MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcm1k Structured version   Visualization version   GIF version

Theorem bcm1k 14310
Description: The proportion of one binomial coefficient to another with 𝐾 decreased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bcm1k (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · ((𝑁 − (𝐾 − 1)) / 𝐾)))

Proof of Theorem bcm1k
StepHypRef Expression
1 elfzuz2 13541 . . . . . . . . 9 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ (ℤ‘1))
2 nnuz 12898 . . . . . . . . 9 ℕ = (ℤ‘1)
31, 2eleqtrrdi 2836 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ ℕ)
43nnnn0d 12565 . . . . . . 7 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ ℕ0)
54faccld 14279 . . . . . 6 (𝐾 ∈ (1...𝑁) → (!‘𝑁) ∈ ℕ)
65nncnd 12261 . . . . 5 (𝐾 ∈ (1...𝑁) → (!‘𝑁) ∈ ℂ)
7 fznn0sub 13568 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (𝑁𝐾) ∈ ℕ0)
8 nn0p1nn 12544 . . . . . . 7 ((𝑁𝐾) ∈ ℕ0 → ((𝑁𝐾) + 1) ∈ ℕ)
97, 8syl 17 . . . . . 6 (𝐾 ∈ (1...𝑁) → ((𝑁𝐾) + 1) ∈ ℕ)
109nncnd 12261 . . . . 5 (𝐾 ∈ (1...𝑁) → ((𝑁𝐾) + 1) ∈ ℂ)
119nnnn0d 12565 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → ((𝑁𝐾) + 1) ∈ ℕ0)
1211faccld 14279 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘((𝑁𝐾) + 1)) ∈ ℕ)
13 elfznn 13565 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ)
14 nnm1nn0 12546 . . . . . . . 8 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
15 faccl 14278 . . . . . . . 8 ((𝐾 − 1) ∈ ℕ0 → (!‘(𝐾 − 1)) ∈ ℕ)
1613, 14, 153syl 18 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘(𝐾 − 1)) ∈ ℕ)
1712, 16nnmulcld 12298 . . . . . 6 (𝐾 ∈ (1...𝑁) → ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ∈ ℕ)
18 nncn 12253 . . . . . . 7 (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ∈ ℕ → ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ∈ ℂ)
19 nnne0 12279 . . . . . . 7 (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ∈ ℕ → ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ≠ 0)
2018, 19jca 510 . . . . . 6 (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ∈ ℕ → (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ∈ ℂ ∧ ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ≠ 0))
2117, 20syl 17 . . . . 5 (𝐾 ∈ (1...𝑁) → (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ∈ ℂ ∧ ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ≠ 0))
2213nncnd 12261 . . . . . 6 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℂ)
2313nnne0d 12295 . . . . . 6 (𝐾 ∈ (1...𝑁) → 𝐾 ≠ 0)
2422, 23jca 510 . . . . 5 (𝐾 ∈ (1...𝑁) → (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0))
25 divmuldiv 11947 . . . . 5 ((((!‘𝑁) ∈ ℂ ∧ ((𝑁𝐾) + 1) ∈ ℂ) ∧ ((((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ∈ ℂ ∧ ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) ≠ 0) ∧ (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0))) → (((!‘𝑁) / ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1)))) · (((𝑁𝐾) + 1) / 𝐾)) = (((!‘𝑁) · ((𝑁𝐾) + 1)) / (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) · 𝐾)))
266, 10, 21, 24, 25syl22anc 837 . . . 4 (𝐾 ∈ (1...𝑁) → (((!‘𝑁) / ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1)))) · (((𝑁𝐾) + 1) / 𝐾)) = (((!‘𝑁) · ((𝑁𝐾) + 1)) / (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) · 𝐾)))
27 elfzel2 13534 . . . . . . . . . 10 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ ℤ)
2827zcnd 12700 . . . . . . . . 9 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ ℂ)
29 1cnd 11241 . . . . . . . . 9 (𝐾 ∈ (1...𝑁) → 1 ∈ ℂ)
3028, 22, 29subsubd 11631 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → (𝑁 − (𝐾 − 1)) = ((𝑁𝐾) + 1))
3130fveq2d 6900 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘(𝑁 − (𝐾 − 1))) = (!‘((𝑁𝐾) + 1)))
3231oveq1d 7434 . . . . . 6 (𝐾 ∈ (1...𝑁) → ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1))) = ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))))
3332oveq2d 7435 . . . . 5 (𝐾 ∈ (1...𝑁) → ((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))) = ((!‘𝑁) / ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1)))))
3430oveq1d 7434 . . . . 5 (𝐾 ∈ (1...𝑁) → ((𝑁 − (𝐾 − 1)) / 𝐾) = (((𝑁𝐾) + 1) / 𝐾))
3533, 34oveq12d 7437 . . . 4 (𝐾 ∈ (1...𝑁) → (((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))) · ((𝑁 − (𝐾 − 1)) / 𝐾)) = (((!‘𝑁) / ((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1)))) · (((𝑁𝐾) + 1) / 𝐾)))
36 facp1 14273 . . . . . . . . 9 ((𝑁𝐾) ∈ ℕ0 → (!‘((𝑁𝐾) + 1)) = ((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)))
377, 36syl 17 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → (!‘((𝑁𝐾) + 1)) = ((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)))
3837eqcomd 2731 . . . . . . 7 (𝐾 ∈ (1...𝑁) → ((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)) = (!‘((𝑁𝐾) + 1)))
39 facnn2 14277 . . . . . . . 8 (𝐾 ∈ ℕ → (!‘𝐾) = ((!‘(𝐾 − 1)) · 𝐾))
4013, 39syl 17 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘𝐾) = ((!‘(𝐾 − 1)) · 𝐾))
4138, 40oveq12d 7437 . . . . . 6 (𝐾 ∈ (1...𝑁) → (((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)) · (!‘𝐾)) = ((!‘((𝑁𝐾) + 1)) · ((!‘(𝐾 − 1)) · 𝐾)))
427faccld 14279 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → (!‘(𝑁𝐾)) ∈ ℕ)
4342nncnd 12261 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘(𝑁𝐾)) ∈ ℂ)
4413nnnn0d 12565 . . . . . . . . 9 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ0)
4544faccld 14279 . . . . . . . 8 (𝐾 ∈ (1...𝑁) → (!‘𝐾) ∈ ℕ)
4645nncnd 12261 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘𝐾) ∈ ℂ)
4743, 46, 10mul32d 11456 . . . . . 6 (𝐾 ∈ (1...𝑁) → (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁𝐾) + 1)) = (((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)) · (!‘𝐾)))
4812nncnd 12261 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘((𝑁𝐾) + 1)) ∈ ℂ)
4916nncnd 12261 . . . . . . 7 (𝐾 ∈ (1...𝑁) → (!‘(𝐾 − 1)) ∈ ℂ)
5048, 49, 22mulassd 11269 . . . . . 6 (𝐾 ∈ (1...𝑁) → (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) · 𝐾) = ((!‘((𝑁𝐾) + 1)) · ((!‘(𝐾 − 1)) · 𝐾)))
5141, 47, 503eqtr4d 2775 . . . . 5 (𝐾 ∈ (1...𝑁) → (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁𝐾) + 1)) = (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) · 𝐾))
5251oveq2d 7435 . . . 4 (𝐾 ∈ (1...𝑁) → (((!‘𝑁) · ((𝑁𝐾) + 1)) / (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁𝐾) + 1))) = (((!‘𝑁) · ((𝑁𝐾) + 1)) / (((!‘((𝑁𝐾) + 1)) · (!‘(𝐾 − 1))) · 𝐾)))
5326, 35, 523eqtr4d 2775 . . 3 (𝐾 ∈ (1...𝑁) → (((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))) · ((𝑁 − (𝐾 − 1)) / 𝐾)) = (((!‘𝑁) · ((𝑁𝐾) + 1)) / (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁𝐾) + 1))))
546, 10mulcomd 11267 . . . 4 (𝐾 ∈ (1...𝑁) → ((!‘𝑁) · ((𝑁𝐾) + 1)) = (((𝑁𝐾) + 1) · (!‘𝑁)))
5542, 45nnmulcld 12298 . . . . . 6 (𝐾 ∈ (1...𝑁) → ((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℕ)
5655nncnd 12261 . . . . 5 (𝐾 ∈ (1...𝑁) → ((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℂ)
5756, 10mulcomd 11267 . . . 4 (𝐾 ∈ (1...𝑁) → (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁𝐾) + 1)) = (((𝑁𝐾) + 1) · ((!‘(𝑁𝐾)) · (!‘𝐾))))
5854, 57oveq12d 7437 . . 3 (𝐾 ∈ (1...𝑁) → (((!‘𝑁) · ((𝑁𝐾) + 1)) / (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁𝐾) + 1))) = ((((𝑁𝐾) + 1) · (!‘𝑁)) / (((𝑁𝐾) + 1) · ((!‘(𝑁𝐾)) · (!‘𝐾)))))
5955nnne0d 12295 . . . 4 (𝐾 ∈ (1...𝑁) → ((!‘(𝑁𝐾)) · (!‘𝐾)) ≠ 0)
609nnne0d 12295 . . . 4 (𝐾 ∈ (1...𝑁) → ((𝑁𝐾) + 1) ≠ 0)
616, 56, 10, 59, 60divcan5d 12049 . . 3 (𝐾 ∈ (1...𝑁) → ((((𝑁𝐾) + 1) · (!‘𝑁)) / (((𝑁𝐾) + 1) · ((!‘(𝑁𝐾)) · (!‘𝐾)))) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
6253, 58, 613eqtrrd 2770 . 2 (𝐾 ∈ (1...𝑁) → ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) = (((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))) · ((𝑁 − (𝐾 − 1)) / 𝐾)))
63 fz1ssfz0 13632 . . . 4 (1...𝑁) ⊆ (0...𝑁)
6463sseli 3972 . . 3 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ (0...𝑁))
65 bcval2 14300 . . 3 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
6664, 65syl 17 . 2 (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
67 ax-1cn 11198 . . . . . . . 8 1 ∈ ℂ
68 npcan 11501 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
6928, 67, 68sylancl 584 . . . . . . 7 (𝐾 ∈ (1...𝑁) → ((𝑁 − 1) + 1) = 𝑁)
70 peano2zm 12638 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
71 uzid 12870 . . . . . . . 8 ((𝑁 − 1) ∈ ℤ → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)))
72 peano2uz 12918 . . . . . . . 8 ((𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
7327, 70, 71, 724syl 19 . . . . . . 7 (𝐾 ∈ (1...𝑁) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
7469, 73eqeltrrd 2826 . . . . . 6 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ (ℤ‘(𝑁 − 1)))
75 fzss2 13576 . . . . . 6 (𝑁 ∈ (ℤ‘(𝑁 − 1)) → (0...(𝑁 − 1)) ⊆ (0...𝑁))
7674, 75syl 17 . . . . 5 (𝐾 ∈ (1...𝑁) → (0...(𝑁 − 1)) ⊆ (0...𝑁))
77 elfzmlbm 13646 . . . . 5 (𝐾 ∈ (1...𝑁) → (𝐾 − 1) ∈ (0...(𝑁 − 1)))
7876, 77sseldd 3977 . . . 4 (𝐾 ∈ (1...𝑁) → (𝐾 − 1) ∈ (0...𝑁))
79 bcval2 14300 . . . 4 ((𝐾 − 1) ∈ (0...𝑁) → (𝑁C(𝐾 − 1)) = ((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))))
8078, 79syl 17 . . 3 (𝐾 ∈ (1...𝑁) → (𝑁C(𝐾 − 1)) = ((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))))
8180oveq1d 7434 . 2 (𝐾 ∈ (1...𝑁) → ((𝑁C(𝐾 − 1)) · ((𝑁 − (𝐾 − 1)) / 𝐾)) = (((!‘𝑁) / ((!‘(𝑁 − (𝐾 − 1))) · (!‘(𝐾 − 1)))) · ((𝑁 − (𝐾 − 1)) / 𝐾)))
8262, 66, 813eqtr4d 2775 1 (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · ((𝑁 − (𝐾 − 1)) / 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2929  wss 3944  cfv 6549  (class class class)co 7419  cc 11138  0cc0 11140  1c1 11141   + caddc 11143   · cmul 11145  cmin 11476   / cdiv 11903  cn 12245  0cn0 12505  cz 12591  cuz 12855  ...cfz 13519  !cfa 14268  Ccbc 14297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520  df-seq 14003  df-fac 14269  df-bc 14298
This theorem is referenced by:  bcp1nk  14312  bcpasc  14316  bpolydiflem  16034  basellem5  27062  lcmineqlem11  41639
  Copyright terms: Public domain W3C validator