MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashreshashfun Structured version   Visualization version   GIF version

Theorem hashreshashfun 14082
Description: The number of elements of a finite function expressed by a restriction. (Contributed by AV, 15-Dec-2021.)
Assertion
Ref Expression
hashreshashfun ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐴) = ((♯‘(𝐴𝐵)) + (♯‘(dom 𝐴𝐵))))

Proof of Theorem hashreshashfun
StepHypRef Expression
1 simp1 1134 . . 3 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → Fun 𝐴)
2 hashfun 14080 . . . 4 (𝐴 ∈ Fin → (Fun 𝐴 ↔ (♯‘𝐴) = (♯‘dom 𝐴)))
323ad2ant2 1132 . . 3 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (Fun 𝐴 ↔ (♯‘𝐴) = (♯‘dom 𝐴)))
41, 3mpbid 231 . 2 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐴) = (♯‘dom 𝐴))
5 dmfi 9027 . . . . . . 7 (𝐴 ∈ Fin → dom 𝐴 ∈ Fin)
65anim1i 614 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴))
763adant1 1128 . . . . 5 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴))
8 hashssdif 14055 . . . . 5 ((dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘(dom 𝐴𝐵)) = ((♯‘dom 𝐴) − (♯‘𝐵)))
97, 8syl 17 . . . 4 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘(dom 𝐴𝐵)) = ((♯‘dom 𝐴) − (♯‘𝐵)))
109oveq2d 7271 . . 3 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) + (♯‘(dom 𝐴𝐵))) = ((♯‘𝐵) + ((♯‘dom 𝐴) − (♯‘𝐵))))
11 ssfi 8918 . . . . . . . . . 10 ((dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → 𝐵 ∈ Fin)
1211ex 412 . . . . . . . . 9 (dom 𝐴 ∈ Fin → (𝐵 ⊆ dom 𝐴𝐵 ∈ Fin))
13 hashcl 13999 . . . . . . . . . 10 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
1413nn0cnd 12225 . . . . . . . . 9 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℂ)
1512, 14syl6 35 . . . . . . . 8 (dom 𝐴 ∈ Fin → (𝐵 ⊆ dom 𝐴 → (♯‘𝐵) ∈ ℂ))
165, 15syl 17 . . . . . . 7 (𝐴 ∈ Fin → (𝐵 ⊆ dom 𝐴 → (♯‘𝐵) ∈ ℂ))
1716imp 406 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐵) ∈ ℂ)
18 hashcl 13999 . . . . . . . . 9 (dom 𝐴 ∈ Fin → (♯‘dom 𝐴) ∈ ℕ0)
195, 18syl 17 . . . . . . . 8 (𝐴 ∈ Fin → (♯‘dom 𝐴) ∈ ℕ0)
2019nn0cnd 12225 . . . . . . 7 (𝐴 ∈ Fin → (♯‘dom 𝐴) ∈ ℂ)
2120adantr 480 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘dom 𝐴) ∈ ℂ)
2217, 21jca 511 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) ∈ ℂ ∧ (♯‘dom 𝐴) ∈ ℂ))
23223adant1 1128 . . . 4 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) ∈ ℂ ∧ (♯‘dom 𝐴) ∈ ℂ))
24 pncan3 11159 . . . 4 (((♯‘𝐵) ∈ ℂ ∧ (♯‘dom 𝐴) ∈ ℂ) → ((♯‘𝐵) + ((♯‘dom 𝐴) − (♯‘𝐵))) = (♯‘dom 𝐴))
2523, 24syl 17 . . 3 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) + ((♯‘dom 𝐴) − (♯‘𝐵))) = (♯‘dom 𝐴))
2610, 25eqtr2d 2779 . 2 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘dom 𝐴) = ((♯‘𝐵) + (♯‘(dom 𝐴𝐵))))
27 hashres 14081 . . . 4 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘(𝐴𝐵)) = (♯‘𝐵))
2827eqcomd 2744 . . 3 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐵) = (♯‘(𝐴𝐵)))
2928oveq1d 7270 . 2 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) + (♯‘(dom 𝐴𝐵))) = ((♯‘(𝐴𝐵)) + (♯‘(dom 𝐴𝐵))))
304, 26, 293eqtrd 2782 1 ((Fun 𝐴𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐴) = ((♯‘(𝐴𝐵)) + (♯‘(dom 𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  cdif 3880  wss 3883  dom cdm 5580  cres 5582  Fun wfun 6412  cfv 6418  (class class class)co 7255  Fincfn 8691  cc 10800   + caddc 10805  cmin 11135  0cn0 12163  chash 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973
This theorem is referenced by:  finsumvtxdg2ssteplem1  27815
  Copyright terms: Public domain W3C validator