![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashreshashfun | Structured version Visualization version GIF version |
Description: The number of elements of a finite function expressed by a restriction. (Contributed by AV, 15-Dec-2021.) |
Ref | Expression |
---|---|
hashreshashfun | ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐴) = ((♯‘(𝐴 ↾ 𝐵)) + (♯‘(dom 𝐴 ∖ 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → Fun 𝐴) | |
2 | hashfun 14473 | . . . 4 ⊢ (𝐴 ∈ Fin → (Fun 𝐴 ↔ (♯‘𝐴) = (♯‘dom 𝐴))) | |
3 | 2 | 3ad2ant2 1133 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (Fun 𝐴 ↔ (♯‘𝐴) = (♯‘dom 𝐴))) |
4 | 1, 3 | mpbid 232 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐴) = (♯‘dom 𝐴)) |
5 | dmfi 9373 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → dom 𝐴 ∈ Fin) | |
6 | 5 | anim1i 615 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴)) |
7 | 6 | 3adant1 1129 | . . . . 5 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴)) |
8 | hashssdif 14448 | . . . . 5 ⊢ ((dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘(dom 𝐴 ∖ 𝐵)) = ((♯‘dom 𝐴) − (♯‘𝐵))) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘(dom 𝐴 ∖ 𝐵)) = ((♯‘dom 𝐴) − (♯‘𝐵))) |
10 | 9 | oveq2d 7447 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) + (♯‘(dom 𝐴 ∖ 𝐵))) = ((♯‘𝐵) + ((♯‘dom 𝐴) − (♯‘𝐵)))) |
11 | ssfi 9212 | . . . . . . . . . 10 ⊢ ((dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → 𝐵 ∈ Fin) | |
12 | 11 | ex 412 | . . . . . . . . 9 ⊢ (dom 𝐴 ∈ Fin → (𝐵 ⊆ dom 𝐴 → 𝐵 ∈ Fin)) |
13 | hashcl 14392 | . . . . . . . . . 10 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
14 | 13 | nn0cnd 12587 | . . . . . . . . 9 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℂ) |
15 | 12, 14 | syl6 35 | . . . . . . . 8 ⊢ (dom 𝐴 ∈ Fin → (𝐵 ⊆ dom 𝐴 → (♯‘𝐵) ∈ ℂ)) |
16 | 5, 15 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (𝐵 ⊆ dom 𝐴 → (♯‘𝐵) ∈ ℂ)) |
17 | 16 | imp 406 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐵) ∈ ℂ) |
18 | hashcl 14392 | . . . . . . . . 9 ⊢ (dom 𝐴 ∈ Fin → (♯‘dom 𝐴) ∈ ℕ0) | |
19 | 5, 18 | syl 17 | . . . . . . . 8 ⊢ (𝐴 ∈ Fin → (♯‘dom 𝐴) ∈ ℕ0) |
20 | 19 | nn0cnd 12587 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (♯‘dom 𝐴) ∈ ℂ) |
21 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘dom 𝐴) ∈ ℂ) |
22 | 17, 21 | jca 511 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) ∈ ℂ ∧ (♯‘dom 𝐴) ∈ ℂ)) |
23 | 22 | 3adant1 1129 | . . . 4 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) ∈ ℂ ∧ (♯‘dom 𝐴) ∈ ℂ)) |
24 | pncan3 11514 | . . . 4 ⊢ (((♯‘𝐵) ∈ ℂ ∧ (♯‘dom 𝐴) ∈ ℂ) → ((♯‘𝐵) + ((♯‘dom 𝐴) − (♯‘𝐵))) = (♯‘dom 𝐴)) | |
25 | 23, 24 | syl 17 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) + ((♯‘dom 𝐴) − (♯‘𝐵))) = (♯‘dom 𝐴)) |
26 | 10, 25 | eqtr2d 2776 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘dom 𝐴) = ((♯‘𝐵) + (♯‘(dom 𝐴 ∖ 𝐵)))) |
27 | hashres 14474 | . . . 4 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘(𝐴 ↾ 𝐵)) = (♯‘𝐵)) | |
28 | 27 | eqcomd 2741 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐵) = (♯‘(𝐴 ↾ 𝐵))) |
29 | 28 | oveq1d 7446 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) + (♯‘(dom 𝐴 ∖ 𝐵))) = ((♯‘(𝐴 ↾ 𝐵)) + (♯‘(dom 𝐴 ∖ 𝐵)))) |
30 | 4, 26, 29 | 3eqtrd 2779 | 1 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐴) = ((♯‘(𝐴 ↾ 𝐵)) + (♯‘(dom 𝐴 ∖ 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∖ cdif 3960 ⊆ wss 3963 dom cdm 5689 ↾ cres 5691 Fun wfun 6557 ‘cfv 6563 (class class class)co 7431 Fincfn 8984 ℂcc 11151 + caddc 11156 − cmin 11490 ℕ0cn0 12524 ♯chash 14366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-n0 12525 df-xnn0 12598 df-z 12612 df-uz 12877 df-fz 13545 df-hash 14367 |
This theorem is referenced by: finsumvtxdg2ssteplem1 29578 |
Copyright terms: Public domain | W3C validator |