MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnprfval Structured version   Visualization version   GIF version

Theorem psgnprfval 19554
Description: The permutation sign function for a pair. (Contributed by AV, 10-Dec-2018.)
Hypotheses
Ref Expression
psgnprfval.0 𝐷 = {1, 2}
psgnprfval.g 𝐺 = (SymGrp‘𝐷)
psgnprfval.b 𝐵 = (Base‘𝐺)
psgnprfval.t 𝑇 = ran (pmTrsp‘𝐷)
psgnprfval.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnprfval (𝑋𝐵 → (𝑁𝑋) = (℩𝑠𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
Distinct variable groups:   𝐷,𝑠,𝑤   𝐺,𝑠,𝑤   𝑁,𝑠,𝑤   𝑇,𝑠,𝑤   𝑋,𝑠,𝑤
Allowed substitution hints:   𝐵(𝑤,𝑠)

Proof of Theorem psgnprfval
StepHypRef Expression
1 id 22 . 2 (𝑋𝐵𝑋𝐵)
2 elpri 4654 . . . . . 6 (𝑋 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}} → (𝑋 = {⟨1, 1⟩, ⟨2, 2⟩} ∨ 𝑋 = {⟨1, 2⟩, ⟨2, 1⟩}))
3 prfi 9361 . . . . . . . 8 {⟨1, 1⟩, ⟨2, 2⟩} ∈ Fin
4 eleq1 2827 . . . . . . . 8 (𝑋 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑋 ∈ Fin ↔ {⟨1, 1⟩, ⟨2, 2⟩} ∈ Fin))
53, 4mpbiri 258 . . . . . . 7 (𝑋 = {⟨1, 1⟩, ⟨2, 2⟩} → 𝑋 ∈ Fin)
6 prfi 9361 . . . . . . . 8 {⟨1, 2⟩, ⟨2, 1⟩} ∈ Fin
7 eleq1 2827 . . . . . . . 8 (𝑋 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑋 ∈ Fin ↔ {⟨1, 2⟩, ⟨2, 1⟩} ∈ Fin))
86, 7mpbiri 258 . . . . . . 7 (𝑋 = {⟨1, 2⟩, ⟨2, 1⟩} → 𝑋 ∈ Fin)
95, 8jaoi 857 . . . . . 6 ((𝑋 = {⟨1, 1⟩, ⟨2, 2⟩} ∨ 𝑋 = {⟨1, 2⟩, ⟨2, 1⟩}) → 𝑋 ∈ Fin)
10 diffi 9214 . . . . . 6 (𝑋 ∈ Fin → (𝑋 ∖ I ) ∈ Fin)
11 dmfi 9373 . . . . . 6 ((𝑋 ∖ I ) ∈ Fin → dom (𝑋 ∖ I ) ∈ Fin)
122, 9, 10, 114syl 19 . . . . 5 (𝑋 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}} → dom (𝑋 ∖ I ) ∈ Fin)
13 1ex 11255 . . . . . 6 1 ∈ V
14 2nn 12337 . . . . . 6 2 ∈ ℕ
15 psgnprfval.g . . . . . . 7 𝐺 = (SymGrp‘𝐷)
16 psgnprfval.b . . . . . . 7 𝐵 = (Base‘𝐺)
17 psgnprfval.0 . . . . . . 7 𝐷 = {1, 2}
1815, 16, 17symg2bas 19425 . . . . . 6 ((1 ∈ V ∧ 2 ∈ ℕ) → 𝐵 = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}})
1913, 14, 18mp2an 692 . . . . 5 𝐵 = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}}
2012, 19eleq2s 2857 . . . 4 (𝑋𝐵 → dom (𝑋 ∖ I ) ∈ Fin)
21 psgnprfval.n . . . . 5 𝑁 = (pmSgn‘𝐷)
2215, 21, 16psgneldm 19536 . . . 4 (𝑋 ∈ dom 𝑁 ↔ (𝑋𝐵 ∧ dom (𝑋 ∖ I ) ∈ Fin))
231, 20, 22sylanbrc 583 . . 3 (𝑋𝐵𝑋 ∈ dom 𝑁)
24 psgnprfval.t . . . 4 𝑇 = ran (pmTrsp‘𝐷)
2515, 24, 21psgnval 19540 . . 3 (𝑋 ∈ dom 𝑁 → (𝑁𝑋) = (℩𝑠𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
2623, 25syl 17 . 2 (𝑋𝐵 → (𝑁𝑋) = (℩𝑠𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
271, 26syl 17 1 (𝑋𝐵 → (𝑁𝑋) = (℩𝑠𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1537  wcel 2106  wrex 3068  Vcvv 3478  cdif 3960  {cpr 4633  cop 4637   I cid 5582  dom cdm 5689  ran crn 5690  cio 6514  cfv 6563  (class class class)co 7431  Fincfn 8984  1c1 11154  -cneg 11491  cn 12264  2c2 12319  cexp 14099  chash 14366  Word cword 14549  Basecbs 17245   Σg cgsu 17487  SymGrpcsymg 19401  pmTrspcpmtr 19474  pmSgncpsgn 19522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-fac 14310  df-bc 14339  df-hash 14367  df-word 14550  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-tset 17317  df-efmnd 18895  df-symg 19402  df-psgn 19524
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator