![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psgnprfval | Structured version Visualization version GIF version |
Description: The permutation sign function for a pair. (Contributed by AV, 10-Dec-2018.) |
Ref | Expression |
---|---|
psgnprfval.0 | ⊢ 𝐷 = {1, 2} |
psgnprfval.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
psgnprfval.b | ⊢ 𝐵 = (Base‘𝐺) |
psgnprfval.t | ⊢ 𝑇 = ran (pmTrsp‘𝐷) |
psgnprfval.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
Ref | Expression |
---|---|
psgnprfval | ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵) | |
2 | elpri 4650 | . . . . . 6 ⊢ (𝑋 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}} → (𝑋 = {⟨1, 1⟩, ⟨2, 2⟩} ∨ 𝑋 = {⟨1, 2⟩, ⟨2, 1⟩})) | |
3 | prfi 9321 | . . . . . . . . 9 ⊢ {⟨1, 1⟩, ⟨2, 2⟩} ∈ Fin | |
4 | eleq1 2821 | . . . . . . . . 9 ⊢ (𝑋 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑋 ∈ Fin ↔ {⟨1, 1⟩, ⟨2, 2⟩} ∈ Fin)) | |
5 | 3, 4 | mpbiri 257 | . . . . . . . 8 ⊢ (𝑋 = {⟨1, 1⟩, ⟨2, 2⟩} → 𝑋 ∈ Fin) |
6 | prfi 9321 | . . . . . . . . 9 ⊢ {⟨1, 2⟩, ⟨2, 1⟩} ∈ Fin | |
7 | eleq1 2821 | . . . . . . . . 9 ⊢ (𝑋 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑋 ∈ Fin ↔ {⟨1, 2⟩, ⟨2, 1⟩} ∈ Fin)) | |
8 | 6, 7 | mpbiri 257 | . . . . . . . 8 ⊢ (𝑋 = {⟨1, 2⟩, ⟨2, 1⟩} → 𝑋 ∈ Fin) |
9 | 5, 8 | jaoi 855 | . . . . . . 7 ⊢ ((𝑋 = {⟨1, 1⟩, ⟨2, 2⟩} ∨ 𝑋 = {⟨1, 2⟩, ⟨2, 1⟩}) → 𝑋 ∈ Fin) |
10 | diffi 9178 | . . . . . . 7 ⊢ (𝑋 ∈ Fin → (𝑋 ∖ I ) ∈ Fin) | |
11 | 9, 10 | syl 17 | . . . . . 6 ⊢ ((𝑋 = {⟨1, 1⟩, ⟨2, 2⟩} ∨ 𝑋 = {⟨1, 2⟩, ⟨2, 1⟩}) → (𝑋 ∖ I ) ∈ Fin) |
12 | dmfi 9329 | . . . . . 6 ⊢ ((𝑋 ∖ I ) ∈ Fin → dom (𝑋 ∖ I ) ∈ Fin) | |
13 | 2, 11, 12 | 3syl 18 | . . . . 5 ⊢ (𝑋 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}} → dom (𝑋 ∖ I ) ∈ Fin) |
14 | 1ex 11209 | . . . . . 6 ⊢ 1 ∈ V | |
15 | 2nn 12284 | . . . . . 6 ⊢ 2 ∈ ℕ | |
16 | psgnprfval.g | . . . . . . 7 ⊢ 𝐺 = (SymGrp‘𝐷) | |
17 | psgnprfval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
18 | psgnprfval.0 | . . . . . . 7 ⊢ 𝐷 = {1, 2} | |
19 | 16, 17, 18 | symg2bas 19259 | . . . . . 6 ⊢ ((1 ∈ V ∧ 2 ∈ ℕ) → 𝐵 = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}}) |
20 | 14, 15, 19 | mp2an 690 | . . . . 5 ⊢ 𝐵 = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}} |
21 | 13, 20 | eleq2s 2851 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → dom (𝑋 ∖ I ) ∈ Fin) |
22 | psgnprfval.n | . . . . 5 ⊢ 𝑁 = (pmSgn‘𝐷) | |
23 | 16, 22, 17 | psgneldm 19370 | . . . 4 ⊢ (𝑋 ∈ dom 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ dom (𝑋 ∖ I ) ∈ Fin)) |
24 | 1, 21, 23 | sylanbrc 583 | . . 3 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ dom 𝑁) |
25 | psgnprfval.t | . . . 4 ⊢ 𝑇 = ran (pmTrsp‘𝐷) | |
26 | 16, 25, 22 | psgnval 19374 | . . 3 ⊢ (𝑋 ∈ dom 𝑁 → (𝑁‘𝑋) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
27 | 24, 26 | syl 17 | . 2 ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
28 | 1, 27 | syl 17 | 1 ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 Vcvv 3474 ∖ cdif 3945 {cpr 4630 ⟨cop 4634 I cid 5573 dom cdm 5676 ran crn 5677 ℩cio 6493 ‘cfv 6543 (class class class)co 7408 Fincfn 8938 1c1 11110 -cneg 11444 ℕcn 12211 2c2 12266 ↑cexp 14026 ♯chash 14289 Word cword 14463 Basecbs 17143 Σg cgsu 17385 SymGrpcsymg 19233 pmTrspcpmtr 19308 pmSgncpsgn 19356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-oadd 8469 df-er 8702 df-map 8821 df-pm 8822 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-dju 9895 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-xnn0 12544 df-z 12558 df-uz 12822 df-fz 13484 df-fzo 13627 df-seq 13966 df-fac 14233 df-bc 14262 df-hash 14290 df-word 14464 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-tset 17215 df-efmnd 18749 df-symg 19234 df-psgn 19358 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |