| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psgnprfval | Structured version Visualization version GIF version | ||
| Description: The permutation sign function for a pair. (Contributed by AV, 10-Dec-2018.) |
| Ref | Expression |
|---|---|
| psgnprfval.0 | ⊢ 𝐷 = {1, 2} |
| psgnprfval.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
| psgnprfval.b | ⊢ 𝐵 = (Base‘𝐺) |
| psgnprfval.t | ⊢ 𝑇 = ran (pmTrsp‘𝐷) |
| psgnprfval.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
| Ref | Expression |
|---|---|
| psgnprfval | ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵) | |
| 2 | elpri 4613 | . . . . . 6 ⊢ (𝑋 ∈ {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}} → (𝑋 = {〈1, 1〉, 〈2, 2〉} ∨ 𝑋 = {〈1, 2〉, 〈2, 1〉})) | |
| 3 | prfi 9274 | . . . . . . . 8 ⊢ {〈1, 1〉, 〈2, 2〉} ∈ Fin | |
| 4 | eleq1 2816 | . . . . . . . 8 ⊢ (𝑋 = {〈1, 1〉, 〈2, 2〉} → (𝑋 ∈ Fin ↔ {〈1, 1〉, 〈2, 2〉} ∈ Fin)) | |
| 5 | 3, 4 | mpbiri 258 | . . . . . . 7 ⊢ (𝑋 = {〈1, 1〉, 〈2, 2〉} → 𝑋 ∈ Fin) |
| 6 | prfi 9274 | . . . . . . . 8 ⊢ {〈1, 2〉, 〈2, 1〉} ∈ Fin | |
| 7 | eleq1 2816 | . . . . . . . 8 ⊢ (𝑋 = {〈1, 2〉, 〈2, 1〉} → (𝑋 ∈ Fin ↔ {〈1, 2〉, 〈2, 1〉} ∈ Fin)) | |
| 8 | 6, 7 | mpbiri 258 | . . . . . . 7 ⊢ (𝑋 = {〈1, 2〉, 〈2, 1〉} → 𝑋 ∈ Fin) |
| 9 | 5, 8 | jaoi 857 | . . . . . 6 ⊢ ((𝑋 = {〈1, 1〉, 〈2, 2〉} ∨ 𝑋 = {〈1, 2〉, 〈2, 1〉}) → 𝑋 ∈ Fin) |
| 10 | diffi 9139 | . . . . . 6 ⊢ (𝑋 ∈ Fin → (𝑋 ∖ I ) ∈ Fin) | |
| 11 | dmfi 9286 | . . . . . 6 ⊢ ((𝑋 ∖ I ) ∈ Fin → dom (𝑋 ∖ I ) ∈ Fin) | |
| 12 | 2, 9, 10, 11 | 4syl 19 | . . . . 5 ⊢ (𝑋 ∈ {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}} → dom (𝑋 ∖ I ) ∈ Fin) |
| 13 | 1ex 11170 | . . . . . 6 ⊢ 1 ∈ V | |
| 14 | 2nn 12259 | . . . . . 6 ⊢ 2 ∈ ℕ | |
| 15 | psgnprfval.g | . . . . . . 7 ⊢ 𝐺 = (SymGrp‘𝐷) | |
| 16 | psgnprfval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
| 17 | psgnprfval.0 | . . . . . . 7 ⊢ 𝐷 = {1, 2} | |
| 18 | 15, 16, 17 | symg2bas 19323 | . . . . . 6 ⊢ ((1 ∈ V ∧ 2 ∈ ℕ) → 𝐵 = {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}}) |
| 19 | 13, 14, 18 | mp2an 692 | . . . . 5 ⊢ 𝐵 = {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}} |
| 20 | 12, 19 | eleq2s 2846 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → dom (𝑋 ∖ I ) ∈ Fin) |
| 21 | psgnprfval.n | . . . . 5 ⊢ 𝑁 = (pmSgn‘𝐷) | |
| 22 | 15, 21, 16 | psgneldm 19433 | . . . 4 ⊢ (𝑋 ∈ dom 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ dom (𝑋 ∖ I ) ∈ Fin)) |
| 23 | 1, 20, 22 | sylanbrc 583 | . . 3 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ dom 𝑁) |
| 24 | psgnprfval.t | . . . 4 ⊢ 𝑇 = ran (pmTrsp‘𝐷) | |
| 25 | 15, 24, 21 | psgnval 19437 | . . 3 ⊢ (𝑋 ∈ dom 𝑁 → (𝑁‘𝑋) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
| 26 | 23, 25 | syl 17 | . 2 ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
| 27 | 1, 26 | syl 17 | 1 ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3447 ∖ cdif 3911 {cpr 4591 〈cop 4595 I cid 5532 dom cdm 5638 ran crn 5639 ℩cio 6462 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 1c1 11069 -cneg 11406 ℕcn 12186 2c2 12241 ↑cexp 14026 ♯chash 14295 Word cword 14478 Basecbs 17179 Σg cgsu 17403 SymGrpcsymg 19299 pmTrspcpmtr 19371 pmSgncpsgn 19419 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-fac 14239 df-bc 14268 df-hash 14296 df-word 14479 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-tset 17239 df-efmnd 18796 df-symg 19300 df-psgn 19421 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |