Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1expeven Structured version   Visualization version   GIF version

Theorem m1expeven 13469
 Description: Exponentiation of negative one to an even power. (Contributed by Scott Fenton, 17-Jan-2018.)
Assertion
Ref Expression
m1expeven (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1)

Proof of Theorem m1expeven
StepHypRef Expression
1 zcn 11978 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
212timesd 11872 . . 3 (𝑁 ∈ ℤ → (2 · 𝑁) = (𝑁 + 𝑁))
32oveq2d 7167 . 2 (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = (-1↑(𝑁 + 𝑁)))
4 neg1cn 11743 . . . 4 -1 ∈ ℂ
5 neg1ne0 11745 . . . 4 -1 ≠ 0
6 expaddz 13466 . . . 4 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
74, 5, 6mpanl12 698 . . 3 ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
87anidms 567 . 2 (𝑁 ∈ ℤ → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
9 m1expcl2 13444 . . 3 (𝑁 ∈ ℤ → (-1↑𝑁) ∈ {-1, 1})
10 ovex 7184 . . . . 5 (-1↑𝑁) ∈ V
1110elpr 4586 . . . 4 ((-1↑𝑁) ∈ {-1, 1} ↔ ((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1))
12 oveq12 7160 . . . . . . 7 (((-1↑𝑁) = -1 ∧ (-1↑𝑁) = -1) → ((-1↑𝑁) · (-1↑𝑁)) = (-1 · -1))
1312anidms 567 . . . . . 6 ((-1↑𝑁) = -1 → ((-1↑𝑁) · (-1↑𝑁)) = (-1 · -1))
14 neg1mulneg1e1 11842 . . . . . 6 (-1 · -1) = 1
1513, 14syl6eq 2876 . . . . 5 ((-1↑𝑁) = -1 → ((-1↑𝑁) · (-1↑𝑁)) = 1)
16 oveq12 7160 . . . . . . 7 (((-1↑𝑁) = 1 ∧ (-1↑𝑁) = 1) → ((-1↑𝑁) · (-1↑𝑁)) = (1 · 1))
1716anidms 567 . . . . . 6 ((-1↑𝑁) = 1 → ((-1↑𝑁) · (-1↑𝑁)) = (1 · 1))
18 1t1e1 11791 . . . . . 6 (1 · 1) = 1
1917, 18syl6eq 2876 . . . . 5 ((-1↑𝑁) = 1 → ((-1↑𝑁) · (-1↑𝑁)) = 1)
2015, 19jaoi 853 . . . 4 (((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1) → ((-1↑𝑁) · (-1↑𝑁)) = 1)
2111, 20sylbi 218 . . 3 ((-1↑𝑁) ∈ {-1, 1} → ((-1↑𝑁) · (-1↑𝑁)) = 1)
229, 21syl 17 . 2 (𝑁 ∈ ℤ → ((-1↑𝑁) · (-1↑𝑁)) = 1)
233, 8, 223eqtrd 2864 1 (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396   ∨ wo 843   = wceq 1530   ∈ wcel 2107   ≠ wne 3020  {cpr 4565  (class class class)co 7151  ℂcc 10527  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534  -cneg 10863  2c2 11684  ℤcz 11973  ↑cexp 13422 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-seq 13363  df-exp 13423 This theorem is referenced by:  fallrisefac  15371  m1expe  15717  m1expo  15718  m1exp1  15719  gausslemma2d  25864  stirlinglem5  42225
 Copyright terms: Public domain W3C validator