| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wrdsplex | Structured version Visualization version GIF version | ||
| Description: Existence of a split of a word at a given index. (Contributed by Thierry Arnoux, 11-Oct-2018.) (Proof shortened by AV, 3-Nov-2022.) |
| Ref | Expression |
|---|---|
| wrdsplex | ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ∃𝑣 ∈ Word 𝑆𝑊 = ((𝑊 ↾ (0..^𝑁)) ++ 𝑣)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swrdcl 14571 | . 2 ⊢ (𝑊 ∈ Word 𝑆 → (𝑊 substr 〈𝑁, (♯‘𝑊)〉) ∈ Word 𝑆) | |
| 2 | simpr 484 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → 𝑁 ∈ (0...(♯‘𝑊))) | |
| 3 | elfzuz2 13451 | . . . . 5 ⊢ (𝑁 ∈ (0...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ≥‘0)) | |
| 4 | eluzfz2 13454 | . . . . 5 ⊢ ((♯‘𝑊) ∈ (ℤ≥‘0) → (♯‘𝑊) ∈ (0...(♯‘𝑊))) | |
| 5 | 2, 3, 4 | 3syl 18 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (♯‘𝑊) ∈ (0...(♯‘𝑊))) |
| 6 | ccatpfx 14626 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 𝑁) ++ (𝑊 substr 〈𝑁, (♯‘𝑊)〉)) = (𝑊 prefix (♯‘𝑊))) | |
| 7 | 5, 6 | mpd3an3 1464 | . . 3 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 𝑁) ++ (𝑊 substr 〈𝑁, (♯‘𝑊)〉)) = (𝑊 prefix (♯‘𝑊))) |
| 8 | pfxres 14605 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 prefix 𝑁) = (𝑊 ↾ (0..^𝑁))) | |
| 9 | 8 | oveq1d 7368 | . . 3 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 𝑁) ++ (𝑊 substr 〈𝑁, (♯‘𝑊)〉)) = ((𝑊 ↾ (0..^𝑁)) ++ (𝑊 substr 〈𝑁, (♯‘𝑊)〉))) |
| 10 | pfxid 14610 | . . . 4 ⊢ (𝑊 ∈ Word 𝑆 → (𝑊 prefix (♯‘𝑊)) = 𝑊) | |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 prefix (♯‘𝑊)) = 𝑊) |
| 12 | 7, 9, 11 | 3eqtr3rd 2773 | . 2 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → 𝑊 = ((𝑊 ↾ (0..^𝑁)) ++ (𝑊 substr 〈𝑁, (♯‘𝑊)〉))) |
| 13 | oveq2 7361 | . . 3 ⊢ (𝑣 = (𝑊 substr 〈𝑁, (♯‘𝑊)〉) → ((𝑊 ↾ (0..^𝑁)) ++ 𝑣) = ((𝑊 ↾ (0..^𝑁)) ++ (𝑊 substr 〈𝑁, (♯‘𝑊)〉))) | |
| 14 | 13 | rspceeqv 3602 | . 2 ⊢ (((𝑊 substr 〈𝑁, (♯‘𝑊)〉) ∈ Word 𝑆 ∧ 𝑊 = ((𝑊 ↾ (0..^𝑁)) ++ (𝑊 substr 〈𝑁, (♯‘𝑊)〉))) → ∃𝑣 ∈ Word 𝑆𝑊 = ((𝑊 ↾ (0..^𝑁)) ++ 𝑣)) |
| 15 | 1, 12, 14 | syl2an2r 685 | 1 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ∃𝑣 ∈ Word 𝑆𝑊 = ((𝑊 ↾ (0..^𝑁)) ++ 𝑣)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 〈cop 4585 ↾ cres 5625 ‘cfv 6486 (class class class)co 7353 0cc0 11028 ℤ≥cuz 12754 ...cfz 13429 ..^cfzo 13576 ♯chash 14256 Word cword 14439 ++ cconcat 14496 substr csubstr 14566 prefix cpfx 14596 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-n0 12404 df-z 12491 df-uz 12755 df-fz 13430 df-fzo 13577 df-hash 14257 df-word 14440 df-concat 14497 df-substr 14567 df-pfx 14597 |
| This theorem is referenced by: signstres 34562 |
| Copyright terms: Public domain | W3C validator |