Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmat22lem Structured version   Visualization version   GIF version

Theorem lmat22lem 33777
Description: Lemma for lmat22e11 33778 and co. (Contributed by Thierry Arnoux, 28-Aug-2020.)
Hypotheses
Ref Expression
lmat22.m 𝑀 = (litMat‘⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩)
lmat22.a (𝜑𝐴𝑉)
lmat22.b (𝜑𝐵𝑉)
lmat22.c (𝜑𝐶𝑉)
lmat22.d (𝜑𝐷𝑉)
Assertion
Ref Expression
lmat22lem ((𝜑𝑖 ∈ (0..^2)) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = 2)
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝐶,𝑖   𝐷,𝑖   𝑖,𝑀   𝜑,𝑖
Allowed substitution hint:   𝑉(𝑖)

Proof of Theorem lmat22lem
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((𝜑𝑖 = 0) → 𝑖 = 0)
21fveq2d 6910 . . . . . 6 ((𝜑𝑖 = 0) → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖) = (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘0))
3 lmat22.a . . . . . . . . 9 (𝜑𝐴𝑉)
4 lmat22.b . . . . . . . . 9 (𝜑𝐵𝑉)
53, 4s2cld 14906 . . . . . . . 8 (𝜑 → ⟨“𝐴𝐵”⟩ ∈ Word 𝑉)
6 s2fv0 14922 . . . . . . . 8 (⟨“𝐴𝐵”⟩ ∈ Word 𝑉 → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘0) = ⟨“𝐴𝐵”⟩)
75, 6syl 17 . . . . . . 7 (𝜑 → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘0) = ⟨“𝐴𝐵”⟩)
87adantr 480 . . . . . 6 ((𝜑𝑖 = 0) → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘0) = ⟨“𝐴𝐵”⟩)
92, 8eqtrd 2774 . . . . 5 ((𝜑𝑖 = 0) → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖) = ⟨“𝐴𝐵”⟩)
109fveq2d 6910 . . . 4 ((𝜑𝑖 = 0) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = (♯‘⟨“𝐴𝐵”⟩))
11 s2len 14924 . . . 4 (♯‘⟨“𝐴𝐵”⟩) = 2
1210, 11eqtrdi 2790 . . 3 ((𝜑𝑖 = 0) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = 2)
1312adantlr 715 . 2 (((𝜑𝑖 ∈ (0..^2)) ∧ 𝑖 = 0) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = 2)
14 simpr 484 . . . . . . 7 ((𝜑𝑖 = 1) → 𝑖 = 1)
1514fveq2d 6910 . . . . . 6 ((𝜑𝑖 = 1) → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖) = (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘1))
16 lmat22.c . . . . . . . . 9 (𝜑𝐶𝑉)
17 lmat22.d . . . . . . . . 9 (𝜑𝐷𝑉)
1816, 17s2cld 14906 . . . . . . . 8 (𝜑 → ⟨“𝐶𝐷”⟩ ∈ Word 𝑉)
19 s2fv1 14923 . . . . . . . 8 (⟨“𝐶𝐷”⟩ ∈ Word 𝑉 → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘1) = ⟨“𝐶𝐷”⟩)
2018, 19syl 17 . . . . . . 7 (𝜑 → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘1) = ⟨“𝐶𝐷”⟩)
2120adantr 480 . . . . . 6 ((𝜑𝑖 = 1) → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘1) = ⟨“𝐶𝐷”⟩)
2215, 21eqtrd 2774 . . . . 5 ((𝜑𝑖 = 1) → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖) = ⟨“𝐶𝐷”⟩)
2322fveq2d 6910 . . . 4 ((𝜑𝑖 = 1) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = (♯‘⟨“𝐶𝐷”⟩))
24 s2len 14924 . . . 4 (♯‘⟨“𝐶𝐷”⟩) = 2
2523, 24eqtrdi 2790 . . 3 ((𝜑𝑖 = 1) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = 2)
2625adantlr 715 . 2 (((𝜑𝑖 ∈ (0..^2)) ∧ 𝑖 = 1) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = 2)
27 fzo0to2pr 13785 . . . . . 6 (0..^2) = {0, 1}
2827eleq2i 2830 . . . . 5 (𝑖 ∈ (0..^2) ↔ 𝑖 ∈ {0, 1})
29 vex 3481 . . . . . 6 𝑖 ∈ V
3029elpr 4654 . . . . 5 (𝑖 ∈ {0, 1} ↔ (𝑖 = 0 ∨ 𝑖 = 1))
3128, 30bitri 275 . . . 4 (𝑖 ∈ (0..^2) ↔ (𝑖 = 0 ∨ 𝑖 = 1))
3231biimpi 216 . . 3 (𝑖 ∈ (0..^2) → (𝑖 = 0 ∨ 𝑖 = 1))
3332adantl 481 . 2 ((𝜑𝑖 ∈ (0..^2)) → (𝑖 = 0 ∨ 𝑖 = 1))
3413, 26, 33mpjaodan 960 1 ((𝜑𝑖 ∈ (0..^2)) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1536  wcel 2105  {cpr 4632  cfv 6562  (class class class)co 7430  0cc0 11152  1c1 11153  2c2 12318  ..^cfzo 13690  chash 14365  Word cword 14548  ⟨“cs2 14876  litMatclmat 33771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-fzo 13691  df-hash 14366  df-word 14549  df-concat 14605  df-s1 14630  df-s2 14883
This theorem is referenced by:  lmat22e11  33778  lmat22e12  33779  lmat22e21  33780  lmat22e22  33781  lmat22det  33782
  Copyright terms: Public domain W3C validator