MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnprfval Structured version   Visualization version   GIF version

Theorem psgnprfval 19388
Description: The permutation sign function for a pair. (Contributed by AV, 10-Dec-2018.)
Hypotheses
Ref Expression
psgnprfval.0 𝐷 = {1, 2}
psgnprfval.g 𝐺 = (SymGrp‘𝐷)
psgnprfval.b 𝐵 = (Base‘𝐺)
psgnprfval.t 𝑇 = ran (pmTrsp‘𝐷)
psgnprfval.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnprfval (𝑋𝐵 → (𝑁𝑋) = (℩𝑠𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
Distinct variable groups:   𝐷,𝑠,𝑤   𝐺,𝑠,𝑤   𝑁,𝑠,𝑤   𝑇,𝑠,𝑤   𝑋,𝑠,𝑤
Allowed substitution hints:   𝐵(𝑤,𝑠)

Proof of Theorem psgnprfval
StepHypRef Expression
1 id 22 . 2 (𝑋𝐵𝑋𝐵)
2 elpri 4650 . . . . . 6 (𝑋 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}} → (𝑋 = {⟨1, 1⟩, ⟨2, 2⟩} ∨ 𝑋 = {⟨1, 2⟩, ⟨2, 1⟩}))
3 prfi 9321 . . . . . . . . 9 {⟨1, 1⟩, ⟨2, 2⟩} ∈ Fin
4 eleq1 2821 . . . . . . . . 9 (𝑋 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑋 ∈ Fin ↔ {⟨1, 1⟩, ⟨2, 2⟩} ∈ Fin))
53, 4mpbiri 257 . . . . . . . 8 (𝑋 = {⟨1, 1⟩, ⟨2, 2⟩} → 𝑋 ∈ Fin)
6 prfi 9321 . . . . . . . . 9 {⟨1, 2⟩, ⟨2, 1⟩} ∈ Fin
7 eleq1 2821 . . . . . . . . 9 (𝑋 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑋 ∈ Fin ↔ {⟨1, 2⟩, ⟨2, 1⟩} ∈ Fin))
86, 7mpbiri 257 . . . . . . . 8 (𝑋 = {⟨1, 2⟩, ⟨2, 1⟩} → 𝑋 ∈ Fin)
95, 8jaoi 855 . . . . . . 7 ((𝑋 = {⟨1, 1⟩, ⟨2, 2⟩} ∨ 𝑋 = {⟨1, 2⟩, ⟨2, 1⟩}) → 𝑋 ∈ Fin)
10 diffi 9178 . . . . . . 7 (𝑋 ∈ Fin → (𝑋 ∖ I ) ∈ Fin)
119, 10syl 17 . . . . . 6 ((𝑋 = {⟨1, 1⟩, ⟨2, 2⟩} ∨ 𝑋 = {⟨1, 2⟩, ⟨2, 1⟩}) → (𝑋 ∖ I ) ∈ Fin)
12 dmfi 9329 . . . . . 6 ((𝑋 ∖ I ) ∈ Fin → dom (𝑋 ∖ I ) ∈ Fin)
132, 11, 123syl 18 . . . . 5 (𝑋 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}} → dom (𝑋 ∖ I ) ∈ Fin)
14 1ex 11209 . . . . . 6 1 ∈ V
15 2nn 12284 . . . . . 6 2 ∈ ℕ
16 psgnprfval.g . . . . . . 7 𝐺 = (SymGrp‘𝐷)
17 psgnprfval.b . . . . . . 7 𝐵 = (Base‘𝐺)
18 psgnprfval.0 . . . . . . 7 𝐷 = {1, 2}
1916, 17, 18symg2bas 19259 . . . . . 6 ((1 ∈ V ∧ 2 ∈ ℕ) → 𝐵 = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}})
2014, 15, 19mp2an 690 . . . . 5 𝐵 = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}}
2113, 20eleq2s 2851 . . . 4 (𝑋𝐵 → dom (𝑋 ∖ I ) ∈ Fin)
22 psgnprfval.n . . . . 5 𝑁 = (pmSgn‘𝐷)
2316, 22, 17psgneldm 19370 . . . 4 (𝑋 ∈ dom 𝑁 ↔ (𝑋𝐵 ∧ dom (𝑋 ∖ I ) ∈ Fin))
241, 21, 23sylanbrc 583 . . 3 (𝑋𝐵𝑋 ∈ dom 𝑁)
25 psgnprfval.t . . . 4 𝑇 = ran (pmTrsp‘𝐷)
2616, 25, 22psgnval 19374 . . 3 (𝑋 ∈ dom 𝑁 → (𝑁𝑋) = (℩𝑠𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
2724, 26syl 17 . 2 (𝑋𝐵 → (𝑁𝑋) = (℩𝑠𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
281, 27syl 17 1 (𝑋𝐵 → (𝑁𝑋) = (℩𝑠𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wrex 3070  Vcvv 3474  cdif 3945  {cpr 4630  cop 4634   I cid 5573  dom cdm 5676  ran crn 5677  cio 6493  cfv 6543  (class class class)co 7408  Fincfn 8938  1c1 11110  -cneg 11444  cn 12211  2c2 12266  cexp 14026  chash 14289  Word cword 14463  Basecbs 17143   Σg cgsu 17385  SymGrpcsymg 19233  pmTrspcpmtr 19308  pmSgncpsgn 19356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-2o 8466  df-oadd 8469  df-er 8702  df-map 8821  df-pm 8822  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-dju 9895  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-xnn0 12544  df-z 12558  df-uz 12822  df-fz 13484  df-fzo 13627  df-seq 13966  df-fac 14233  df-bc 14262  df-hash 14290  df-word 14464  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-tset 17215  df-efmnd 18749  df-symg 19234  df-psgn 19358
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator