Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0sumshdiglem2 Structured version   Visualization version   GIF version

Theorem nn0sumshdiglem2 48584
Description: Lemma 2 for nn0sumshdig 48585. (Contributed by AV, 7-Jun-2020.)
Assertion
Ref Expression
nn0sumshdiglem2 (𝐿 ∈ ℕ → ∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝐿𝑎 = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘))))
Distinct variable group:   𝑘,𝑎,𝐿

Proof of Theorem nn0sumshdiglem2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2741 . . . 4 (𝑥 = 1 → ((#b𝑎) = 𝑥 ↔ (#b𝑎) = 1))
2 oveq2 7377 . . . . . . 7 (𝑥 = 1 → (0..^𝑥) = (0..^1))
3 fzo01 13684 . . . . . . 7 (0..^1) = {0}
42, 3eqtrdi 2780 . . . . . 6 (𝑥 = 1 → (0..^𝑥) = {0})
54sumeq1d 15642 . . . . 5 (𝑥 = 1 → Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)))
65eqeq2d 2740 . . . 4 (𝑥 = 1 → (𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘))))
71, 6imbi12d 344 . . 3 (𝑥 = 1 → (((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ((#b𝑎) = 1 → 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
87ralbidv 3156 . 2 (𝑥 = 1 → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ∀𝑎 ∈ ℕ0 ((#b𝑎) = 1 → 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
9 eqeq2 2741 . . . 4 (𝑥 = 𝑦 → ((#b𝑎) = 𝑥 ↔ (#b𝑎) = 𝑦))
10 oveq2 7377 . . . . . 6 (𝑥 = 𝑦 → (0..^𝑥) = (0..^𝑦))
1110sumeq1d 15642 . . . . 5 (𝑥 = 𝑦 → Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)))
1211eqeq2d 2740 . . . 4 (𝑥 = 𝑦 → (𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))))
139, 12imbi12d 344 . . 3 (𝑥 = 𝑦 → (((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
1413ralbidv 3156 . 2 (𝑥 = 𝑦 → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
15 eqeq2 2741 . . . 4 (𝑥 = (𝑦 + 1) → ((#b𝑎) = 𝑥 ↔ (#b𝑎) = (𝑦 + 1)))
16 oveq2 7377 . . . . . 6 (𝑥 = (𝑦 + 1) → (0..^𝑥) = (0..^(𝑦 + 1)))
1716sumeq1d 15642 . . . . 5 (𝑥 = (𝑦 + 1) → Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))
1817eqeq2d 2740 . . . 4 (𝑥 = (𝑦 + 1) → (𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))
1915, 18imbi12d 344 . . 3 (𝑥 = (𝑦 + 1) → (((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
2019ralbidv 3156 . 2 (𝑥 = (𝑦 + 1) → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ∀𝑎 ∈ ℕ0 ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
21 eqeq2 2741 . . . 4 (𝑥 = 𝐿 → ((#b𝑎) = 𝑥 ↔ (#b𝑎) = 𝐿))
22 oveq2 7377 . . . . . 6 (𝑥 = 𝐿 → (0..^𝑥) = (0..^𝐿))
2322sumeq1d 15642 . . . . 5 (𝑥 = 𝐿 → Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘)))
2423eqeq2d 2740 . . . 4 (𝑥 = 𝐿 → (𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 𝑎 = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘))))
2521, 24imbi12d 344 . . 3 (𝑥 = 𝐿 → (((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ((#b𝑎) = 𝐿𝑎 = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
2625ralbidv 3156 . 2 (𝑥 = 𝐿 → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝐿𝑎 = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
27 0cnd 11143 . . . . . . . 8 (𝑎 ∈ ℕ0 → 0 ∈ ℂ)
28 2nn 12235 . . . . . . . . . . . 12 2 ∈ ℕ
2928a1i 11 . . . . . . . . . . 11 (𝑎 ∈ ℕ0 → 2 ∈ ℕ)
30 0zd 12517 . . . . . . . . . . 11 (𝑎 ∈ ℕ0 → 0 ∈ ℤ)
31 nn0rp0 13392 . . . . . . . . . . 11 (𝑎 ∈ ℕ0𝑎 ∈ (0[,)+∞))
32 digvalnn0 48561 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 0 ∈ ℤ ∧ 𝑎 ∈ (0[,)+∞)) → (0(digit‘2)𝑎) ∈ ℕ0)
3329, 30, 31, 32syl3anc 1373 . . . . . . . . . 10 (𝑎 ∈ ℕ0 → (0(digit‘2)𝑎) ∈ ℕ0)
3433nn0cnd 12481 . . . . . . . . 9 (𝑎 ∈ ℕ0 → (0(digit‘2)𝑎) ∈ ℂ)
35 1cnd 11145 . . . . . . . . 9 (𝑎 ∈ ℕ0 → 1 ∈ ℂ)
3634, 35mulcld 11170 . . . . . . . 8 (𝑎 ∈ ℕ0 → ((0(digit‘2)𝑎) · 1) ∈ ℂ)
3727, 36jca 511 . . . . . . 7 (𝑎 ∈ ℕ0 → (0 ∈ ℂ ∧ ((0(digit‘2)𝑎) · 1) ∈ ℂ))
3837adantr 480 . . . . . 6 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → (0 ∈ ℂ ∧ ((0(digit‘2)𝑎) · 1) ∈ ℂ))
39 oveq1 7376 . . . . . . . 8 (𝑘 = 0 → (𝑘(digit‘2)𝑎) = (0(digit‘2)𝑎))
40 oveq2 7377 . . . . . . . . 9 (𝑘 = 0 → (2↑𝑘) = (2↑0))
41 2cn 12237 . . . . . . . . . 10 2 ∈ ℂ
42 exp0 14006 . . . . . . . . . 10 (2 ∈ ℂ → (2↑0) = 1)
4341, 42ax-mp 5 . . . . . . . . 9 (2↑0) = 1
4440, 43eqtrdi 2780 . . . . . . . 8 (𝑘 = 0 → (2↑𝑘) = 1)
4539, 44oveq12d 7387 . . . . . . 7 (𝑘 = 0 → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((0(digit‘2)𝑎) · 1))
4645sumsn 15688 . . . . . 6 ((0 ∈ ℂ ∧ ((0(digit‘2)𝑎) · 1) ∈ ℂ) → Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((0(digit‘2)𝑎) · 1))
4738, 46syl 17 . . . . 5 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((0(digit‘2)𝑎) · 1))
4834adantr 480 . . . . . 6 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → (0(digit‘2)𝑎) ∈ ℂ)
4948mulridd 11167 . . . . 5 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → ((0(digit‘2)𝑎) · 1) = (0(digit‘2)𝑎))
50 blen1b 48550 . . . . . . . 8 (𝑎 ∈ ℕ0 → ((#b𝑎) = 1 ↔ (𝑎 = 0 ∨ 𝑎 = 1)))
5150biimpa 476 . . . . . . 7 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → (𝑎 = 0 ∨ 𝑎 = 1))
52 vex 3448 . . . . . . . 8 𝑎 ∈ V
5352elpr 4610 . . . . . . 7 (𝑎 ∈ {0, 1} ↔ (𝑎 = 0 ∨ 𝑎 = 1))
5451, 53sylibr 234 . . . . . 6 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → 𝑎 ∈ {0, 1})
55 0dig2pr01 48572 . . . . . 6 (𝑎 ∈ {0, 1} → (0(digit‘2)𝑎) = 𝑎)
5654, 55syl 17 . . . . 5 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → (0(digit‘2)𝑎) = 𝑎)
5747, 49, 563eqtrrd 2769 . . . 4 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)))
5857ex 412 . . 3 (𝑎 ∈ ℕ0 → ((#b𝑎) = 1 → 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘))))
5958rgen 3046 . 2 𝑎 ∈ ℕ0 ((#b𝑎) = 1 → 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)))
60 nn0sumshdiglem1 48583 . 2 (𝑦 ∈ ℕ → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) → ∀𝑎 ∈ ℕ0 ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
618, 14, 20, 26, 59, 60nnind 12180 1 (𝐿 ∈ ℕ → ∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝐿𝑎 = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  {csn 4585  {cpr 4587  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  +∞cpnf 11181  cn 12162  2c2 12217  0cn0 12418  cz 12505  [,)cico 13284  ..^cfzo 13591  cexp 14002  Σcsu 15628  #bcblen 48531  digitcdig 48557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-dvds 16199  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744  df-log 26441  df-cxp 26442  df-logb 26651  df-blen 48532  df-dig 48558
This theorem is referenced by:  nn0sumshdig  48585
  Copyright terms: Public domain W3C validator