MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcm1k Structured version   Visualization version   GIF version

Theorem bcm1k 14354
Description: The proportion of one binomial coefficient to another with 𝐾 decreased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bcm1k (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · ((𝑁 − (𝐾 − 1)) / 𝐾)))

Proof of Theorem bcm1k
StepHypRef Expression
1 elfzuz2 13569 . . . . . . . . 9 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ (ℤ‘1))
2 nnuz 12921 . . . . . . . . 9 ℕ = (ℤ‘1)
31, 2eleqtrrdi 2852 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ ℕ)
43nnnn0d 12587 . . . . . . 7 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ ℕ0)
54faccld 14323 . . . . . 6 (𝐾 ∈ (1...𝑁) → (!‘𝑁) ∈ ℕ)
65nncnd 12282 . . . . 5 (𝐾 ∈ (1...𝑁) → (!‘𝑁) ∈ ℂ)
7 fznn0sub 13596 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (𝑁𝐾) ∈ ℕ0)
8 nn0p1nn 12565 . . . . . . 7 ((𝑁𝐾) ∈ ℕ0 → ((𝑁𝐾) + 1) ∈ ℕ)
97, 8syl 17 . . . . . 6 (𝐾 ∈ (1...𝑁) → ((𝑁𝐾) + 1) ∈ ℕ)
109nncnd 12282 . . . . 5 (𝐾 ∈ (1...𝑁) → ((𝑁𝐾) + 1) ∈ ℂ)
119nnnn0d 12587 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → ((𝑁𝐾) + 1) ∈ ℕ0)
1211faccld 14323 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘((𝑁𝐾) + 1)) ∈ ℕ)
13 elfznn 13593 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ)
14 nnm1nn0 12567 . . . . . . . 8 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
15 faccl 14322 . . . . . . . 8 ((𝐾 − 1) ∈ ℕ0 → (!‘(𝐾 − 1)) ∈ ℕ)
1613, 14, 153syl 18 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘(𝐾 − 1)) ∈ ℕ)
1712, 16nnmulcld 12319 . . . . . 6 (𝐾 ∈ (1...𝑁) → ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ∈ ℕ)
18 nncn 12274 . . . . . . 7 (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ∈ ℕ → ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ∈ ℂ)
19 nnne0 12300 . . . . . . 7 (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ∈ ℕ → ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ≠ 0)
2018, 19jca 511 . . . . . 6 (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ∈ ℕ → (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ∈ ℂ ∧ ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ≠ 0))
2117, 20syl 17 . . . . 5 (𝐾 ∈ (1...𝑁) → (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ∈ ℂ ∧ ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ≠ 0))
2213nncnd 12282 . . . . . 6 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℂ)
2313nnne0d 12316 . . . . . 6 (𝐾 ∈ (1...𝑁) → 𝐾 ≠ 0)
2422, 23jca 511 . . . . 5 (𝐾 ∈ (1...𝑁) → (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0))
25 divmuldiv 11967 . . . . 5 ((((!‘𝑁) ∈ ℂ ∧ ((𝑁𝐾) + 1) ∈ ℂ) ∧ ((((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ∈ ℂ ∧ ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ≠ 0) ∧ (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0))) → (((!‘𝑁) / ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1)))) · (((𝑁𝐾) + 1) / 𝐾)) = (((!‘𝑁) · ((𝑁𝐾) + 1)) / (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) · 𝐾)))
266, 10, 21, 24, 25syl22anc 839 . . . 4 (𝐾 ∈ (1...𝑁) → (((!‘𝑁) / ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1)))) · (((𝑁𝐾) + 1) / 𝐾)) = (((!‘𝑁) · ((𝑁𝐾) + 1)) / (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) · 𝐾)))
27 elfzel2 13562 . . . . . . . . . 10 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ ℤ)
2827zcnd 12723 . . . . . . . . 9 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ ℂ)
29 1cnd 11256 . . . . . . . . 9 (𝐾 ∈ (1...𝑁) → 1 ∈ ℂ)
3028, 22, 29subsubd 11648 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → (𝑁 − (𝐾 − 1)) = ((𝑁𝐾) + 1))
3130fveq2d 6910 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘(𝑁 − (𝐾 − 1))) = (!‘((𝑁𝐾) + 1)))
3231oveq1d 7446 . . . . . 6 (𝐾 ∈ (1...𝑁) → ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1))) = ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))))
3332oveq2d 7447 . . . . 5 (𝐾 ∈ (1...𝑁) → ((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))) = ((!‘𝑁) / ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1)))))
3430oveq1d 7446 . . . . 5 (𝐾 ∈ (1...𝑁) → ((𝑁 − (𝐾 − 1)) / 𝐾) = (((𝑁𝐾) + 1) / 𝐾))
3533, 34oveq12d 7449 . . . 4 (𝐾 ∈ (1...𝑁) → (((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))) · ((𝑁 − (𝐾 − 1)) / 𝐾)) = (((!‘𝑁) / ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1)))) · (((𝑁𝐾) + 1) / 𝐾)))
36 facp1 14317 . . . . . . . . 9 ((𝑁𝐾) ∈ ℕ0 → (!‘((𝑁𝐾) + 1)) = ((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)))
377, 36syl 17 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → (!‘((𝑁𝐾) + 1)) = ((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)))
3837eqcomd 2743 . . . . . . 7 (𝐾 ∈ (1...𝑁) → ((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)) = (!‘((𝑁𝐾) + 1)))
39 facnn2 14321 . . . . . . . 8 (𝐾 ∈ ℕ → (!‘𝐾) = ((!‘(𝐾 − 1)) · 𝐾))
4013, 39syl 17 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘𝐾) = ((!‘(𝐾 − 1)) · 𝐾))
4138, 40oveq12d 7449 . . . . . 6 (𝐾 ∈ (1...𝑁) → (((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)) · (!‘𝐾)) = ((!‘((𝑁𝐾) + 1)) · ((!‘(𝐾 − 1)) · 𝐾)))
427faccld 14323 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → (!‘(𝑁𝐾)) ∈ ℕ)
4342nncnd 12282 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘(𝑁𝐾)) ∈ ℂ)
4413nnnn0d 12587 . . . . . . . . 9 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ0)
4544faccld 14323 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → (!‘𝐾) ∈ ℕ)
4645nncnd 12282 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘𝐾) ∈ ℂ)
4743, 46, 10mul32d 11471 . . . . . 6 (𝐾 ∈ (1...𝑁) → (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁𝐾) + 1)) = (((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)) · (!‘𝐾)))
4812nncnd 12282 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘((𝑁𝐾) + 1)) ∈ ℂ)
4916nncnd 12282 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘(𝐾 − 1)) ∈ ℂ)
5048, 49, 22mulassd 11284 . . . . . 6 (𝐾 ∈ (1...𝑁) → (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) · 𝐾) = ((!‘((𝑁𝐾) + 1)) · ((!‘(𝐾 − 1)) · 𝐾)))
5141, 47, 503eqtr4d 2787 . . . . 5 (𝐾 ∈ (1...𝑁) → (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁𝐾) + 1)) = (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) · 𝐾))
5251oveq2d 7447 . . . 4 (𝐾 ∈ (1...𝑁) → (((!‘𝑁) · ((𝑁𝐾) + 1)) / (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁𝐾) + 1))) = (((!‘𝑁) · ((𝑁𝐾) + 1)) / (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) · 𝐾)))
5326, 35, 523eqtr4d 2787 . . 3 (𝐾 ∈ (1...𝑁) → (((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))) · ((𝑁 − (𝐾 − 1)) / 𝐾)) = (((!‘𝑁) · ((𝑁𝐾) + 1)) / (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁𝐾) + 1))))
546, 10mulcomd 11282 . . . 4 (𝐾 ∈ (1...𝑁) → ((!‘𝑁) · ((𝑁𝐾) + 1)) = (((𝑁𝐾) + 1) · (!‘𝑁)))
5542, 45nnmulcld 12319 . . . . . 6 (𝐾 ∈ (1...𝑁) → ((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℕ)
5655nncnd 12282 . . . . 5 (𝐾 ∈ (1...𝑁) → ((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℂ)
5756, 10mulcomd 11282 . . . 4 (𝐾 ∈ (1...𝑁) → (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁𝐾) + 1)) = (((𝑁𝐾) + 1) · ((!‘(𝑁𝐾)) · (!‘𝐾))))
5854, 57oveq12d 7449 . . 3 (𝐾 ∈ (1...𝑁) → (((!‘𝑁) · ((𝑁𝐾) + 1)) / (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁𝐾) + 1))) = ((((𝑁𝐾) + 1) · (!‘𝑁)) / (((𝑁𝐾) + 1) · ((!‘(𝑁𝐾)) · (!‘𝐾)))))
5955nnne0d 12316 . . . 4 (𝐾 ∈ (1...𝑁) → ((!‘(𝑁𝐾)) · (!‘𝐾)) ≠ 0)
609nnne0d 12316 . . . 4 (𝐾 ∈ (1...𝑁) → ((𝑁𝐾) + 1) ≠ 0)
616, 56, 10, 59, 60divcan5d 12069 . . 3 (𝐾 ∈ (1...𝑁) → ((((𝑁𝐾) + 1) · (!‘𝑁)) / (((𝑁𝐾) + 1) · ((!‘(𝑁𝐾)) · (!‘𝐾)))) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
6253, 58, 613eqtrrd 2782 . 2 (𝐾 ∈ (1...𝑁) → ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) = (((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))) · ((𝑁 − (𝐾 − 1)) / 𝐾)))
63 fz1ssfz0 13663 . . . 4 (1...𝑁) ⊆ (0...𝑁)
6463sseli 3979 . . 3 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ (0...𝑁))
65 bcval2 14344 . . 3 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
6664, 65syl 17 . 2 (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
67 ax-1cn 11213 . . . . . . . 8 1 ∈ ℂ
68 npcan 11517 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
6928, 67, 68sylancl 586 . . . . . . 7 (𝐾 ∈ (1...𝑁) → ((𝑁 − 1) + 1) = 𝑁)
70 peano2zm 12660 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
71 uzid 12893 . . . . . . . 8 ((𝑁 − 1) ∈ ℤ → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)))
72 peano2uz 12943 . . . . . . . 8 ((𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
7327, 70, 71, 724syl 19 . . . . . . 7 (𝐾 ∈ (1...𝑁) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
7469, 73eqeltrrd 2842 . . . . . 6 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ (ℤ‘(𝑁 − 1)))
75 fzss2 13604 . . . . . 6 (𝑁 ∈ (ℤ‘(𝑁 − 1)) → (0...(𝑁 − 1)) ⊆ (0...𝑁))
7674, 75syl 17 . . . . 5 (𝐾 ∈ (1...𝑁) → (0...(𝑁 − 1)) ⊆ (0...𝑁))
77 elfzmlbm 13678 . . . . 5 (𝐾 ∈ (1...𝑁) → (𝐾 − 1) ∈ (0...(𝑁 − 1)))
7876, 77sseldd 3984 . . . 4 (𝐾 ∈ (1...𝑁) → (𝐾 − 1) ∈ (0...𝑁))
79 bcval2 14344 . . . 4 ((𝐾 − 1) ∈ (0...𝑁) → (𝑁C(𝐾 − 1)) = ((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))))
8078, 79syl 17 . . 3 (𝐾 ∈ (1...𝑁) → (𝑁C(𝐾 − 1)) = ((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))))
8180oveq1d 7446 . 2 (𝐾 ∈ (1...𝑁) → ((𝑁C(𝐾 − 1)) · ((𝑁 − (𝐾 − 1)) / 𝐾)) = (((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))) · ((𝑁 − (𝐾 − 1)) / 𝐾)))
8262, 66, 813eqtr4d 2787 1 (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · ((𝑁 − (𝐾 − 1)) / 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  wss 3951  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cmin 11492   / cdiv 11920  cn 12266  0cn0 12526  cz 12613  cuz 12878  ...cfz 13547  !cfa 14312  Ccbc 14341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-seq 14043  df-fac 14313  df-bc 14342
This theorem is referenced by:  bcp1nk  14356  bcpasc  14360  bpolydiflem  16090  basellem5  27128  lcmineqlem11  42040
  Copyright terms: Public domain W3C validator