MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashreshashfun Structured version   Visualization version   GIF version

Theorem hashreshashfun 14346
Description: The number of elements of a finite function expressed by a restriction. (Contributed by AV, 15-Dec-2021.)
Assertion
Ref Expression
hashreshashfun ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐴) = ((♯‘(𝐴𝐵)) + (♯‘(dom 𝐴𝐵))))

Proof of Theorem hashreshashfun
StepHypRef Expression
1 simp1 1137 . . 3 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → Fun 𝐴)
2 hashfun 14344 . . . 4 (𝐴 ∈ Fin → (Fun 𝐴 ↔ (♯‘𝐴) = (♯‘dom 𝐴)))
323ad2ant2 1135 . . 3 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (Fun 𝐴 ↔ (♯‘𝐴) = (♯‘dom 𝐴)))
41, 3mpbid 231 . 2 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐴) = (♯‘dom 𝐴))
5 dmfi 9281 . . . . . . 7 (𝐴 ∈ Fin → dom 𝐴 ∈ Fin)
65anim1i 616 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴))
763adant1 1131 . . . . 5 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴))
8 hashssdif 14319 . . . . 5 ((dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘(dom 𝐴𝐵)) = ((♯‘dom 𝐴) − (♯‘𝐵)))
97, 8syl 17 . . . 4 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘(dom 𝐴𝐵)) = ((♯‘dom 𝐴) − (♯‘𝐵)))
109oveq2d 7378 . . 3 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) + (♯‘(dom 𝐴𝐵))) = ((♯‘𝐵) + ((♯‘dom 𝐴) − (♯‘𝐵))))
11 ssfi 9124 . . . . . . . . . 10 ((dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → 𝐵 ∈ Fin)
1211ex 414 . . . . . . . . 9 (dom 𝐴 ∈ Fin → (𝐵 ⊆ dom 𝐴𝐵 ∈ Fin))
13 hashcl 14263 . . . . . . . . . 10 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
1413nn0cnd 12482 . . . . . . . . 9 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℂ)
1512, 14syl6 35 . . . . . . . 8 (dom 𝐴 ∈ Fin → (𝐵 ⊆ dom 𝐴 → (♯‘𝐵) ∈ ℂ))
165, 15syl 17 . . . . . . 7 (𝐴 ∈ Fin → (𝐵 ⊆ dom 𝐴 → (♯‘𝐵) ∈ ℂ))
1716imp 408 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐵) ∈ ℂ)
18 hashcl 14263 . . . . . . . . 9 (dom 𝐴 ∈ Fin → (♯‘dom 𝐴) ∈ ℕ0)
195, 18syl 17 . . . . . . . 8 (𝐴 ∈ Fin → (♯‘dom 𝐴) ∈ ℕ0)
2019nn0cnd 12482 . . . . . . 7 (𝐴 ∈ Fin → (♯‘dom 𝐴) ∈ ℂ)
2120adantr 482 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘dom 𝐴) ∈ ℂ)
2217, 21jca 513 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) ∈ ℂ ∧ (♯‘dom 𝐴) ∈ ℂ))
23223adant1 1131 . . . 4 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) ∈ ℂ ∧ (♯‘dom 𝐴) ∈ ℂ))
24 pncan3 11416 . . . 4 (((♯‘𝐵) ∈ ℂ ∧ (♯‘dom 𝐴) ∈ ℂ) → ((♯‘𝐵) + ((♯‘dom 𝐴) − (♯‘𝐵))) = (♯‘dom 𝐴))
2523, 24syl 17 . . 3 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) + ((♯‘dom 𝐴) − (♯‘𝐵))) = (♯‘dom 𝐴))
2610, 25eqtr2d 2778 . 2 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘dom 𝐴) = ((♯‘𝐵) + (♯‘(dom 𝐴𝐵))))
27 hashres 14345 . . . 4 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘(𝐴𝐵)) = (♯‘𝐵))
2827eqcomd 2743 . . 3 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐵) = (♯‘(𝐴𝐵)))
2928oveq1d 7377 . 2 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) + (♯‘(dom 𝐴𝐵))) = ((♯‘(𝐴𝐵)) + (♯‘(dom 𝐴𝐵))))
304, 26, 293eqtrd 2781 1 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐴) = ((♯‘(𝐴𝐵)) + (♯‘(dom 𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  cdif 3912  wss 3915  dom cdm 5638  cres 5640  Fun wfun 6495  cfv 6501  (class class class)co 7362  Fincfn 8890  cc 11056   + caddc 11061  cmin 11392  0cn0 12420  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-oadd 8421  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-dju 9844  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-2 12223  df-n0 12421  df-xnn0 12493  df-z 12507  df-uz 12771  df-fz 13432  df-hash 14238
This theorem is referenced by:  finsumvtxdg2ssteplem1  28535
  Copyright terms: Public domain W3C validator