![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashreshashfun | Structured version Visualization version GIF version |
Description: The number of elements of a finite function expressed by a restriction. (Contributed by AV, 15-Dec-2021.) |
Ref | Expression |
---|---|
hashreshashfun | ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐴) = ((♯‘(𝐴 ↾ 𝐵)) + (♯‘(dom 𝐴 ∖ 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → Fun 𝐴) | |
2 | hashfun 14429 | . . . 4 ⊢ (𝐴 ∈ Fin → (Fun 𝐴 ↔ (♯‘𝐴) = (♯‘dom 𝐴))) | |
3 | 2 | 3ad2ant2 1132 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (Fun 𝐴 ↔ (♯‘𝐴) = (♯‘dom 𝐴))) |
4 | 1, 3 | mpbid 231 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐴) = (♯‘dom 𝐴)) |
5 | dmfi 9355 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → dom 𝐴 ∈ Fin) | |
6 | 5 | anim1i 614 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴)) |
7 | 6 | 3adant1 1128 | . . . . 5 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴)) |
8 | hashssdif 14404 | . . . . 5 ⊢ ((dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘(dom 𝐴 ∖ 𝐵)) = ((♯‘dom 𝐴) − (♯‘𝐵))) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘(dom 𝐴 ∖ 𝐵)) = ((♯‘dom 𝐴) − (♯‘𝐵))) |
10 | 9 | oveq2d 7436 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) + (♯‘(dom 𝐴 ∖ 𝐵))) = ((♯‘𝐵) + ((♯‘dom 𝐴) − (♯‘𝐵)))) |
11 | ssfi 9198 | . . . . . . . . . 10 ⊢ ((dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → 𝐵 ∈ Fin) | |
12 | 11 | ex 412 | . . . . . . . . 9 ⊢ (dom 𝐴 ∈ Fin → (𝐵 ⊆ dom 𝐴 → 𝐵 ∈ Fin)) |
13 | hashcl 14348 | . . . . . . . . . 10 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
14 | 13 | nn0cnd 12565 | . . . . . . . . 9 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℂ) |
15 | 12, 14 | syl6 35 | . . . . . . . 8 ⊢ (dom 𝐴 ∈ Fin → (𝐵 ⊆ dom 𝐴 → (♯‘𝐵) ∈ ℂ)) |
16 | 5, 15 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (𝐵 ⊆ dom 𝐴 → (♯‘𝐵) ∈ ℂ)) |
17 | 16 | imp 406 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐵) ∈ ℂ) |
18 | hashcl 14348 | . . . . . . . . 9 ⊢ (dom 𝐴 ∈ Fin → (♯‘dom 𝐴) ∈ ℕ0) | |
19 | 5, 18 | syl 17 | . . . . . . . 8 ⊢ (𝐴 ∈ Fin → (♯‘dom 𝐴) ∈ ℕ0) |
20 | 19 | nn0cnd 12565 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (♯‘dom 𝐴) ∈ ℂ) |
21 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘dom 𝐴) ∈ ℂ) |
22 | 17, 21 | jca 511 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) ∈ ℂ ∧ (♯‘dom 𝐴) ∈ ℂ)) |
23 | 22 | 3adant1 1128 | . . . 4 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) ∈ ℂ ∧ (♯‘dom 𝐴) ∈ ℂ)) |
24 | pncan3 11499 | . . . 4 ⊢ (((♯‘𝐵) ∈ ℂ ∧ (♯‘dom 𝐴) ∈ ℂ) → ((♯‘𝐵) + ((♯‘dom 𝐴) − (♯‘𝐵))) = (♯‘dom 𝐴)) | |
25 | 23, 24 | syl 17 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) + ((♯‘dom 𝐴) − (♯‘𝐵))) = (♯‘dom 𝐴)) |
26 | 10, 25 | eqtr2d 2769 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘dom 𝐴) = ((♯‘𝐵) + (♯‘(dom 𝐴 ∖ 𝐵)))) |
27 | hashres 14430 | . . . 4 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘(𝐴 ↾ 𝐵)) = (♯‘𝐵)) | |
28 | 27 | eqcomd 2734 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐵) = (♯‘(𝐴 ↾ 𝐵))) |
29 | 28 | oveq1d 7435 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) + (♯‘(dom 𝐴 ∖ 𝐵))) = ((♯‘(𝐴 ↾ 𝐵)) + (♯‘(dom 𝐴 ∖ 𝐵)))) |
30 | 4, 26, 29 | 3eqtrd 2772 | 1 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐴) = ((♯‘(𝐴 ↾ 𝐵)) + (♯‘(dom 𝐴 ∖ 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∖ cdif 3944 ⊆ wss 3947 dom cdm 5678 ↾ cres 5680 Fun wfun 6542 ‘cfv 6548 (class class class)co 7420 Fincfn 8964 ℂcc 11137 + caddc 11142 − cmin 11475 ℕ0cn0 12503 ♯chash 14322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-oadd 8491 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9925 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-n0 12504 df-xnn0 12576 df-z 12590 df-uz 12854 df-fz 13518 df-hash 14323 |
This theorem is referenced by: finsumvtxdg2ssteplem1 29372 |
Copyright terms: Public domain | W3C validator |