MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnprfval Structured version   Visualization version   GIF version

Theorem psgnprfval 19451
Description: The permutation sign function for a pair. (Contributed by AV, 10-Dec-2018.)
Hypotheses
Ref Expression
psgnprfval.0 𝐷 = {1, 2}
psgnprfval.g 𝐺 = (SymGrp‘𝐷)
psgnprfval.b 𝐵 = (Base‘𝐺)
psgnprfval.t 𝑇 = ran (pmTrsp‘𝐷)
psgnprfval.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnprfval (𝑋𝐵 → (𝑁𝑋) = (℩𝑠𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
Distinct variable groups:   𝐷,𝑠,𝑤   𝐺,𝑠,𝑤   𝑁,𝑠,𝑤   𝑇,𝑠,𝑤   𝑋,𝑠,𝑤
Allowed substitution hints:   𝐵(𝑤,𝑠)

Proof of Theorem psgnprfval
StepHypRef Expression
1 id 22 . 2 (𝑋𝐵𝑋𝐵)
2 elpri 4613 . . . . . 6 (𝑋 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}} → (𝑋 = {⟨1, 1⟩, ⟨2, 2⟩} ∨ 𝑋 = {⟨1, 2⟩, ⟨2, 1⟩}))
3 prfi 9274 . . . . . . . 8 {⟨1, 1⟩, ⟨2, 2⟩} ∈ Fin
4 eleq1 2816 . . . . . . . 8 (𝑋 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑋 ∈ Fin ↔ {⟨1, 1⟩, ⟨2, 2⟩} ∈ Fin))
53, 4mpbiri 258 . . . . . . 7 (𝑋 = {⟨1, 1⟩, ⟨2, 2⟩} → 𝑋 ∈ Fin)
6 prfi 9274 . . . . . . . 8 {⟨1, 2⟩, ⟨2, 1⟩} ∈ Fin
7 eleq1 2816 . . . . . . . 8 (𝑋 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑋 ∈ Fin ↔ {⟨1, 2⟩, ⟨2, 1⟩} ∈ Fin))
86, 7mpbiri 258 . . . . . . 7 (𝑋 = {⟨1, 2⟩, ⟨2, 1⟩} → 𝑋 ∈ Fin)
95, 8jaoi 857 . . . . . 6 ((𝑋 = {⟨1, 1⟩, ⟨2, 2⟩} ∨ 𝑋 = {⟨1, 2⟩, ⟨2, 1⟩}) → 𝑋 ∈ Fin)
10 diffi 9139 . . . . . 6 (𝑋 ∈ Fin → (𝑋 ∖ I ) ∈ Fin)
11 dmfi 9286 . . . . . 6 ((𝑋 ∖ I ) ∈ Fin → dom (𝑋 ∖ I ) ∈ Fin)
122, 9, 10, 114syl 19 . . . . 5 (𝑋 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}} → dom (𝑋 ∖ I ) ∈ Fin)
13 1ex 11170 . . . . . 6 1 ∈ V
14 2nn 12259 . . . . . 6 2 ∈ ℕ
15 psgnprfval.g . . . . . . 7 𝐺 = (SymGrp‘𝐷)
16 psgnprfval.b . . . . . . 7 𝐵 = (Base‘𝐺)
17 psgnprfval.0 . . . . . . 7 𝐷 = {1, 2}
1815, 16, 17symg2bas 19323 . . . . . 6 ((1 ∈ V ∧ 2 ∈ ℕ) → 𝐵 = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}})
1913, 14, 18mp2an 692 . . . . 5 𝐵 = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}}
2012, 19eleq2s 2846 . . . 4 (𝑋𝐵 → dom (𝑋 ∖ I ) ∈ Fin)
21 psgnprfval.n . . . . 5 𝑁 = (pmSgn‘𝐷)
2215, 21, 16psgneldm 19433 . . . 4 (𝑋 ∈ dom 𝑁 ↔ (𝑋𝐵 ∧ dom (𝑋 ∖ I ) ∈ Fin))
231, 20, 22sylanbrc 583 . . 3 (𝑋𝐵𝑋 ∈ dom 𝑁)
24 psgnprfval.t . . . 4 𝑇 = ran (pmTrsp‘𝐷)
2515, 24, 21psgnval 19437 . . 3 (𝑋 ∈ dom 𝑁 → (𝑁𝑋) = (℩𝑠𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
2623, 25syl 17 . 2 (𝑋𝐵 → (𝑁𝑋) = (℩𝑠𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
271, 26syl 17 1 (𝑋𝐵 → (𝑁𝑋) = (℩𝑠𝑤 ∈ Word 𝑇(𝑋 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3447  cdif 3911  {cpr 4591  cop 4595   I cid 5532  dom cdm 5638  ran crn 5639  cio 6462  cfv 6511  (class class class)co 7387  Fincfn 8918  1c1 11069  -cneg 11406  cn 12186  2c2 12241  cexp 14026  chash 14295  Word cword 14478  Basecbs 17179   Σg cgsu 17403  SymGrpcsymg 19299  pmTrspcpmtr 19371  pmSgncpsgn 19419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-fac 14239  df-bc 14268  df-hash 14296  df-word 14479  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-tset 17239  df-efmnd 18796  df-symg 19300  df-psgn 19421
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator