Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0sumshdiglem2 Structured version   Visualization version   GIF version

Theorem nn0sumshdiglem2 43435
Description: Lemma 2 for nn0sumshdig 43436. (Contributed by AV, 7-Jun-2020.)
Assertion
Ref Expression
nn0sumshdiglem2 (𝐿 ∈ ℕ → ∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝐿𝑎 = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘))))
Distinct variable group:   𝑘,𝑎,𝐿

Proof of Theorem nn0sumshdiglem2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2789 . . . 4 (𝑥 = 1 → ((#b𝑎) = 𝑥 ↔ (#b𝑎) = 1))
2 oveq2 6930 . . . . . . 7 (𝑥 = 1 → (0..^𝑥) = (0..^1))
3 fzo01 12869 . . . . . . 7 (0..^1) = {0}
42, 3syl6eq 2830 . . . . . 6 (𝑥 = 1 → (0..^𝑥) = {0})
54sumeq1d 14839 . . . . 5 (𝑥 = 1 → Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)))
65eqeq2d 2788 . . . 4 (𝑥 = 1 → (𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘))))
71, 6imbi12d 336 . . 3 (𝑥 = 1 → (((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ((#b𝑎) = 1 → 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
87ralbidv 3168 . 2 (𝑥 = 1 → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ∀𝑎 ∈ ℕ0 ((#b𝑎) = 1 → 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
9 eqeq2 2789 . . . 4 (𝑥 = 𝑦 → ((#b𝑎) = 𝑥 ↔ (#b𝑎) = 𝑦))
10 oveq2 6930 . . . . . 6 (𝑥 = 𝑦 → (0..^𝑥) = (0..^𝑦))
1110sumeq1d 14839 . . . . 5 (𝑥 = 𝑦 → Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)))
1211eqeq2d 2788 . . . 4 (𝑥 = 𝑦 → (𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))))
139, 12imbi12d 336 . . 3 (𝑥 = 𝑦 → (((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
1413ralbidv 3168 . 2 (𝑥 = 𝑦 → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
15 eqeq2 2789 . . . 4 (𝑥 = (𝑦 + 1) → ((#b𝑎) = 𝑥 ↔ (#b𝑎) = (𝑦 + 1)))
16 oveq2 6930 . . . . . 6 (𝑥 = (𝑦 + 1) → (0..^𝑥) = (0..^(𝑦 + 1)))
1716sumeq1d 14839 . . . . 5 (𝑥 = (𝑦 + 1) → Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))
1817eqeq2d 2788 . . . 4 (𝑥 = (𝑦 + 1) → (𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘))))
1915, 18imbi12d 336 . . 3 (𝑥 = (𝑦 + 1) → (((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
2019ralbidv 3168 . 2 (𝑥 = (𝑦 + 1) → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ∀𝑎 ∈ ℕ0 ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
21 eqeq2 2789 . . . 4 (𝑥 = 𝐿 → ((#b𝑎) = 𝑥 ↔ (#b𝑎) = 𝐿))
22 oveq2 6930 . . . . . 6 (𝑥 = 𝐿 → (0..^𝑥) = (0..^𝐿))
2322sumeq1d 14839 . . . . 5 (𝑥 = 𝐿 → Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘)))
2423eqeq2d 2788 . . . 4 (𝑥 = 𝐿 → (𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘)) ↔ 𝑎 = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘))))
2521, 24imbi12d 336 . . 3 (𝑥 = 𝐿 → (((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ((#b𝑎) = 𝐿𝑎 = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
2625ralbidv 3168 . 2 (𝑥 = 𝐿 → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑥𝑎 = Σ𝑘 ∈ (0..^𝑥)((𝑘(digit‘2)𝑎) · (2↑𝑘))) ↔ ∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝐿𝑎 = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
27 0cnd 10369 . . . . . . . 8 (𝑎 ∈ ℕ0 → 0 ∈ ℂ)
28 2nn 11448 . . . . . . . . . . . 12 2 ∈ ℕ
2928a1i 11 . . . . . . . . . . 11 (𝑎 ∈ ℕ0 → 2 ∈ ℕ)
30 0zd 11740 . . . . . . . . . . 11 (𝑎 ∈ ℕ0 → 0 ∈ ℤ)
31 nn0rp0 12593 . . . . . . . . . . 11 (𝑎 ∈ ℕ0𝑎 ∈ (0[,)+∞))
32 digvalnn0 43412 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 0 ∈ ℤ ∧ 𝑎 ∈ (0[,)+∞)) → (0(digit‘2)𝑎) ∈ ℕ0)
3329, 30, 31, 32syl3anc 1439 . . . . . . . . . 10 (𝑎 ∈ ℕ0 → (0(digit‘2)𝑎) ∈ ℕ0)
3433nn0cnd 11704 . . . . . . . . 9 (𝑎 ∈ ℕ0 → (0(digit‘2)𝑎) ∈ ℂ)
35 1cnd 10371 . . . . . . . . 9 (𝑎 ∈ ℕ0 → 1 ∈ ℂ)
3634, 35mulcld 10397 . . . . . . . 8 (𝑎 ∈ ℕ0 → ((0(digit‘2)𝑎) · 1) ∈ ℂ)
3727, 36jca 507 . . . . . . 7 (𝑎 ∈ ℕ0 → (0 ∈ ℂ ∧ ((0(digit‘2)𝑎) · 1) ∈ ℂ))
3837adantr 474 . . . . . 6 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → (0 ∈ ℂ ∧ ((0(digit‘2)𝑎) · 1) ∈ ℂ))
39 oveq1 6929 . . . . . . . 8 (𝑘 = 0 → (𝑘(digit‘2)𝑎) = (0(digit‘2)𝑎))
40 oveq2 6930 . . . . . . . . 9 (𝑘 = 0 → (2↑𝑘) = (2↑0))
41 2cn 11450 . . . . . . . . . 10 2 ∈ ℂ
42 exp0 13182 . . . . . . . . . 10 (2 ∈ ℂ → (2↑0) = 1)
4341, 42ax-mp 5 . . . . . . . . 9 (2↑0) = 1
4440, 43syl6eq 2830 . . . . . . . 8 (𝑘 = 0 → (2↑𝑘) = 1)
4539, 44oveq12d 6940 . . . . . . 7 (𝑘 = 0 → ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((0(digit‘2)𝑎) · 1))
4645sumsn 14882 . . . . . 6 ((0 ∈ ℂ ∧ ((0(digit‘2)𝑎) · 1) ∈ ℂ) → Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((0(digit‘2)𝑎) · 1))
4738, 46syl 17 . . . . 5 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)) = ((0(digit‘2)𝑎) · 1))
4834adantr 474 . . . . . 6 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → (0(digit‘2)𝑎) ∈ ℂ)
4948mulid1d 10394 . . . . 5 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → ((0(digit‘2)𝑎) · 1) = (0(digit‘2)𝑎))
50 blen1b 43401 . . . . . . . 8 (𝑎 ∈ ℕ0 → ((#b𝑎) = 1 ↔ (𝑎 = 0 ∨ 𝑎 = 1)))
5150biimpa 470 . . . . . . 7 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → (𝑎 = 0 ∨ 𝑎 = 1))
52 vex 3401 . . . . . . . 8 𝑎 ∈ V
5352elpr 4421 . . . . . . 7 (𝑎 ∈ {0, 1} ↔ (𝑎 = 0 ∨ 𝑎 = 1))
5451, 53sylibr 226 . . . . . 6 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → 𝑎 ∈ {0, 1})
55 0dig2pr01 43423 . . . . . 6 (𝑎 ∈ {0, 1} → (0(digit‘2)𝑎) = 𝑎)
5654, 55syl 17 . . . . 5 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → (0(digit‘2)𝑎) = 𝑎)
5747, 49, 563eqtrrd 2819 . . . 4 ((𝑎 ∈ ℕ0 ∧ (#b𝑎) = 1) → 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)))
5857ex 403 . . 3 (𝑎 ∈ ℕ0 → ((#b𝑎) = 1 → 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘))))
5958rgen 3104 . 2 𝑎 ∈ ℕ0 ((#b𝑎) = 1 → 𝑎 = Σ𝑘 ∈ {0} ((𝑘(digit‘2)𝑎) · (2↑𝑘)))
60 nn0sumshdiglem1 43434 . 2 (𝑦 ∈ ℕ → (∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝑦𝑎 = Σ𝑘 ∈ (0..^𝑦)((𝑘(digit‘2)𝑎) · (2↑𝑘))) → ∀𝑎 ∈ ℕ0 ((#b𝑎) = (𝑦 + 1) → 𝑎 = Σ𝑘 ∈ (0..^(𝑦 + 1))((𝑘(digit‘2)𝑎) · (2↑𝑘)))))
618, 14, 20, 26, 59, 60nnind 11394 1 (𝐿 ∈ ℕ → ∀𝑎 ∈ ℕ0 ((#b𝑎) = 𝐿𝑎 = Σ𝑘 ∈ (0..^𝐿)((𝑘(digit‘2)𝑎) · (2↑𝑘))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wo 836   = wceq 1601  wcel 2107  wral 3090  {csn 4398  {cpr 4400  cfv 6135  (class class class)co 6922  cc 10270  0cc0 10272  1c1 10273   + caddc 10275   · cmul 10277  +∞cpnf 10408  cn 11374  2c2 11430  0cn0 11642  cz 11728  [,)cico 12489  ..^cfzo 12784  cexp 13178  Σcsu 14824  #bcblen 43382  digitcdig 43408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ioc 12492  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-fl 12912  df-mod 12988  df-seq 13120  df-exp 13179  df-fac 13379  df-bc 13408  df-hash 13436  df-shft 14214  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-limsup 14610  df-clim 14627  df-rlim 14628  df-sum 14825  df-ef 15200  df-sin 15202  df-cos 15203  df-pi 15205  df-dvds 15388  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-mulg 17928  df-cntz 18133  df-cmn 18581  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-fbas 20139  df-fg 20140  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cld 21231  df-ntr 21232  df-cls 21233  df-nei 21310  df-lp 21348  df-perf 21349  df-cn 21439  df-cnp 21440  df-haus 21527  df-tx 21774  df-hmeo 21967  df-fil 22058  df-fm 22150  df-flim 22151  df-flf 22152  df-xms 22533  df-ms 22534  df-tms 22535  df-cncf 23089  df-limc 24067  df-dv 24068  df-log 24740  df-cxp 24741  df-logb 24943  df-blen 43383  df-dig 43409
This theorem is referenced by:  nn0sumshdig  43436
  Copyright terms: Public domain W3C validator