| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > m1expeven | Structured version Visualization version GIF version | ||
| Description: Exponentiation of negative one to an even power. (Contributed by Scott Fenton, 17-Jan-2018.) |
| Ref | Expression |
|---|---|
| m1expeven | ⊢ (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 12468 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 2 | 1 | 2timesd 12359 | . . 3 ⊢ (𝑁 ∈ ℤ → (2 · 𝑁) = (𝑁 + 𝑁)) |
| 3 | 2 | oveq2d 7357 | . 2 ⊢ (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = (-1↑(𝑁 + 𝑁))) |
| 4 | neg1cn 12105 | . . . 4 ⊢ -1 ∈ ℂ | |
| 5 | neg1ne0 12107 | . . . 4 ⊢ -1 ≠ 0 | |
| 6 | expaddz 14008 | . . . 4 ⊢ (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁))) | |
| 7 | 4, 5, 6 | mpanl12 702 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁))) |
| 8 | 7 | anidms 566 | . 2 ⊢ (𝑁 ∈ ℤ → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁))) |
| 9 | m1expcl2 13987 | . . 3 ⊢ (𝑁 ∈ ℤ → (-1↑𝑁) ∈ {-1, 1}) | |
| 10 | ovex 7374 | . . . . 5 ⊢ (-1↑𝑁) ∈ V | |
| 11 | 10 | elpr 4596 | . . . 4 ⊢ ((-1↑𝑁) ∈ {-1, 1} ↔ ((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1)) |
| 12 | oveq12 7350 | . . . . . . 7 ⊢ (((-1↑𝑁) = -1 ∧ (-1↑𝑁) = -1) → ((-1↑𝑁) · (-1↑𝑁)) = (-1 · -1)) | |
| 13 | 12 | anidms 566 | . . . . . 6 ⊢ ((-1↑𝑁) = -1 → ((-1↑𝑁) · (-1↑𝑁)) = (-1 · -1)) |
| 14 | neg1mulneg1e1 12328 | . . . . . 6 ⊢ (-1 · -1) = 1 | |
| 15 | 13, 14 | eqtrdi 2782 | . . . . 5 ⊢ ((-1↑𝑁) = -1 → ((-1↑𝑁) · (-1↑𝑁)) = 1) |
| 16 | oveq12 7350 | . . . . . . 7 ⊢ (((-1↑𝑁) = 1 ∧ (-1↑𝑁) = 1) → ((-1↑𝑁) · (-1↑𝑁)) = (1 · 1)) | |
| 17 | 16 | anidms 566 | . . . . . 6 ⊢ ((-1↑𝑁) = 1 → ((-1↑𝑁) · (-1↑𝑁)) = (1 · 1)) |
| 18 | 1t1e1 12277 | . . . . . 6 ⊢ (1 · 1) = 1 | |
| 19 | 17, 18 | eqtrdi 2782 | . . . . 5 ⊢ ((-1↑𝑁) = 1 → ((-1↑𝑁) · (-1↑𝑁)) = 1) |
| 20 | 15, 19 | jaoi 857 | . . . 4 ⊢ (((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1) → ((-1↑𝑁) · (-1↑𝑁)) = 1) |
| 21 | 11, 20 | sylbi 217 | . . 3 ⊢ ((-1↑𝑁) ∈ {-1, 1} → ((-1↑𝑁) · (-1↑𝑁)) = 1) |
| 22 | 9, 21 | syl 17 | . 2 ⊢ (𝑁 ∈ ℤ → ((-1↑𝑁) · (-1↑𝑁)) = 1) |
| 23 | 3, 8, 22 | 3eqtrd 2770 | 1 ⊢ (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {cpr 4573 (class class class)co 7341 ℂcc 10999 0cc0 11001 1c1 11002 + caddc 11004 · cmul 11006 -cneg 11340 2c2 12175 ℤcz 12463 ↑cexp 13963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-n0 12377 df-z 12464 df-uz 12728 df-seq 13904 df-exp 13964 |
| This theorem is referenced by: fallrisefac 15927 m1expe 16280 m1expo 16281 m1exp1 16282 gausslemma2d 27307 stirlinglem5 46116 |
| Copyright terms: Public domain | W3C validator |