MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1expeven Structured version   Visualization version   GIF version

Theorem m1expeven 13944
Description: Exponentiation of negative one to an even power. (Contributed by Scott Fenton, 17-Jan-2018.)
Assertion
Ref Expression
m1expeven (๐‘ โˆˆ โ„ค โ†’ (-1โ†‘(2 ยท ๐‘)) = 1)

Proof of Theorem m1expeven
StepHypRef Expression
1 zcn 12438 . . . 4 (๐‘ โˆˆ โ„ค โ†’ ๐‘ โˆˆ โ„‚)
212timesd 12330 . . 3 (๐‘ โˆˆ โ„ค โ†’ (2 ยท ๐‘) = (๐‘ + ๐‘))
32oveq2d 7366 . 2 (๐‘ โˆˆ โ„ค โ†’ (-1โ†‘(2 ยท ๐‘)) = (-1โ†‘(๐‘ + ๐‘)))
4 neg1cn 12201 . . . 4 -1 โˆˆ โ„‚
5 neg1ne0 12203 . . . 4 -1 โ‰  0
6 expaddz 13941 . . . 4 (((-1 โˆˆ โ„‚ โˆง -1 โ‰  0) โˆง (๐‘ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โ†’ (-1โ†‘(๐‘ + ๐‘)) = ((-1โ†‘๐‘) ยท (-1โ†‘๐‘)))
74, 5, 6mpanl12 701 . . 3 ((๐‘ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (-1โ†‘(๐‘ + ๐‘)) = ((-1โ†‘๐‘) ยท (-1โ†‘๐‘)))
87anidms 568 . 2 (๐‘ โˆˆ โ„ค โ†’ (-1โ†‘(๐‘ + ๐‘)) = ((-1โ†‘๐‘) ยท (-1โ†‘๐‘)))
9 m1expcl2 13918 . . 3 (๐‘ โˆˆ โ„ค โ†’ (-1โ†‘๐‘) โˆˆ {-1, 1})
10 ovex 7383 . . . . 5 (-1โ†‘๐‘) โˆˆ V
1110elpr 4608 . . . 4 ((-1โ†‘๐‘) โˆˆ {-1, 1} โ†” ((-1โ†‘๐‘) = -1 โˆจ (-1โ†‘๐‘) = 1))
12 oveq12 7359 . . . . . . 7 (((-1โ†‘๐‘) = -1 โˆง (-1โ†‘๐‘) = -1) โ†’ ((-1โ†‘๐‘) ยท (-1โ†‘๐‘)) = (-1 ยท -1))
1312anidms 568 . . . . . 6 ((-1โ†‘๐‘) = -1 โ†’ ((-1โ†‘๐‘) ยท (-1โ†‘๐‘)) = (-1 ยท -1))
14 neg1mulneg1e1 12300 . . . . . 6 (-1 ยท -1) = 1
1513, 14eqtrdi 2794 . . . . 5 ((-1โ†‘๐‘) = -1 โ†’ ((-1โ†‘๐‘) ยท (-1โ†‘๐‘)) = 1)
16 oveq12 7359 . . . . . . 7 (((-1โ†‘๐‘) = 1 โˆง (-1โ†‘๐‘) = 1) โ†’ ((-1โ†‘๐‘) ยท (-1โ†‘๐‘)) = (1 ยท 1))
1716anidms 568 . . . . . 6 ((-1โ†‘๐‘) = 1 โ†’ ((-1โ†‘๐‘) ยท (-1โ†‘๐‘)) = (1 ยท 1))
18 1t1e1 12249 . . . . . 6 (1 ยท 1) = 1
1917, 18eqtrdi 2794 . . . . 5 ((-1โ†‘๐‘) = 1 โ†’ ((-1โ†‘๐‘) ยท (-1โ†‘๐‘)) = 1)
2015, 19jaoi 856 . . . 4 (((-1โ†‘๐‘) = -1 โˆจ (-1โ†‘๐‘) = 1) โ†’ ((-1โ†‘๐‘) ยท (-1โ†‘๐‘)) = 1)
2111, 20sylbi 216 . . 3 ((-1โ†‘๐‘) โˆˆ {-1, 1} โ†’ ((-1โ†‘๐‘) ยท (-1โ†‘๐‘)) = 1)
229, 21syl 17 . 2 (๐‘ โˆˆ โ„ค โ†’ ((-1โ†‘๐‘) ยท (-1โ†‘๐‘)) = 1)
233, 8, 223eqtrd 2782 1 (๐‘ โˆˆ โ„ค โ†’ (-1โ†‘(2 ยท ๐‘)) = 1)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 397   โˆจ wo 846   = wceq 1542   โˆˆ wcel 2107   โ‰  wne 2942  {cpr 4587  (class class class)co 7350  โ„‚cc 10983  0cc0 10985  1c1 10986   + caddc 10988   ยท cmul 10990  -cneg 11320  2c2 12142  โ„คcz 12433  โ†‘cexp 13896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7663  ax-cnex 11041  ax-resscn 11042  ax-1cn 11043  ax-icn 11044  ax-addcl 11045  ax-addrcl 11046  ax-mulcl 11047  ax-mulrcl 11048  ax-mulcom 11049  ax-addass 11050  ax-mulass 11051  ax-distr 11052  ax-i2m1 11053  ax-1ne0 11054  ax-1rid 11055  ax-rnegex 11056  ax-rrecex 11057  ax-cnre 11058  ax-pre-lttri 11059  ax-pre-lttrn 11060  ax-pre-ltadd 11061  ax-pre-mulgt0 11062
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6250  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6444  df-fun 6494  df-fn 6495  df-f 6496  df-f1 6497  df-fo 6498  df-f1o 6499  df-fv 6500  df-riota 7306  df-ov 7353  df-oprab 7354  df-mpo 7355  df-om 7794  df-2nd 7913  df-frecs 8180  df-wrecs 8211  df-recs 8285  df-rdg 8324  df-er 8582  df-en 8818  df-dom 8819  df-sdom 8820  df-pnf 11125  df-mnf 11126  df-xr 11127  df-ltxr 11128  df-le 11129  df-sub 11321  df-neg 11322  df-div 11747  df-nn 12088  df-2 12150  df-n0 12348  df-z 12434  df-uz 12697  df-seq 13836  df-exp 13897
This theorem is referenced by:  fallrisefac  15843  m1expe  16191  m1expo  16192  m1exp1  16193  gausslemma2d  26644  stirlinglem5  44041
  Copyright terms: Public domain W3C validator