| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > m1expeven | Structured version Visualization version GIF version | ||
| Description: Exponentiation of negative one to an even power. (Contributed by Scott Fenton, 17-Jan-2018.) |
| Ref | Expression |
|---|---|
| m1expeven | ⊢ (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 12510 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 2 | 1 | 2timesd 12401 | . . 3 ⊢ (𝑁 ∈ ℤ → (2 · 𝑁) = (𝑁 + 𝑁)) |
| 3 | 2 | oveq2d 7385 | . 2 ⊢ (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = (-1↑(𝑁 + 𝑁))) |
| 4 | neg1cn 12147 | . . . 4 ⊢ -1 ∈ ℂ | |
| 5 | neg1ne0 12149 | . . . 4 ⊢ -1 ≠ 0 | |
| 6 | expaddz 14047 | . . . 4 ⊢ (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁))) | |
| 7 | 4, 5, 6 | mpanl12 702 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁))) |
| 8 | 7 | anidms 566 | . 2 ⊢ (𝑁 ∈ ℤ → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁))) |
| 9 | m1expcl2 14026 | . . 3 ⊢ (𝑁 ∈ ℤ → (-1↑𝑁) ∈ {-1, 1}) | |
| 10 | ovex 7402 | . . . . 5 ⊢ (-1↑𝑁) ∈ V | |
| 11 | 10 | elpr 4610 | . . . 4 ⊢ ((-1↑𝑁) ∈ {-1, 1} ↔ ((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1)) |
| 12 | oveq12 7378 | . . . . . . 7 ⊢ (((-1↑𝑁) = -1 ∧ (-1↑𝑁) = -1) → ((-1↑𝑁) · (-1↑𝑁)) = (-1 · -1)) | |
| 13 | 12 | anidms 566 | . . . . . 6 ⊢ ((-1↑𝑁) = -1 → ((-1↑𝑁) · (-1↑𝑁)) = (-1 · -1)) |
| 14 | neg1mulneg1e1 12370 | . . . . . 6 ⊢ (-1 · -1) = 1 | |
| 15 | 13, 14 | eqtrdi 2780 | . . . . 5 ⊢ ((-1↑𝑁) = -1 → ((-1↑𝑁) · (-1↑𝑁)) = 1) |
| 16 | oveq12 7378 | . . . . . . 7 ⊢ (((-1↑𝑁) = 1 ∧ (-1↑𝑁) = 1) → ((-1↑𝑁) · (-1↑𝑁)) = (1 · 1)) | |
| 17 | 16 | anidms 566 | . . . . . 6 ⊢ ((-1↑𝑁) = 1 → ((-1↑𝑁) · (-1↑𝑁)) = (1 · 1)) |
| 18 | 1t1e1 12319 | . . . . . 6 ⊢ (1 · 1) = 1 | |
| 19 | 17, 18 | eqtrdi 2780 | . . . . 5 ⊢ ((-1↑𝑁) = 1 → ((-1↑𝑁) · (-1↑𝑁)) = 1) |
| 20 | 15, 19 | jaoi 857 | . . . 4 ⊢ (((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1) → ((-1↑𝑁) · (-1↑𝑁)) = 1) |
| 21 | 11, 20 | sylbi 217 | . . 3 ⊢ ((-1↑𝑁) ∈ {-1, 1} → ((-1↑𝑁) · (-1↑𝑁)) = 1) |
| 22 | 9, 21 | syl 17 | . 2 ⊢ (𝑁 ∈ ℤ → ((-1↑𝑁) · (-1↑𝑁)) = 1) |
| 23 | 3, 8, 22 | 3eqtrd 2768 | 1 ⊢ (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {cpr 4587 (class class class)co 7369 ℂcc 11042 0cc0 11044 1c1 11045 + caddc 11047 · cmul 11049 -cneg 11382 2c2 12217 ℤcz 12505 ↑cexp 14002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-seq 13943 df-exp 14003 |
| This theorem is referenced by: fallrisefac 15967 m1expe 16320 m1expo 16321 m1exp1 16322 gausslemma2d 27261 stirlinglem5 46049 |
| Copyright terms: Public domain | W3C validator |