| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashreshashfun | Structured version Visualization version GIF version | ||
| Description: The number of elements of a finite function expressed by a restriction. (Contributed by AV, 15-Dec-2021.) |
| Ref | Expression |
|---|---|
| hashreshashfun | ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐴) = ((♯‘(𝐴 ↾ 𝐵)) + (♯‘(dom 𝐴 ∖ 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → Fun 𝐴) | |
| 2 | hashfun 14409 | . . . 4 ⊢ (𝐴 ∈ Fin → (Fun 𝐴 ↔ (♯‘𝐴) = (♯‘dom 𝐴))) | |
| 3 | 2 | 3ad2ant2 1134 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (Fun 𝐴 ↔ (♯‘𝐴) = (♯‘dom 𝐴))) |
| 4 | 1, 3 | mpbid 232 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐴) = (♯‘dom 𝐴)) |
| 5 | dmfi 9293 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → dom 𝐴 ∈ Fin) | |
| 6 | 5 | anim1i 615 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴)) |
| 7 | 6 | 3adant1 1130 | . . . . 5 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴)) |
| 8 | hashssdif 14384 | . . . . 5 ⊢ ((dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘(dom 𝐴 ∖ 𝐵)) = ((♯‘dom 𝐴) − (♯‘𝐵))) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘(dom 𝐴 ∖ 𝐵)) = ((♯‘dom 𝐴) − (♯‘𝐵))) |
| 10 | 9 | oveq2d 7406 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) + (♯‘(dom 𝐴 ∖ 𝐵))) = ((♯‘𝐵) + ((♯‘dom 𝐴) − (♯‘𝐵)))) |
| 11 | ssfi 9143 | . . . . . . . . . 10 ⊢ ((dom 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → 𝐵 ∈ Fin) | |
| 12 | 11 | ex 412 | . . . . . . . . 9 ⊢ (dom 𝐴 ∈ Fin → (𝐵 ⊆ dom 𝐴 → 𝐵 ∈ Fin)) |
| 13 | hashcl 14328 | . . . . . . . . . 10 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
| 14 | 13 | nn0cnd 12512 | . . . . . . . . 9 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℂ) |
| 15 | 12, 14 | syl6 35 | . . . . . . . 8 ⊢ (dom 𝐴 ∈ Fin → (𝐵 ⊆ dom 𝐴 → (♯‘𝐵) ∈ ℂ)) |
| 16 | 5, 15 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (𝐵 ⊆ dom 𝐴 → (♯‘𝐵) ∈ ℂ)) |
| 17 | 16 | imp 406 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐵) ∈ ℂ) |
| 18 | hashcl 14328 | . . . . . . . . 9 ⊢ (dom 𝐴 ∈ Fin → (♯‘dom 𝐴) ∈ ℕ0) | |
| 19 | 5, 18 | syl 17 | . . . . . . . 8 ⊢ (𝐴 ∈ Fin → (♯‘dom 𝐴) ∈ ℕ0) |
| 20 | 19 | nn0cnd 12512 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (♯‘dom 𝐴) ∈ ℂ) |
| 21 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘dom 𝐴) ∈ ℂ) |
| 22 | 17, 21 | jca 511 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) ∈ ℂ ∧ (♯‘dom 𝐴) ∈ ℂ)) |
| 23 | 22 | 3adant1 1130 | . . . 4 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) ∈ ℂ ∧ (♯‘dom 𝐴) ∈ ℂ)) |
| 24 | pncan3 11436 | . . . 4 ⊢ (((♯‘𝐵) ∈ ℂ ∧ (♯‘dom 𝐴) ∈ ℂ) → ((♯‘𝐵) + ((♯‘dom 𝐴) − (♯‘𝐵))) = (♯‘dom 𝐴)) | |
| 25 | 23, 24 | syl 17 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) + ((♯‘dom 𝐴) − (♯‘𝐵))) = (♯‘dom 𝐴)) |
| 26 | 10, 25 | eqtr2d 2766 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘dom 𝐴) = ((♯‘𝐵) + (♯‘(dom 𝐴 ∖ 𝐵)))) |
| 27 | hashres 14410 | . . . 4 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘(𝐴 ↾ 𝐵)) = (♯‘𝐵)) | |
| 28 | 27 | eqcomd 2736 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐵) = (♯‘(𝐴 ↾ 𝐵))) |
| 29 | 28 | oveq1d 7405 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → ((♯‘𝐵) + (♯‘(dom 𝐴 ∖ 𝐵))) = ((♯‘(𝐴 ↾ 𝐵)) + (♯‘(dom 𝐴 ∖ 𝐵)))) |
| 30 | 4, 26, 29 | 3eqtrd 2769 | 1 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐵 ⊆ dom 𝐴) → (♯‘𝐴) = ((♯‘(𝐴 ↾ 𝐵)) + (♯‘(dom 𝐴 ∖ 𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 ⊆ wss 3917 dom cdm 5641 ↾ cres 5643 Fun wfun 6508 ‘cfv 6514 (class class class)co 7390 Fincfn 8921 ℂcc 11073 + caddc 11078 − cmin 11412 ℕ0cn0 12449 ♯chash 14302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-fz 13476 df-hash 14303 |
| This theorem is referenced by: finsumvtxdg2ssteplem1 29480 |
| Copyright terms: Public domain | W3C validator |