MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashreshashfun Structured version   Visualization version   GIF version

Theorem hashreshashfun 14488
Description: The number of elements of a finite function expressed by a restriction. (Contributed by AV, 15-Dec-2021.)
Assertion
Ref Expression
hashreshashfun ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐴) = ((♯‘(𝐴𝐵)) + (♯‘(dom 𝐴𝐵))))

Proof of Theorem hashreshashfun
StepHypRef Expression
1 simp1 1136 . . 3 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → Fun 𝐴)
2 hashfun 14486 . . . 4 (𝐴 ∈ Fin → (Fun 𝐴 ↔ (♯‘𝐴) = (♯‘dom 𝐴)))
323ad2ant2 1134 . . 3 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (Fun 𝐴 ↔ (♯‘𝐴) = (♯‘dom 𝐴)))
41, 3mpbid 232 . 2 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐴) = (♯‘dom 𝐴))
5 dmfi 9403 . . . . . . 7 (𝐴 ∈ Fin → dom 𝐴 ∈ Fin)
65anim1i 614 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴))
763adant1 1130 . . . . 5 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴))
8 hashssdif 14461 . . . . 5 ((dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘(dom 𝐴𝐵)) = ((♯‘dom 𝐴) − (♯‘𝐵)))
97, 8syl 17 . . . 4 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘(dom 𝐴𝐵)) = ((♯‘dom 𝐴) − (♯‘𝐵)))
109oveq2d 7464 . . 3 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) + (♯‘(dom 𝐴𝐵))) = ((♯‘𝐵) + ((♯‘dom 𝐴) − (♯‘𝐵))))
11 ssfi 9240 . . . . . . . . . 10 ((dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → 𝐵 ∈ Fin)
1211ex 412 . . . . . . . . 9 (dom 𝐴 ∈ Fin → (𝐵 ⊆ dom 𝐴𝐵 ∈ Fin))
13 hashcl 14405 . . . . . . . . . 10 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
1413nn0cnd 12615 . . . . . . . . 9 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℂ)
1512, 14syl6 35 . . . . . . . 8 (dom 𝐴 ∈ Fin → (𝐵 ⊆ dom 𝐴 → (♯‘𝐵) ∈ ℂ))
165, 15syl 17 . . . . . . 7 (𝐴 ∈ Fin → (𝐵 ⊆ dom 𝐴 → (♯‘𝐵) ∈ ℂ))
1716imp 406 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐵) ∈ ℂ)
18 hashcl 14405 . . . . . . . . 9 (dom 𝐴 ∈ Fin → (♯‘dom 𝐴) ∈ ℕ0)
195, 18syl 17 . . . . . . . 8 (𝐴 ∈ Fin → (♯‘dom 𝐴) ∈ ℕ0)
2019nn0cnd 12615 . . . . . . 7 (𝐴 ∈ Fin → (♯‘dom 𝐴) ∈ ℂ)
2120adantr 480 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘dom 𝐴) ∈ ℂ)
2217, 21jca 511 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) ∈ ℂ ∧ (♯‘dom 𝐴) ∈ ℂ))
23223adant1 1130 . . . 4 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) ∈ ℂ ∧ (♯‘dom 𝐴) ∈ ℂ))
24 pncan3 11544 . . . 4 (((♯‘𝐵) ∈ ℂ ∧ (♯‘dom 𝐴) ∈ ℂ) → ((♯‘𝐵) + ((♯‘dom 𝐴) − (♯‘𝐵))) = (♯‘dom 𝐴))
2523, 24syl 17 . . 3 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) + ((♯‘dom 𝐴) − (♯‘𝐵))) = (♯‘dom 𝐴))
2610, 25eqtr2d 2781 . 2 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘dom 𝐴) = ((♯‘𝐵) + (♯‘(dom 𝐴𝐵))))
27 hashres 14487 . . . 4 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘(𝐴𝐵)) = (♯‘𝐵))
2827eqcomd 2746 . . 3 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐵) = (♯‘(𝐴𝐵)))
2928oveq1d 7463 . 2 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) + (♯‘(dom 𝐴𝐵))) = ((♯‘(𝐴𝐵)) + (♯‘(dom 𝐴𝐵))))
304, 26, 293eqtrd 2784 1 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐴) = ((♯‘(𝐴𝐵)) + (♯‘(dom 𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  cdif 3973  wss 3976  dom cdm 5700  cres 5702  Fun wfun 6567  cfv 6573  (class class class)co 7448  Fincfn 9003  cc 11182   + caddc 11187  cmin 11520  0cn0 12553  chash 14379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380
This theorem is referenced by:  finsumvtxdg2ssteplem1  29581
  Copyright terms: Public domain W3C validator