,𝑁
Allowed substitution hints:   𝑃(𝑖)   𝑆(𝑖)   𝐼(𝑖)   𝐽(𝑖)   𝐾(𝑖)   𝑉(𝑖)

Proof of Theorem finsumvtxdg2ssteplem2
StepHypRef Expression
1 dmfi 9226 . . . 4 (𝐸 ∈ Fin → dom 𝐸 ∈ Fin)
21adantl 481 . . 3 ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → dom 𝐸 ∈ Fin)
3 simpr 484 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝑁𝑉)
4 finsumvtxdg2sstep.v . . . 4 𝑉 = (Vtx‘𝐺)
5 finsumvtxdg2sstep.e . . . 4 𝐸 = (iEdg‘𝐺)
6 eqid 2733 . . . 4 dom 𝐸 = dom 𝐸
74, 5, 6vtxdgfival 29450 . . 3 ((dom 𝐸 ∈ Fin ∧ 𝑁𝑉) → ((VtxDeg‘𝐺)‘𝑁) = ((♯‘{𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})))
82, 3, 7syl2anr 597 . 2 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((VtxDeg‘𝐺)‘𝑁) = ((♯‘{𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})))
9 finsumvtxdg2ssteplem.j . . . . . 6 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
109eqcomi 2742 . . . . 5 {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)} = 𝐽
1110fveq2i 6831 . . . 4 (♯‘{𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}) = (♯‘𝐽)
1211a1i 11 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘{𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}) = (♯‘𝐽))
1312oveq1d 7367 . 2 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((♯‘{𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})) = ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})))
148, 13eqtrd 2768 1 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((VtxDeg‘𝐺)‘𝑁) = ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wnel 3033  {crab 3396  cdif 3895  {csn 4575  cop 4581  dom cdm 5619  cres 5621  cfv 6486  (class class class)co 7352  Fincfn 8875   + caddc 11016  chash 14239  Vtxcvtx 28976  iEdgciedg 28977  UPGraphcupgr 29060  VtxDegcvtxdg 29446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-xadd 13014  df-hash 14240  df-vtxdg 29447
This theorem is referenced by:  finsumvtxdg2sstep  29530
  Copyright terms: Public domain W3C validator