| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psgnprfval | Structured version Visualization version GIF version | ||
| Description: The permutation sign function for a pair. (Contributed by AV, 10-Dec-2018.) |
| Ref | Expression |
|---|---|
| psgnprfval.0 | ⊢ 𝐷 = {1, 2} |
| psgnprfval.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
| psgnprfval.b | ⊢ 𝐵 = (Base‘𝐺) |
| psgnprfval.t | ⊢ 𝑇 = ran (pmTrsp‘𝐷) |
| psgnprfval.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
| Ref | Expression |
|---|---|
| psgnprfval | ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵) | |
| 2 | elpri 4603 | . . . . . 6 ⊢ (𝑋 ∈ {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}} → (𝑋 = {〈1, 1〉, 〈2, 2〉} ∨ 𝑋 = {〈1, 2〉, 〈2, 1〉})) | |
| 3 | prfi 9232 | . . . . . . . 8 ⊢ {〈1, 1〉, 〈2, 2〉} ∈ Fin | |
| 4 | eleq1 2816 | . . . . . . . 8 ⊢ (𝑋 = {〈1, 1〉, 〈2, 2〉} → (𝑋 ∈ Fin ↔ {〈1, 1〉, 〈2, 2〉} ∈ Fin)) | |
| 5 | 3, 4 | mpbiri 258 | . . . . . . 7 ⊢ (𝑋 = {〈1, 1〉, 〈2, 2〉} → 𝑋 ∈ Fin) |
| 6 | prfi 9232 | . . . . . . . 8 ⊢ {〈1, 2〉, 〈2, 1〉} ∈ Fin | |
| 7 | eleq1 2816 | . . . . . . . 8 ⊢ (𝑋 = {〈1, 2〉, 〈2, 1〉} → (𝑋 ∈ Fin ↔ {〈1, 2〉, 〈2, 1〉} ∈ Fin)) | |
| 8 | 6, 7 | mpbiri 258 | . . . . . . 7 ⊢ (𝑋 = {〈1, 2〉, 〈2, 1〉} → 𝑋 ∈ Fin) |
| 9 | 5, 8 | jaoi 857 | . . . . . 6 ⊢ ((𝑋 = {〈1, 1〉, 〈2, 2〉} ∨ 𝑋 = {〈1, 2〉, 〈2, 1〉}) → 𝑋 ∈ Fin) |
| 10 | diffi 9099 | . . . . . 6 ⊢ (𝑋 ∈ Fin → (𝑋 ∖ I ) ∈ Fin) | |
| 11 | dmfi 9244 | . . . . . 6 ⊢ ((𝑋 ∖ I ) ∈ Fin → dom (𝑋 ∖ I ) ∈ Fin) | |
| 12 | 2, 9, 10, 11 | 4syl 19 | . . . . 5 ⊢ (𝑋 ∈ {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}} → dom (𝑋 ∖ I ) ∈ Fin) |
| 13 | 1ex 11130 | . . . . . 6 ⊢ 1 ∈ V | |
| 14 | 2nn 12219 | . . . . . 6 ⊢ 2 ∈ ℕ | |
| 15 | psgnprfval.g | . . . . . . 7 ⊢ 𝐺 = (SymGrp‘𝐷) | |
| 16 | psgnprfval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
| 17 | psgnprfval.0 | . . . . . . 7 ⊢ 𝐷 = {1, 2} | |
| 18 | 15, 16, 17 | symg2bas 19290 | . . . . . 6 ⊢ ((1 ∈ V ∧ 2 ∈ ℕ) → 𝐵 = {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}}) |
| 19 | 13, 14, 18 | mp2an 692 | . . . . 5 ⊢ 𝐵 = {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}} |
| 20 | 12, 19 | eleq2s 2846 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → dom (𝑋 ∖ I ) ∈ Fin) |
| 21 | psgnprfval.n | . . . . 5 ⊢ 𝑁 = (pmSgn‘𝐷) | |
| 22 | 15, 21, 16 | psgneldm 19400 | . . . 4 ⊢ (𝑋 ∈ dom 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ dom (𝑋 ∖ I ) ∈ Fin)) |
| 23 | 1, 20, 22 | sylanbrc 583 | . . 3 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ dom 𝑁) |
| 24 | psgnprfval.t | . . . 4 ⊢ 𝑇 = ran (pmTrsp‘𝐷) | |
| 25 | 15, 24, 21 | psgnval 19404 | . . 3 ⊢ (𝑋 ∈ dom 𝑁 → (𝑁‘𝑋) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
| 26 | 23, 25 | syl 17 | . 2 ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
| 27 | 1, 26 | syl 17 | 1 ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3438 ∖ cdif 3902 {cpr 4581 〈cop 4585 I cid 5517 dom cdm 5623 ran crn 5624 ℩cio 6440 ‘cfv 6486 (class class class)co 7353 Fincfn 8879 1c1 11029 -cneg 11366 ℕcn 12146 2c2 12201 ↑cexp 13986 ♯chash 14255 Word cword 14438 Basecbs 17138 Σg cgsu 17362 SymGrpcsymg 19266 pmTrspcpmtr 19338 pmSgncpsgn 19386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-xnn0 12476 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-fac 14199 df-bc 14228 df-hash 14256 df-word 14439 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-tset 17198 df-efmnd 18761 df-symg 19267 df-psgn 19388 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |