Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0sumshdiglem2 Structured version   Visualization version   GIF version

Theorem nn0sumshdiglem2 48472
Description: Lemma 2 for nn0sumshdig 48473. (Contributed by AV, 7-Jun-2020.)
Assertion
Ref Expression
nn0sumshdiglem2 (𝐿 ∈ ℕ → ∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝐿𝑎 = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘))))
Distinct variable group:   𝑘,𝑎,𝐿

Proof of Theorem nn0sumshdiglem2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2747 . . . 4 (𝑥 = 1 → ((#b𝑎) = 𝑥 ↔ (#b𝑎) = 1))
2 oveq2 7439 . . . . . . 7 (𝑥 = 1 → (0..^𝑥) = (0..^1))
3 fzo01 13783 . . . . . . 7 (0..^1) = {0}
42, 3eqtrdi 2791 . . . . . 6 (𝑥 = 1 → (0..^𝑥) = {0})
54sumeq1d 15733 . . . . 5 (𝑥 = 1 → Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)))
65eqeq2d 2746 . . . 4 (𝑥 = 1 → (𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘))))
71, 6imbi12d 344 . . 3 (𝑥 = 1 → (((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ((#b𝑎) = 1 → 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
87ralbidv 3176 . 2 (𝑥 = 1 → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ∀𝑎 ∈ ℕ0 ((#b𝑎) = 1 → 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
9 eqeq2 2747 . . . 4 (𝑥 = 𝑦 → ((#b𝑎) = 𝑥 ↔ (#b𝑎) = 𝑦))
10 oveq2 7439 . . . . . 6 (𝑥 = 𝑦 → (0..^𝑥) = (0..^𝑦))
1110sumeq1d 15733 . . . . 5 (𝑥 = 𝑦 → Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)))
1211eqeq2d 2746 . . . 4 (𝑥 = 𝑦 → (𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))))
139, 12imbi12d 344 . . 3 (𝑥 = 𝑦 → (((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
1413ralbidv 3176 . 2 (𝑥 = 𝑦 → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
15 eqeq2 2747 . . . 4 (𝑥 = (𝑦 + 1) → ((#b𝑎) = 𝑥 ↔ (#b𝑎) = (𝑦 + 1)))
16 oveq2 7439 . . . . . 6 (𝑥 = (𝑦 + 1) → (0..^𝑥) = (0..^(𝑦 + 1)))
1716sumeq1d 15733 . . . . 5 (𝑥 = (𝑦 + 1) → Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))
1817eqeq2d 2746 . . . 4 (𝑥 = (𝑦 + 1) → (𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))
1915, 18imbi12d 344 . . 3 (𝑥 = (𝑦 + 1) → (((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
2019ralbidv 3176 . 2 (𝑥 = (𝑦 + 1) → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ∀𝑎 ∈ ℕ0 ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
21 eqeq2 2747 . . . 4 (𝑥 = 𝐿 → ((#b𝑎) = 𝑥 ↔ (#b𝑎) = 𝐿))
22 oveq2 7439 . . . . . 6 (𝑥 = 𝐿 → (0..^𝑥) = (0..^𝐿))
2322sumeq1d 15733 . . . . 5 (𝑥 = 𝐿 → Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘)))
2423eqeq2d 2746 . . . 4 (𝑥 = 𝐿 → (𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 𝑎 = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘))))
2521, 24imbi12d 344 . . 3 (𝑥 = 𝐿 → (((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ((#b𝑎) = 𝐿𝑎 = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
2625ralbidv 3176 . 2 (𝑥 = 𝐿 → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝐿𝑎 = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
27 0cnd 11252 . . . . . . . 8 (𝑎 ∈ ℕ0 → 0 ∈ ℂ)
28 2nn 12337 . . . . . . . . . . . 12 2 ∈ ℕ
2928a1i 11 . . . . . . . . . . 11 (𝑎 ∈ ℕ0 → 2 ∈ ℕ)
30 0zd 12623 . . . . . . . . . . 11 (𝑎 ∈ ℕ0 → 0 ∈ ℤ)
31 nn0rp0 13492 . . . . . . . . . . 11 (𝑎 ∈ ℕ0𝑎 ∈ (0[,)+∞))
32 digvalnn0 48449 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 0 ∈ ℤ ∧ 𝑎 ∈ (0[,)+∞)) → (0(digit‘2)𝑎) ∈ ℕ0)
3329, 30, 31, 32syl3anc 1370 . . . . . . . . . 10 (𝑎 ∈ ℕ0 → (0(digit‘2)𝑎) ∈ ℕ0)
3433nn0cnd 12587 . . . . . . . . 9 (𝑎 ∈ ℕ0 → (0(digit‘2)𝑎) ∈ ℂ)
35 1cnd 11254 . . . . . . . . 9 (𝑎 ∈ ℕ0 → 1 ∈ ℂ)
3634, 35mulcld 11279 . . . . . . . 8 (𝑎 ∈ ℕ0 → ((0(digit‘2)𝑎) · 1) ∈ ℂ)
3727, 36jca 511 . . . . . . 7 (𝑎 ∈ ℕ0 → (0 ∈ ℂ ∧ ((0(digit‘2)𝑎) · 1) ∈ ℂ))
3837adantr 480 . . . . . 6 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → (0 ∈ ℂ ∧ ((0(digit‘2)𝑎) · 1) ∈ ℂ))
39 oveq1 7438 . . . . . . . 8 (𝑘 = 0 → (𝑘(digit‘2)𝑎) = (0(digit‘2)𝑎))
40 oveq2 7439 . . . . . . . . 9 (𝑘 = 0 → (2↑𝑘) = (2↑0))
41 2cn 12339 . . . . . . . . . 10 2 ∈ ℂ
42 exp0 14103 . . . . . . . . . 10 (2 ∈ ℂ → (2↑0) = 1)
4341, 42ax-mp 5 . . . . . . . . 9 (2↑0) = 1
4440, 43eqtrdi 2791 . . . . . . . 8 (𝑘 = 0 → (2↑𝑘) = 1)
4539, 44oveq12d 7449 . . . . . . 7 (𝑘 = 0 → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((0(digit‘2)𝑎) · 1))
4645sumsn 15779 . . . . . 6 ((0 ∈ ℂ ∧ ((0(digit‘2)𝑎) · 1) ∈ ℂ) → Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((0(digit‘2)𝑎) · 1))
4738, 46syl 17 . . . . 5 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((0(digit‘2)𝑎) · 1))
4834adantr 480 . . . . . 6 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → (0(digit‘2)𝑎) ∈ ℂ)
4948mulridd 11276 . . . . 5 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → ((0(digit‘2)𝑎) · 1) = (0(digit‘2)𝑎))
50 blen1b 48438 . . . . . . . 8 (𝑎 ∈ ℕ0 → ((#b𝑎) = 1 ↔ (𝑎 = 0 ∨ 𝑎 = 1)))
5150biimpa 476 . . . . . . 7 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → (𝑎 = 0 ∨ 𝑎 = 1))
52 vex 3482 . . . . . . . 8 𝑎 ∈ V
5352elpr 4655 . . . . . . 7 (𝑎 ∈ {0, 1} ↔ (𝑎 = 0 ∨ 𝑎 = 1))
5451, 53sylibr 234 . . . . . 6 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → 𝑎 ∈ {0, 1})
55 0dig2pr01 48460 . . . . . 6 (𝑎 ∈ {0, 1} → (0(digit‘2)𝑎) = 𝑎)
5654, 55syl 17 . . . . 5 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → (0(digit‘2)𝑎) = 𝑎)
5747, 49, 563eqtrrd 2780 . . . 4 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)))
5857ex 412 . . 3 (𝑎 ∈ ℕ0 → ((#b𝑎) = 1 → 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘))))
5958rgen 3061 . 2 𝑎 ∈ ℕ0 ((#b𝑎) = 1 → 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)))
60 nn0sumshdiglem1 48471 . 2 (𝑦 ∈ ℕ → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) → ∀𝑎 ∈ ℕ0 ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
618, 14, 20, 26, 59, 60nnind 12282 1 (𝐿 ∈ ℕ → ∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝐿𝑎 = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1537  wcel 2106  wral 3059  {csn 4631  {cpr 4633  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  +∞cpnf 11290  cn 12264  2c2 12319  0cn0 12524  cz 12611  [,)cico 13386  ..^cfzo 13691  cexp 14099  Σcsu 15719  #bcblen 48419  digitcdig 48445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-pi 16105  df-dvds 16288  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917  df-log 26613  df-cxp 26614  df-logb 26823  df-blen 48420  df-dig 48446
This theorem is referenced by:  nn0sumshdig  48473
  Copyright terms: Public domain W3C validator