Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psgnprfval | Structured version Visualization version GIF version |
Description: The permutation sign function for a pair. (Contributed by AV, 10-Dec-2018.) |
Ref | Expression |
---|---|
psgnprfval.0 | ⊢ 𝐷 = {1, 2} |
psgnprfval.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
psgnprfval.b | ⊢ 𝐵 = (Base‘𝐺) |
psgnprfval.t | ⊢ 𝑇 = ran (pmTrsp‘𝐷) |
psgnprfval.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
Ref | Expression |
---|---|
psgnprfval | ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵) | |
2 | elpri 4580 | . . . . . 6 ⊢ (𝑋 ∈ {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}} → (𝑋 = {〈1, 1〉, 〈2, 2〉} ∨ 𝑋 = {〈1, 2〉, 〈2, 1〉})) | |
3 | prfi 9019 | . . . . . . . . 9 ⊢ {〈1, 1〉, 〈2, 2〉} ∈ Fin | |
4 | eleq1 2826 | . . . . . . . . 9 ⊢ (𝑋 = {〈1, 1〉, 〈2, 2〉} → (𝑋 ∈ Fin ↔ {〈1, 1〉, 〈2, 2〉} ∈ Fin)) | |
5 | 3, 4 | mpbiri 257 | . . . . . . . 8 ⊢ (𝑋 = {〈1, 1〉, 〈2, 2〉} → 𝑋 ∈ Fin) |
6 | prfi 9019 | . . . . . . . . 9 ⊢ {〈1, 2〉, 〈2, 1〉} ∈ Fin | |
7 | eleq1 2826 | . . . . . . . . 9 ⊢ (𝑋 = {〈1, 2〉, 〈2, 1〉} → (𝑋 ∈ Fin ↔ {〈1, 2〉, 〈2, 1〉} ∈ Fin)) | |
8 | 6, 7 | mpbiri 257 | . . . . . . . 8 ⊢ (𝑋 = {〈1, 2〉, 〈2, 1〉} → 𝑋 ∈ Fin) |
9 | 5, 8 | jaoi 853 | . . . . . . 7 ⊢ ((𝑋 = {〈1, 1〉, 〈2, 2〉} ∨ 𝑋 = {〈1, 2〉, 〈2, 1〉}) → 𝑋 ∈ Fin) |
10 | diffi 8979 | . . . . . . 7 ⊢ (𝑋 ∈ Fin → (𝑋 ∖ I ) ∈ Fin) | |
11 | 9, 10 | syl 17 | . . . . . 6 ⊢ ((𝑋 = {〈1, 1〉, 〈2, 2〉} ∨ 𝑋 = {〈1, 2〉, 〈2, 1〉}) → (𝑋 ∖ I ) ∈ Fin) |
12 | dmfi 9027 | . . . . . 6 ⊢ ((𝑋 ∖ I ) ∈ Fin → dom (𝑋 ∖ I ) ∈ Fin) | |
13 | 2, 11, 12 | 3syl 18 | . . . . 5 ⊢ (𝑋 ∈ {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}} → dom (𝑋 ∖ I ) ∈ Fin) |
14 | 1ex 10902 | . . . . . 6 ⊢ 1 ∈ V | |
15 | 2nn 11976 | . . . . . 6 ⊢ 2 ∈ ℕ | |
16 | psgnprfval.g | . . . . . . 7 ⊢ 𝐺 = (SymGrp‘𝐷) | |
17 | psgnprfval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
18 | psgnprfval.0 | . . . . . . 7 ⊢ 𝐷 = {1, 2} | |
19 | 16, 17, 18 | symg2bas 18915 | . . . . . 6 ⊢ ((1 ∈ V ∧ 2 ∈ ℕ) → 𝐵 = {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}}) |
20 | 14, 15, 19 | mp2an 688 | . . . . 5 ⊢ 𝐵 = {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}} |
21 | 13, 20 | eleq2s 2857 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → dom (𝑋 ∖ I ) ∈ Fin) |
22 | psgnprfval.n | . . . . 5 ⊢ 𝑁 = (pmSgn‘𝐷) | |
23 | 16, 22, 17 | psgneldm 19026 | . . . 4 ⊢ (𝑋 ∈ dom 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ dom (𝑋 ∖ I ) ∈ Fin)) |
24 | 1, 21, 23 | sylanbrc 582 | . . 3 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ dom 𝑁) |
25 | psgnprfval.t | . . . 4 ⊢ 𝑇 = ran (pmTrsp‘𝐷) | |
26 | 16, 25, 22 | psgnval 19030 | . . 3 ⊢ (𝑋 ∈ dom 𝑁 → (𝑁‘𝑋) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
27 | 24, 26 | syl 17 | . 2 ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
28 | 1, 27 | syl 17 | 1 ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 Vcvv 3422 ∖ cdif 3880 {cpr 4560 〈cop 4564 I cid 5479 dom cdm 5580 ran crn 5581 ℩cio 6374 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 1c1 10803 -cneg 11136 ℕcn 11903 2c2 11958 ↑cexp 13710 ♯chash 13972 Word cword 14145 Basecbs 16840 Σg cgsu 17068 SymGrpcsymg 18889 pmTrspcpmtr 18964 pmSgncpsgn 19012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-fac 13916 df-bc 13945 df-hash 13973 df-word 14146 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-tset 16907 df-efmnd 18423 df-symg 18890 df-psgn 19014 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |