MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashreshashfun Structured version   Visualization version   GIF version

Theorem hashreshashfun 14462
Description: The number of elements of a finite function expressed by a restriction. (Contributed by AV, 15-Dec-2021.)
Assertion
Ref Expression
hashreshashfun ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐴) = ((♯‘(𝐴𝐵)) + (♯‘(dom 𝐴𝐵))))

Proof of Theorem hashreshashfun
StepHypRef Expression
1 simp1 1136 . . 3 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → Fun 𝐴)
2 hashfun 14460 . . . 4 (𝐴 ∈ Fin → (Fun 𝐴 ↔ (♯‘𝐴) = (♯‘dom 𝐴)))
323ad2ant2 1134 . . 3 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (Fun 𝐴 ↔ (♯‘𝐴) = (♯‘dom 𝐴)))
41, 3mpbid 232 . 2 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐴) = (♯‘dom 𝐴))
5 dmfi 9352 . . . . . . 7 (𝐴 ∈ Fin → dom 𝐴 ∈ Fin)
65anim1i 615 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴))
763adant1 1130 . . . . 5 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴))
8 hashssdif 14435 . . . . 5 ((dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘(dom 𝐴𝐵)) = ((♯‘dom 𝐴) − (♯‘𝐵)))
97, 8syl 17 . . . 4 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘(dom 𝐴𝐵)) = ((♯‘dom 𝐴) − (♯‘𝐵)))
109oveq2d 7426 . . 3 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) + (♯‘(dom 𝐴𝐵))) = ((♯‘𝐵) + ((♯‘dom 𝐴) − (♯‘𝐵))))
11 ssfi 9192 . . . . . . . . . 10 ((dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → 𝐵 ∈ Fin)
1211ex 412 . . . . . . . . 9 (dom 𝐴 ∈ Fin → (𝐵 ⊆ dom 𝐴𝐵 ∈ Fin))
13 hashcl 14379 . . . . . . . . . 10 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
1413nn0cnd 12569 . . . . . . . . 9 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℂ)
1512, 14syl6 35 . . . . . . . 8 (dom 𝐴 ∈ Fin → (𝐵 ⊆ dom 𝐴 → (♯‘𝐵) ∈ ℂ))
165, 15syl 17 . . . . . . 7 (𝐴 ∈ Fin → (𝐵 ⊆ dom 𝐴 → (♯‘𝐵) ∈ ℂ))
1716imp 406 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐵) ∈ ℂ)
18 hashcl 14379 . . . . . . . . 9 (dom 𝐴 ∈ Fin → (♯‘dom 𝐴) ∈ ℕ0)
195, 18syl 17 . . . . . . . 8 (𝐴 ∈ Fin → (♯‘dom 𝐴) ∈ ℕ0)
2019nn0cnd 12569 . . . . . . 7 (𝐴 ∈ Fin → (♯‘dom 𝐴) ∈ ℂ)
2120adantr 480 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘dom 𝐴) ∈ ℂ)
2217, 21jca 511 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) ∈ ℂ ∧ (♯‘dom 𝐴) ∈ ℂ))
23223adant1 1130 . . . 4 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) ∈ ℂ ∧ (♯‘dom 𝐴) ∈ ℂ))
24 pncan3 11495 . . . 4 (((♯‘𝐵) ∈ ℂ ∧ (♯‘dom 𝐴) ∈ ℂ) → ((♯‘𝐵) + ((♯‘dom 𝐴) − (♯‘𝐵))) = (♯‘dom 𝐴))
2523, 24syl 17 . . 3 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) + ((♯‘dom 𝐴) − (♯‘𝐵))) = (♯‘dom 𝐴))
2610, 25eqtr2d 2772 . 2 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘dom 𝐴) = ((♯‘𝐵) + (♯‘(dom 𝐴𝐵))))
27 hashres 14461 . . . 4 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘(𝐴𝐵)) = (♯‘𝐵))
2827eqcomd 2742 . . 3 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐵) = (♯‘(𝐴𝐵)))
2928oveq1d 7425 . 2 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) + (♯‘(dom 𝐴𝐵))) = ((♯‘(𝐴𝐵)) + (♯‘(dom 𝐴𝐵))))
304, 26, 293eqtrd 2775 1 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐴) = ((♯‘(𝐴𝐵)) + (♯‘(dom 𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cdif 3928  wss 3931  dom cdm 5659  cres 5661  Fun wfun 6530  cfv 6536  (class class class)co 7410  Fincfn 8964  cc 11132   + caddc 11137  cmin 11471  0cn0 12506  chash 14353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-fz 13530  df-hash 14354
This theorem is referenced by:  finsumvtxdg2ssteplem1  29530
  Copyright terms: Public domain W3C validator