![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashreshashfun | Structured version Visualization version GIF version |
Description: The number of elements of a finite function expressed by a restriction. (Contributed by AV, 15-Dec-2021.) |
Ref | Expression |
---|---|
hashreshashfun | ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐴) = ((♯‘(𝐴 ↾ 𝐵)) + (♯‘(dom 𝐴 ∖ 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1137 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → Fun 𝐴) | |
2 | hashfun 14344 | . . . 4 ⊢ (𝐴 ∈ Fin → (Fun 𝐴 ↔ (♯‘𝐴) = (♯‘dom 𝐴))) | |
3 | 2 | 3ad2ant2 1135 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (Fun 𝐴 ↔ (♯‘𝐴) = (♯‘dom 𝐴))) |
4 | 1, 3 | mpbid 231 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐴) = (♯‘dom 𝐴)) |
5 | dmfi 9281 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → dom 𝐴 ∈ Fin) | |
6 | 5 | anim1i 616 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴)) |
7 | 6 | 3adant1 1131 | . . . . 5 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴)) |
8 | hashssdif 14319 | . . . . 5 ⊢ ((dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘(dom 𝐴 ∖ 𝐵)) = ((♯‘dom 𝐴) − (♯‘𝐵))) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘(dom 𝐴 ∖ 𝐵)) = ((♯‘dom 𝐴) − (♯‘𝐵))) |
10 | 9 | oveq2d 7378 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) + (♯‘(dom 𝐴 ∖ 𝐵))) = ((♯‘𝐵) + ((♯‘dom 𝐴) − (♯‘𝐵)))) |
11 | ssfi 9124 | . . . . . . . . . 10 ⊢ ((dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → 𝐵 ∈ Fin) | |
12 | 11 | ex 414 | . . . . . . . . 9 ⊢ (dom 𝐴 ∈ Fin → (𝐵 ⊆ dom 𝐴 → 𝐵 ∈ Fin)) |
13 | hashcl 14263 | . . . . . . . . . 10 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
14 | 13 | nn0cnd 12482 | . . . . . . . . 9 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℂ) |
15 | 12, 14 | syl6 35 | . . . . . . . 8 ⊢ (dom 𝐴 ∈ Fin → (𝐵 ⊆ dom 𝐴 → (♯‘𝐵) ∈ ℂ)) |
16 | 5, 15 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (𝐵 ⊆ dom 𝐴 → (♯‘𝐵) ∈ ℂ)) |
17 | 16 | imp 408 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐵) ∈ ℂ) |
18 | hashcl 14263 | . . . . . . . . 9 ⊢ (dom 𝐴 ∈ Fin → (♯‘dom 𝐴) ∈ ℕ0) | |
19 | 5, 18 | syl 17 | . . . . . . . 8 ⊢ (𝐴 ∈ Fin → (♯‘dom 𝐴) ∈ ℕ0) |
20 | 19 | nn0cnd 12482 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (♯‘dom 𝐴) ∈ ℂ) |
21 | 20 | adantr 482 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘dom 𝐴) ∈ ℂ) |
22 | 17, 21 | jca 513 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) ∈ ℂ ∧ (♯‘dom 𝐴) ∈ ℂ)) |
23 | 22 | 3adant1 1131 | . . . 4 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) ∈ ℂ ∧ (♯‘dom 𝐴) ∈ ℂ)) |
24 | pncan3 11416 | . . . 4 ⊢ (((♯‘𝐵) ∈ ℂ ∧ (♯‘dom 𝐴) ∈ ℂ) → ((♯‘𝐵) + ((♯‘dom 𝐴) − (♯‘𝐵))) = (♯‘dom 𝐴)) | |
25 | 23, 24 | syl 17 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) + ((♯‘dom 𝐴) − (♯‘𝐵))) = (♯‘dom 𝐴)) |
26 | 10, 25 | eqtr2d 2778 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘dom 𝐴) = ((♯‘𝐵) + (♯‘(dom 𝐴 ∖ 𝐵)))) |
27 | hashres 14345 | . . . 4 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘(𝐴 ↾ 𝐵)) = (♯‘𝐵)) | |
28 | 27 | eqcomd 2743 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐵) = (♯‘(𝐴 ↾ 𝐵))) |
29 | 28 | oveq1d 7377 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) + (♯‘(dom 𝐴 ∖ 𝐵))) = ((♯‘(𝐴 ↾ 𝐵)) + (♯‘(dom 𝐴 ∖ 𝐵)))) |
30 | 4, 26, 29 | 3eqtrd 2781 | 1 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐴) = ((♯‘(𝐴 ↾ 𝐵)) + (♯‘(dom 𝐴 ∖ 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∖ cdif 3912 ⊆ wss 3915 dom cdm 5638 ↾ cres 5640 Fun wfun 6495 ‘cfv 6501 (class class class)co 7362 Fincfn 8890 ℂcc 11056 + caddc 11061 − cmin 11392 ℕ0cn0 12420 ♯chash 14237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-cnex 11114 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 ax-pre-mulgt0 11135 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-int 4913 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-om 7808 df-1st 7926 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-1o 8417 df-oadd 8421 df-er 8655 df-en 8891 df-dom 8892 df-sdom 8893 df-fin 8894 df-dju 9844 df-card 9882 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 df-sub 11394 df-neg 11395 df-nn 12161 df-2 12223 df-n0 12421 df-xnn0 12493 df-z 12507 df-uz 12771 df-fz 13432 df-hash 14238 |
This theorem is referenced by: finsumvtxdg2ssteplem1 28535 |
Copyright terms: Public domain | W3C validator |