| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psgnprfval | Structured version Visualization version GIF version | ||
| Description: The permutation sign function for a pair. (Contributed by AV, 10-Dec-2018.) |
| Ref | Expression |
|---|---|
| psgnprfval.0 | ⊢ 𝐷 = {1, 2} |
| psgnprfval.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
| psgnprfval.b | ⊢ 𝐵 = (Base‘𝐺) |
| psgnprfval.t | ⊢ 𝑇 = ran (pmTrsp‘𝐷) |
| psgnprfval.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
| Ref | Expression |
|---|---|
| psgnprfval | ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵) | |
| 2 | elpri 4599 | . . . . . 6 ⊢ (𝑋 ∈ {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}} → (𝑋 = {〈1, 1〉, 〈2, 2〉} ∨ 𝑋 = {〈1, 2〉, 〈2, 1〉})) | |
| 3 | prfi 9215 | . . . . . . . 8 ⊢ {〈1, 1〉, 〈2, 2〉} ∈ Fin | |
| 4 | eleq1 2821 | . . . . . . . 8 ⊢ (𝑋 = {〈1, 1〉, 〈2, 2〉} → (𝑋 ∈ Fin ↔ {〈1, 1〉, 〈2, 2〉} ∈ Fin)) | |
| 5 | 3, 4 | mpbiri 258 | . . . . . . 7 ⊢ (𝑋 = {〈1, 1〉, 〈2, 2〉} → 𝑋 ∈ Fin) |
| 6 | prfi 9215 | . . . . . . . 8 ⊢ {〈1, 2〉, 〈2, 1〉} ∈ Fin | |
| 7 | eleq1 2821 | . . . . . . . 8 ⊢ (𝑋 = {〈1, 2〉, 〈2, 1〉} → (𝑋 ∈ Fin ↔ {〈1, 2〉, 〈2, 1〉} ∈ Fin)) | |
| 8 | 6, 7 | mpbiri 258 | . . . . . . 7 ⊢ (𝑋 = {〈1, 2〉, 〈2, 1〉} → 𝑋 ∈ Fin) |
| 9 | 5, 8 | jaoi 857 | . . . . . 6 ⊢ ((𝑋 = {〈1, 1〉, 〈2, 2〉} ∨ 𝑋 = {〈1, 2〉, 〈2, 1〉}) → 𝑋 ∈ Fin) |
| 10 | diffi 9091 | . . . . . 6 ⊢ (𝑋 ∈ Fin → (𝑋 ∖ I ) ∈ Fin) | |
| 11 | dmfi 9226 | . . . . . 6 ⊢ ((𝑋 ∖ I ) ∈ Fin → dom (𝑋 ∖ I ) ∈ Fin) | |
| 12 | 2, 9, 10, 11 | 4syl 19 | . . . . 5 ⊢ (𝑋 ∈ {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}} → dom (𝑋 ∖ I ) ∈ Fin) |
| 13 | 1ex 11115 | . . . . . 6 ⊢ 1 ∈ V | |
| 14 | 2nn 12205 | . . . . . 6 ⊢ 2 ∈ ℕ | |
| 15 | psgnprfval.g | . . . . . . 7 ⊢ 𝐺 = (SymGrp‘𝐷) | |
| 16 | psgnprfval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
| 17 | psgnprfval.0 | . . . . . . 7 ⊢ 𝐷 = {1, 2} | |
| 18 | 15, 16, 17 | symg2bas 19307 | . . . . . 6 ⊢ ((1 ∈ V ∧ 2 ∈ ℕ) → 𝐵 = {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}}) |
| 19 | 13, 14, 18 | mp2an 692 | . . . . 5 ⊢ 𝐵 = {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}} |
| 20 | 12, 19 | eleq2s 2851 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → dom (𝑋 ∖ I ) ∈ Fin) |
| 21 | psgnprfval.n | . . . . 5 ⊢ 𝑁 = (pmSgn‘𝐷) | |
| 22 | 15, 21, 16 | psgneldm 19417 | . . . 4 ⊢ (𝑋 ∈ dom 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ dom (𝑋 ∖ I ) ∈ Fin)) |
| 23 | 1, 20, 22 | sylanbrc 583 | . . 3 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ dom 𝑁) |
| 24 | psgnprfval.t | . . . 4 ⊢ 𝑇 = ran (pmTrsp‘𝐷) | |
| 25 | 15, 24, 21 | psgnval 19421 | . . 3 ⊢ (𝑋 ∈ dom 𝑁 → (𝑁‘𝑋) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
| 26 | 23, 25 | syl 17 | . 2 ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
| 27 | 1, 26 | syl 17 | 1 ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 Vcvv 3437 ∖ cdif 3895 {cpr 4577 〈cop 4581 I cid 5513 dom cdm 5619 ran crn 5620 ℩cio 6440 ‘cfv 6486 (class class class)co 7352 Fincfn 8875 1c1 11014 -cneg 11352 ℕcn 12132 2c2 12187 ↑cexp 13970 ♯chash 14239 Word cword 14422 Basecbs 17122 Σg cgsu 17346 SymGrpcsymg 19283 pmTrspcpmtr 19355 pmSgncpsgn 19403 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-dju 9801 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-xnn0 12462 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-seq 13911 df-fac 14183 df-bc 14212 df-hash 14240 df-word 14423 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-tset 17182 df-efmnd 18779 df-symg 19284 df-psgn 19405 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |