|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > hashreshashfun | Structured version Visualization version GIF version | ||
| Description: The number of elements of a finite function expressed by a restriction. (Contributed by AV, 15-Dec-2021.) | 
| Ref | Expression | 
|---|---|
| hashreshashfun | ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐴) = ((♯‘(𝐴 ↾ 𝐵)) + (♯‘(dom 𝐴 ∖ 𝐵)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simp1 1137 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → Fun 𝐴) | |
| 2 | hashfun 14476 | . . . 4 ⊢ (𝐴 ∈ Fin → (Fun 𝐴 ↔ (♯‘𝐴) = (♯‘dom 𝐴))) | |
| 3 | 2 | 3ad2ant2 1135 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (Fun 𝐴 ↔ (♯‘𝐴) = (♯‘dom 𝐴))) | 
| 4 | 1, 3 | mpbid 232 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐴) = (♯‘dom 𝐴)) | 
| 5 | dmfi 9375 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → dom 𝐴 ∈ Fin) | |
| 6 | 5 | anim1i 615 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴)) | 
| 7 | 6 | 3adant1 1131 | . . . . 5 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴)) | 
| 8 | hashssdif 14451 | . . . . 5 ⊢ ((dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘(dom 𝐴 ∖ 𝐵)) = ((♯‘dom 𝐴) − (♯‘𝐵))) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘(dom 𝐴 ∖ 𝐵)) = ((♯‘dom 𝐴) − (♯‘𝐵))) | 
| 10 | 9 | oveq2d 7447 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) + (♯‘(dom 𝐴 ∖ 𝐵))) = ((♯‘𝐵) + ((♯‘dom 𝐴) − (♯‘𝐵)))) | 
| 11 | ssfi 9213 | . . . . . . . . . 10 ⊢ ((dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → 𝐵 ∈ Fin) | |
| 12 | 11 | ex 412 | . . . . . . . . 9 ⊢ (dom 𝐴 ∈ Fin → (𝐵 ⊆ dom 𝐴 → 𝐵 ∈ Fin)) | 
| 13 | hashcl 14395 | . . . . . . . . . 10 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
| 14 | 13 | nn0cnd 12589 | . . . . . . . . 9 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℂ) | 
| 15 | 12, 14 | syl6 35 | . . . . . . . 8 ⊢ (dom 𝐴 ∈ Fin → (𝐵 ⊆ dom 𝐴 → (♯‘𝐵) ∈ ℂ)) | 
| 16 | 5, 15 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (𝐵 ⊆ dom 𝐴 → (♯‘𝐵) ∈ ℂ)) | 
| 17 | 16 | imp 406 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐵) ∈ ℂ) | 
| 18 | hashcl 14395 | . . . . . . . . 9 ⊢ (dom 𝐴 ∈ Fin → (♯‘dom 𝐴) ∈ ℕ0) | |
| 19 | 5, 18 | syl 17 | . . . . . . . 8 ⊢ (𝐴 ∈ Fin → (♯‘dom 𝐴) ∈ ℕ0) | 
| 20 | 19 | nn0cnd 12589 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (♯‘dom 𝐴) ∈ ℂ) | 
| 21 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘dom 𝐴) ∈ ℂ) | 
| 22 | 17, 21 | jca 511 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) ∈ ℂ ∧ (♯‘dom 𝐴) ∈ ℂ)) | 
| 23 | 22 | 3adant1 1131 | . . . 4 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) ∈ ℂ ∧ (♯‘dom 𝐴) ∈ ℂ)) | 
| 24 | pncan3 11516 | . . . 4 ⊢ (((♯‘𝐵) ∈ ℂ ∧ (♯‘dom 𝐴) ∈ ℂ) → ((♯‘𝐵) + ((♯‘dom 𝐴) − (♯‘𝐵))) = (♯‘dom 𝐴)) | |
| 25 | 23, 24 | syl 17 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) + ((♯‘dom 𝐴) − (♯‘𝐵))) = (♯‘dom 𝐴)) | 
| 26 | 10, 25 | eqtr2d 2778 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘dom 𝐴) = ((♯‘𝐵) + (♯‘(dom 𝐴 ∖ 𝐵)))) | 
| 27 | hashres 14477 | . . . 4 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘(𝐴 ↾ 𝐵)) = (♯‘𝐵)) | |
| 28 | 27 | eqcomd 2743 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐵) = (♯‘(𝐴 ↾ 𝐵))) | 
| 29 | 28 | oveq1d 7446 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) + (♯‘(dom 𝐴 ∖ 𝐵))) = ((♯‘(𝐴 ↾ 𝐵)) + (♯‘(dom 𝐴 ∖ 𝐵)))) | 
| 30 | 4, 26, 29 | 3eqtrd 2781 | 1 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐴) = ((♯‘(𝐴 ↾ 𝐵)) + (♯‘(dom 𝐴 ∖ 𝐵)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∖ cdif 3948 ⊆ wss 3951 dom cdm 5685 ↾ cres 5687 Fun wfun 6555 ‘cfv 6561 (class class class)co 7431 Fincfn 8985 ℂcc 11153 + caddc 11158 − cmin 11492 ℕ0cn0 12526 ♯chash 14369 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-oadd 8510 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-dju 9941 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-n0 12527 df-xnn0 12600 df-z 12614 df-uz 12879 df-fz 13548 df-hash 14370 | 
| This theorem is referenced by: finsumvtxdg2ssteplem1 29563 | 
| Copyright terms: Public domain | W3C validator |