| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psgnprfval | Structured version Visualization version GIF version | ||
| Description: The permutation sign function for a pair. (Contributed by AV, 10-Dec-2018.) |
| Ref | Expression |
|---|---|
| psgnprfval.0 | ⊢ 𝐷 = {1, 2} |
| psgnprfval.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
| psgnprfval.b | ⊢ 𝐵 = (Base‘𝐺) |
| psgnprfval.t | ⊢ 𝑇 = ran (pmTrsp‘𝐷) |
| psgnprfval.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
| Ref | Expression |
|---|---|
| psgnprfval | ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵) | |
| 2 | elpri 4616 | . . . . . 6 ⊢ (𝑋 ∈ {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}} → (𝑋 = {〈1, 1〉, 〈2, 2〉} ∨ 𝑋 = {〈1, 2〉, 〈2, 1〉})) | |
| 3 | prfi 9281 | . . . . . . . 8 ⊢ {〈1, 1〉, 〈2, 2〉} ∈ Fin | |
| 4 | eleq1 2817 | . . . . . . . 8 ⊢ (𝑋 = {〈1, 1〉, 〈2, 2〉} → (𝑋 ∈ Fin ↔ {〈1, 1〉, 〈2, 2〉} ∈ Fin)) | |
| 5 | 3, 4 | mpbiri 258 | . . . . . . 7 ⊢ (𝑋 = {〈1, 1〉, 〈2, 2〉} → 𝑋 ∈ Fin) |
| 6 | prfi 9281 | . . . . . . . 8 ⊢ {〈1, 2〉, 〈2, 1〉} ∈ Fin | |
| 7 | eleq1 2817 | . . . . . . . 8 ⊢ (𝑋 = {〈1, 2〉, 〈2, 1〉} → (𝑋 ∈ Fin ↔ {〈1, 2〉, 〈2, 1〉} ∈ Fin)) | |
| 8 | 6, 7 | mpbiri 258 | . . . . . . 7 ⊢ (𝑋 = {〈1, 2〉, 〈2, 1〉} → 𝑋 ∈ Fin) |
| 9 | 5, 8 | jaoi 857 | . . . . . 6 ⊢ ((𝑋 = {〈1, 1〉, 〈2, 2〉} ∨ 𝑋 = {〈1, 2〉, 〈2, 1〉}) → 𝑋 ∈ Fin) |
| 10 | diffi 9145 | . . . . . 6 ⊢ (𝑋 ∈ Fin → (𝑋 ∖ I ) ∈ Fin) | |
| 11 | dmfi 9293 | . . . . . 6 ⊢ ((𝑋 ∖ I ) ∈ Fin → dom (𝑋 ∖ I ) ∈ Fin) | |
| 12 | 2, 9, 10, 11 | 4syl 19 | . . . . 5 ⊢ (𝑋 ∈ {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}} → dom (𝑋 ∖ I ) ∈ Fin) |
| 13 | 1ex 11177 | . . . . . 6 ⊢ 1 ∈ V | |
| 14 | 2nn 12266 | . . . . . 6 ⊢ 2 ∈ ℕ | |
| 15 | psgnprfval.g | . . . . . . 7 ⊢ 𝐺 = (SymGrp‘𝐷) | |
| 16 | psgnprfval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
| 17 | psgnprfval.0 | . . . . . . 7 ⊢ 𝐷 = {1, 2} | |
| 18 | 15, 16, 17 | symg2bas 19330 | . . . . . 6 ⊢ ((1 ∈ V ∧ 2 ∈ ℕ) → 𝐵 = {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}}) |
| 19 | 13, 14, 18 | mp2an 692 | . . . . 5 ⊢ 𝐵 = {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}} |
| 20 | 12, 19 | eleq2s 2847 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → dom (𝑋 ∖ I ) ∈ Fin) |
| 21 | psgnprfval.n | . . . . 5 ⊢ 𝑁 = (pmSgn‘𝐷) | |
| 22 | 15, 21, 16 | psgneldm 19440 | . . . 4 ⊢ (𝑋 ∈ dom 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ dom (𝑋 ∖ I ) ∈ Fin)) |
| 23 | 1, 20, 22 | sylanbrc 583 | . . 3 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ dom 𝑁) |
| 24 | psgnprfval.t | . . . 4 ⊢ 𝑇 = ran (pmTrsp‘𝐷) | |
| 25 | 15, 24, 21 | psgnval 19444 | . . 3 ⊢ (𝑋 ∈ dom 𝑁 → (𝑁‘𝑋) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
| 26 | 23, 25 | syl 17 | . 2 ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
| 27 | 1, 26 | syl 17 | 1 ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑠∃𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 Vcvv 3450 ∖ cdif 3914 {cpr 4594 〈cop 4598 I cid 5535 dom cdm 5641 ran crn 5642 ℩cio 6465 ‘cfv 6514 (class class class)co 7390 Fincfn 8921 1c1 11076 -cneg 11413 ℕcn 12193 2c2 12248 ↑cexp 14033 ♯chash 14302 Word cword 14485 Basecbs 17186 Σg cgsu 17410 SymGrpcsymg 19306 pmTrspcpmtr 19378 pmSgncpsgn 19426 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-seq 13974 df-fac 14246 df-bc 14275 df-hash 14303 df-word 14486 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-tset 17246 df-efmnd 18803 df-symg 19307 df-psgn 19428 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |