MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1expeven Structured version   Visualization version   GIF version

Theorem m1expeven 14073
Description: Exponentiation of negative one to an even power. (Contributed by Scott Fenton, 17-Jan-2018.)
Assertion
Ref Expression
m1expeven (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1)

Proof of Theorem m1expeven
StepHypRef Expression
1 zcn 12561 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
212timesd 12453 . . 3 (𝑁 ∈ ℤ → (2 · 𝑁) = (𝑁 + 𝑁))
32oveq2d 7418 . 2 (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = (-1↑(𝑁 + 𝑁)))
4 neg1cn 12324 . . . 4 -1 ∈ ℂ
5 neg1ne0 12326 . . . 4 -1 ≠ 0
6 expaddz 14070 . . . 4 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
74, 5, 6mpanl12 699 . . 3 ((𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
87anidms 566 . 2 (𝑁 ∈ ℤ → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
9 m1expcl2 14049 . . 3 (𝑁 ∈ ℤ → (-1↑𝑁) ∈ {-1, 1})
10 ovex 7435 . . . . 5 (-1↑𝑁) ∈ V
1110elpr 4644 . . . 4 ((-1↑𝑁) ∈ {-1, 1} ↔ ((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1))
12 oveq12 7411 . . . . . . 7 (((-1↑𝑁) = -1 ∧ (-1↑𝑁) = -1) → ((-1↑𝑁) · (-1↑𝑁)) = (-1 · -1))
1312anidms 566 . . . . . 6 ((-1↑𝑁) = -1 → ((-1↑𝑁) · (-1↑𝑁)) = (-1 · -1))
14 neg1mulneg1e1 12423 . . . . . 6 (-1 · -1) = 1
1513, 14eqtrdi 2780 . . . . 5 ((-1↑𝑁) = -1 → ((-1↑𝑁) · (-1↑𝑁)) = 1)
16 oveq12 7411 . . . . . . 7 (((-1↑𝑁) = 1 ∧ (-1↑𝑁) = 1) → ((-1↑𝑁) · (-1↑𝑁)) = (1 · 1))
1716anidms 566 . . . . . 6 ((-1↑𝑁) = 1 → ((-1↑𝑁) · (-1↑𝑁)) = (1 · 1))
18 1t1e1 12372 . . . . . 6 (1 · 1) = 1
1917, 18eqtrdi 2780 . . . . 5 ((-1↑𝑁) = 1 → ((-1↑𝑁) · (-1↑𝑁)) = 1)
2015, 19jaoi 854 . . . 4 (((-1↑𝑁) = -1 ∨ (-1↑𝑁) = 1) → ((-1↑𝑁) · (-1↑𝑁)) = 1)
2111, 20sylbi 216 . . 3 ((-1↑𝑁) ∈ {-1, 1} → ((-1↑𝑁) · (-1↑𝑁)) = 1)
229, 21syl 17 . 2 (𝑁 ∈ ℤ → ((-1↑𝑁) · (-1↑𝑁)) = 1)
233, 8, 223eqtrd 2768 1 (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 844   = wceq 1533  wcel 2098  wne 2932  {cpr 4623  (class class class)co 7402  cc 11105  0cc0 11107  1c1 11108   + caddc 11110   · cmul 11112  -cneg 11443  2c2 12265  cz 12556  cexp 14025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-div 11870  df-nn 12211  df-2 12273  df-n0 12471  df-z 12557  df-uz 12821  df-seq 13965  df-exp 14026
This theorem is referenced by:  fallrisefac  15967  m1expe  16316  m1expo  16317  m1exp1  16318  gausslemma2d  27226  stirlinglem5  45304
  Copyright terms: Public domain W3C validator