MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcm1k Structured version   Visualization version   GIF version

Theorem bcm1k 14336
Description: The proportion of one binomial coefficient to another with 𝐾 decreased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bcm1k (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · ((𝑁 − (𝐾 − 1)) / 𝐾)))

Proof of Theorem bcm1k
StepHypRef Expression
1 elfzuz2 13551 . . . . . . . . 9 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ (ℤ‘1))
2 nnuz 12903 . . . . . . . . 9 ℕ = (ℤ‘1)
31, 2eleqtrrdi 2844 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ ℕ)
43nnnn0d 12570 . . . . . . 7 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ ℕ0)
54faccld 14305 . . . . . 6 (𝐾 ∈ (1...𝑁) → (!‘𝑁) ∈ ℕ)
65nncnd 12264 . . . . 5 (𝐾 ∈ (1...𝑁) → (!‘𝑁) ∈ ℂ)
7 fznn0sub 13578 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (𝑁𝐾) ∈ ℕ0)
8 nn0p1nn 12548 . . . . . . 7 ((𝑁𝐾) ∈ ℕ0 → ((𝑁𝐾) + 1) ∈ ℕ)
97, 8syl 17 . . . . . 6 (𝐾 ∈ (1...𝑁) → ((𝑁𝐾) + 1) ∈ ℕ)
109nncnd 12264 . . . . 5 (𝐾 ∈ (1...𝑁) → ((𝑁𝐾) + 1) ∈ ℂ)
119nnnn0d 12570 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → ((𝑁𝐾) + 1) ∈ ℕ0)
1211faccld 14305 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘((𝑁𝐾) + 1)) ∈ ℕ)
13 elfznn 13575 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ)
14 nnm1nn0 12550 . . . . . . . 8 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
15 faccl 14304 . . . . . . . 8 ((𝐾 − 1) ∈ ℕ0 → (!‘(𝐾 − 1)) ∈ ℕ)
1613, 14, 153syl 18 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘(𝐾 − 1)) ∈ ℕ)
1712, 16nnmulcld 12301 . . . . . 6 (𝐾 ∈ (1...𝑁) → ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ∈ ℕ)
18 nncn 12256 . . . . . . 7 (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ∈ ℕ → ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ∈ ℂ)
19 nnne0 12282 . . . . . . 7 (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ∈ ℕ → ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ≠ 0)
2018, 19jca 511 . . . . . 6 (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ∈ ℕ → (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ∈ ℂ ∧ ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ≠ 0))
2117, 20syl 17 . . . . 5 (𝐾 ∈ (1...𝑁) → (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ∈ ℂ ∧ ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ≠ 0))
2213nncnd 12264 . . . . . 6 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℂ)
2313nnne0d 12298 . . . . . 6 (𝐾 ∈ (1...𝑁) → 𝐾 ≠ 0)
2422, 23jca 511 . . . . 5 (𝐾 ∈ (1...𝑁) → (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0))
25 divmuldiv 11949 . . . . 5 ((((!‘𝑁) ∈ ℂ ∧ ((𝑁𝐾) + 1) ∈ ℂ) ∧ ((((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ∈ ℂ ∧ ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ≠ 0) ∧ (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0))) → (((!‘𝑁) / ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1)))) · (((𝑁𝐾) + 1) / 𝐾)) = (((!‘𝑁) · ((𝑁𝐾) + 1)) / (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) · 𝐾)))
266, 10, 21, 24, 25syl22anc 838 . . . 4 (𝐾 ∈ (1...𝑁) → (((!‘𝑁) / ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1)))) · (((𝑁𝐾) + 1) / 𝐾)) = (((!‘𝑁) · ((𝑁𝐾) + 1)) / (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) · 𝐾)))
27 elfzel2 13544 . . . . . . . . . 10 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ ℤ)
2827zcnd 12706 . . . . . . . . 9 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ ℂ)
29 1cnd 11238 . . . . . . . . 9 (𝐾 ∈ (1...𝑁) → 1 ∈ ℂ)
3028, 22, 29subsubd 11630 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → (𝑁 − (𝐾 − 1)) = ((𝑁𝐾) + 1))
3130fveq2d 6890 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘(𝑁 − (𝐾 − 1))) = (!‘((𝑁𝐾) + 1)))
3231oveq1d 7428 . . . . . 6 (𝐾 ∈ (1...𝑁) → ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1))) = ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))))
3332oveq2d 7429 . . . . 5 (𝐾 ∈ (1...𝑁) → ((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))) = ((!‘𝑁) / ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1)))))
3430oveq1d 7428 . . . . 5 (𝐾 ∈ (1...𝑁) → ((𝑁 − (𝐾 − 1)) / 𝐾) = (((𝑁𝐾) + 1) / 𝐾))
3533, 34oveq12d 7431 . . . 4 (𝐾 ∈ (1...𝑁) → (((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))) · ((𝑁 − (𝐾 − 1)) / 𝐾)) = (((!‘𝑁) / ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1)))) · (((𝑁𝐾) + 1) / 𝐾)))
36 facp1 14299 . . . . . . . . 9 ((𝑁𝐾) ∈ ℕ0 → (!‘((𝑁𝐾) + 1)) = ((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)))
377, 36syl 17 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → (!‘((𝑁𝐾) + 1)) = ((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)))
3837eqcomd 2740 . . . . . . 7 (𝐾 ∈ (1...𝑁) → ((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)) = (!‘((𝑁𝐾) + 1)))
39 facnn2 14303 . . . . . . . 8 (𝐾 ∈ ℕ → (!‘𝐾) = ((!‘(𝐾 − 1)) · 𝐾))
4013, 39syl 17 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘𝐾) = ((!‘(𝐾 − 1)) · 𝐾))
4138, 40oveq12d 7431 . . . . . 6 (𝐾 ∈ (1...𝑁) → (((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)) · (!‘𝐾)) = ((!‘((𝑁𝐾) + 1)) · ((!‘(𝐾 − 1)) · 𝐾)))
427faccld 14305 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → (!‘(𝑁𝐾)) ∈ ℕ)
4342nncnd 12264 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘(𝑁𝐾)) ∈ ℂ)
4413nnnn0d 12570 . . . . . . . . 9 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ0)
4544faccld 14305 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → (!‘𝐾) ∈ ℕ)
4645nncnd 12264 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘𝐾) ∈ ℂ)
4743, 46, 10mul32d 11453 . . . . . 6 (𝐾 ∈ (1...𝑁) → (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁𝐾) + 1)) = (((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)) · (!‘𝐾)))
4812nncnd 12264 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘((𝑁𝐾) + 1)) ∈ ℂ)
4916nncnd 12264 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘(𝐾 − 1)) ∈ ℂ)
5048, 49, 22mulassd 11266 . . . . . 6 (𝐾 ∈ (1...𝑁) → (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) · 𝐾) = ((!‘((𝑁𝐾) + 1)) · ((!‘(𝐾 − 1)) · 𝐾)))
5141, 47, 503eqtr4d 2779 . . . . 5 (𝐾 ∈ (1...𝑁) → (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁𝐾) + 1)) = (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) · 𝐾))
5251oveq2d 7429 . . . 4 (𝐾 ∈ (1...𝑁) → (((!‘𝑁) · ((𝑁𝐾) + 1)) / (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁𝐾) + 1))) = (((!‘𝑁) · ((𝑁𝐾) + 1)) / (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) · 𝐾)))
5326, 35, 523eqtr4d 2779 . . 3 (𝐾 ∈ (1...𝑁) → (((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))) · ((𝑁 − (𝐾 − 1)) / 𝐾)) = (((!‘𝑁) · ((𝑁𝐾) + 1)) / (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁𝐾) + 1))))
546, 10mulcomd 11264 . . . 4 (𝐾 ∈ (1...𝑁) → ((!‘𝑁) · ((𝑁𝐾) + 1)) = (((𝑁𝐾) + 1) · (!‘𝑁)))
5542, 45nnmulcld 12301 . . . . . 6 (𝐾 ∈ (1...𝑁) → ((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℕ)
5655nncnd 12264 . . . . 5 (𝐾 ∈ (1...𝑁) → ((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℂ)
5756, 10mulcomd 11264 . . . 4 (𝐾 ∈ (1...𝑁) → (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁𝐾) + 1)) = (((𝑁𝐾) + 1) · ((!‘(𝑁𝐾)) · (!‘𝐾))))
5854, 57oveq12d 7431 . . 3 (𝐾 ∈ (1...𝑁) → (((!‘𝑁) · ((𝑁𝐾) + 1)) / (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁𝐾) + 1))) = ((((𝑁𝐾) + 1) · (!‘𝑁)) / (((𝑁𝐾) + 1) · ((!‘(𝑁𝐾)) · (!‘𝐾)))))
5955nnne0d 12298 . . . 4 (𝐾 ∈ (1...𝑁) → ((!‘(𝑁𝐾)) · (!‘𝐾)) ≠ 0)
609nnne0d 12298 . . . 4 (𝐾 ∈ (1...𝑁) → ((𝑁𝐾) + 1) ≠ 0)
616, 56, 10, 59, 60divcan5d 12051 . . 3 (𝐾 ∈ (1...𝑁) → ((((𝑁𝐾) + 1) · (!‘𝑁)) / (((𝑁𝐾) + 1) · ((!‘(𝑁𝐾)) · (!‘𝐾)))) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
6253, 58, 613eqtrrd 2774 . 2 (𝐾 ∈ (1...𝑁) → ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) = (((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))) · ((𝑁 − (𝐾 − 1)) / 𝐾)))
63 fz1ssfz0 13645 . . . 4 (1...𝑁) ⊆ (0...𝑁)
6463sseli 3959 . . 3 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ (0...𝑁))
65 bcval2 14326 . . 3 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
6664, 65syl 17 . 2 (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
67 ax-1cn 11195 . . . . . . . 8 1 ∈ ℂ
68 npcan 11499 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
6928, 67, 68sylancl 586 . . . . . . 7 (𝐾 ∈ (1...𝑁) → ((𝑁 − 1) + 1) = 𝑁)
70 peano2zm 12643 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
71 uzid 12875 . . . . . . . 8 ((𝑁 − 1) ∈ ℤ → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)))
72 peano2uz 12925 . . . . . . . 8 ((𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
7327, 70, 71, 724syl 19 . . . . . . 7 (𝐾 ∈ (1...𝑁) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
7469, 73eqeltrrd 2834 . . . . . 6 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ (ℤ‘(𝑁 − 1)))
75 fzss2 13586 . . . . . 6 (𝑁 ∈ (ℤ‘(𝑁 − 1)) → (0...(𝑁 − 1)) ⊆ (0...𝑁))
7674, 75syl 17 . . . . 5 (𝐾 ∈ (1...𝑁) → (0...(𝑁 − 1)) ⊆ (0...𝑁))
77 elfzmlbm 13660 . . . . 5 (𝐾 ∈ (1...𝑁) → (𝐾 − 1) ∈ (0...(𝑁 − 1)))
7876, 77sseldd 3964 . . . 4 (𝐾 ∈ (1...𝑁) → (𝐾 − 1) ∈ (0...𝑁))
79 bcval2 14326 . . . 4 ((𝐾 − 1) ∈ (0...𝑁) → (𝑁C(𝐾 − 1)) = ((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))))
8078, 79syl 17 . . 3 (𝐾 ∈ (1...𝑁) → (𝑁C(𝐾 − 1)) = ((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))))
8180oveq1d 7428 . 2 (𝐾 ∈ (1...𝑁) → ((𝑁C(𝐾 − 1)) · ((𝑁 − (𝐾 − 1)) / 𝐾)) = (((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))) · ((𝑁 − (𝐾 − 1)) / 𝐾)))
8262, 66, 813eqtr4d 2779 1 (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · ((𝑁 − (𝐾 − 1)) / 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  wss 3931  cfv 6541  (class class class)co 7413  cc 11135  0cc0 11137  1c1 11138   + caddc 11140   · cmul 11142  cmin 11474   / cdiv 11902  cn 12248  0cn0 12509  cz 12596  cuz 12860  ...cfz 13529  !cfa 14294  Ccbc 14323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-n0 12510  df-z 12597  df-uz 12861  df-fz 13530  df-seq 14025  df-fac 14295  df-bc 14324
This theorem is referenced by:  bcp1nk  14338  bcpasc  14342  bpolydiflem  16072  basellem5  27064  lcmineqlem11  41999
  Copyright terms: Public domain W3C validator