Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wrdsplex | Structured version Visualization version GIF version |
Description: Existence of a split of a word at a given index. (Contributed by Thierry Arnoux, 11-Oct-2018.) (Proof shortened by AV, 3-Nov-2022.) |
Ref | Expression |
---|---|
wrdsplex | ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ∃𝑣 ∈ Word 𝑆𝑊 = ((𝑊 ↾ (0..^𝑁)) ++ 𝑣)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | swrdcl 14358 | . 2 ⊢ (𝑊 ∈ Word 𝑆 → (𝑊 substr 〈𝑁, (♯‘𝑊)〉) ∈ Word 𝑆) | |
2 | simpr 485 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → 𝑁 ∈ (0...(♯‘𝑊))) | |
3 | elfzuz2 13261 | . . . . 5 ⊢ (𝑁 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ≥‘0)) | |
4 | eluzfz2 13264 | . . . . 5 ⊢ ((♯‘𝑊) ∈ (ℤ≥‘0) → (♯‘𝑊) ∈ (0...(♯‘𝑊))) | |
5 | 2, 3, 4 | 3syl 18 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (♯‘𝑊) ∈ (0...(♯‘𝑊))) |
6 | ccatpfx 14414 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 𝑁) ++ (𝑊 substr 〈𝑁, (♯‘𝑊)〉)) = (𝑊 prefix (♯‘𝑊))) | |
7 | 5, 6 | mpd3an3 1461 | . . 3 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 𝑁) ++ (𝑊 substr 〈𝑁, (♯‘𝑊)〉)) = (𝑊 prefix (♯‘𝑊))) |
8 | pfxres 14392 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 prefix 𝑁) = (𝑊 ↾ (0..^𝑁))) | |
9 | 8 | oveq1d 7290 | . . 3 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 𝑁) ++ (𝑊 substr 〈𝑁, (♯‘𝑊)〉)) = ((𝑊 ↾ (0..^𝑁)) ++ (𝑊 substr 〈𝑁, (♯‘𝑊)〉))) |
10 | pfxid 14397 | . . . 4 ⊢ (𝑊 ∈ Word 𝑆 → (𝑊 prefix (♯‘𝑊)) = 𝑊) | |
11 | 10 | adantr 481 | . . 3 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 prefix (♯‘𝑊)) = 𝑊) |
12 | 7, 9, 11 | 3eqtr3rd 2787 | . 2 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → 𝑊 = ((𝑊 ↾ (0..^𝑁)) ++ (𝑊 substr 〈𝑁, (♯‘𝑊)〉))) |
13 | oveq2 7283 | . . 3 ⊢ (𝑣 = (𝑊 substr 〈𝑁, (♯‘𝑊)〉) → ((𝑊 ↾ (0..^𝑁)) ++ 𝑣) = ((𝑊 ↾ (0..^𝑁)) ++ (𝑊 substr 〈𝑁, (♯‘𝑊)〉))) | |
14 | 13 | rspceeqv 3575 | . 2 ⊢ (((𝑊 substr 〈𝑁, (♯‘𝑊)〉) ∈ Word 𝑆 ∧ 𝑊 = ((𝑊 ↾ (0..^𝑁)) ++ (𝑊 substr 〈𝑁, (♯‘𝑊)〉))) → ∃𝑣 ∈ Word 𝑆𝑊 = ((𝑊 ↾ (0..^𝑁)) ++ 𝑣)) |
15 | 1, 12, 14 | syl2an2r 682 | 1 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ∃𝑣 ∈ Word 𝑆𝑊 = ((𝑊 ↾ (0..^𝑁)) ++ 𝑣)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 〈cop 4567 ↾ cres 5591 ‘cfv 6433 (class class class)co 7275 0cc0 10871 ℤ≥cuz 12582 ...cfz 13239 ..^cfzo 13382 ♯chash 14044 Word cword 14217 ++ cconcat 14273 substr csubstr 14353 prefix cpfx 14383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-concat 14274 df-substr 14354 df-pfx 14384 |
This theorem is referenced by: signstres 32554 |
Copyright terms: Public domain | W3C validator |