Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmat22lem Structured version   Visualization version   GIF version

Theorem lmat22lem 33816
Description: Lemma for lmat22e11 33817 and co. (Contributed by Thierry Arnoux, 28-Aug-2020.)
Hypotheses
Ref Expression
lmat22.m 𝑀 = (litMat‘⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩)
lmat22.a (𝜑𝐴𝑉)
lmat22.b (𝜑𝐵𝑉)
lmat22.c (𝜑𝐶𝑉)
lmat22.d (𝜑𝐷𝑉)
Assertion
Ref Expression
lmat22lem ((𝜑𝑖 ∈ (0..^2)) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = 2)
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝐶,𝑖   𝐷,𝑖   𝑖,𝑀   𝜑,𝑖
Allowed substitution hint:   𝑉(𝑖)

Proof of Theorem lmat22lem
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((𝜑𝑖 = 0) → 𝑖 = 0)
21fveq2d 6910 . . . . . 6 ((𝜑𝑖 = 0) → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖) = (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘0))
3 lmat22.a . . . . . . . . 9 (𝜑𝐴𝑉)
4 lmat22.b . . . . . . . . 9 (𝜑𝐵𝑉)
53, 4s2cld 14910 . . . . . . . 8 (𝜑 → ⟨“𝐴𝐵”⟩ ∈ Word 𝑉)
6 s2fv0 14926 . . . . . . . 8 (⟨“𝐴𝐵”⟩ ∈ Word 𝑉 → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘0) = ⟨“𝐴𝐵”⟩)
75, 6syl 17 . . . . . . 7 (𝜑 → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘0) = ⟨“𝐴𝐵”⟩)
87adantr 480 . . . . . 6 ((𝜑𝑖 = 0) → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘0) = ⟨“𝐴𝐵”⟩)
92, 8eqtrd 2777 . . . . 5 ((𝜑𝑖 = 0) → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖) = ⟨“𝐴𝐵”⟩)
109fveq2d 6910 . . . 4 ((𝜑𝑖 = 0) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = (♯‘⟨“𝐴𝐵”⟩))
11 s2len 14928 . . . 4 (♯‘⟨“𝐴𝐵”⟩) = 2
1210, 11eqtrdi 2793 . . 3 ((𝜑𝑖 = 0) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = 2)
1312adantlr 715 . 2 (((𝜑𝑖 ∈ (0..^2)) ∧ 𝑖 = 0) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = 2)
14 simpr 484 . . . . . . 7 ((𝜑𝑖 = 1) → 𝑖 = 1)
1514fveq2d 6910 . . . . . 6 ((𝜑𝑖 = 1) → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖) = (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘1))
16 lmat22.c . . . . . . . . 9 (𝜑𝐶𝑉)
17 lmat22.d . . . . . . . . 9 (𝜑𝐷𝑉)
1816, 17s2cld 14910 . . . . . . . 8 (𝜑 → ⟨“𝐶𝐷”⟩ ∈ Word 𝑉)
19 s2fv1 14927 . . . . . . . 8 (⟨“𝐶𝐷”⟩ ∈ Word 𝑉 → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘1) = ⟨“𝐶𝐷”⟩)
2018, 19syl 17 . . . . . . 7 (𝜑 → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘1) = ⟨“𝐶𝐷”⟩)
2120adantr 480 . . . . . 6 ((𝜑𝑖 = 1) → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘1) = ⟨“𝐶𝐷”⟩)
2215, 21eqtrd 2777 . . . . 5 ((𝜑𝑖 = 1) → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖) = ⟨“𝐶𝐷”⟩)
2322fveq2d 6910 . . . 4 ((𝜑𝑖 = 1) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = (♯‘⟨“𝐶𝐷”⟩))
24 s2len 14928 . . . 4 (♯‘⟨“𝐶𝐷”⟩) = 2
2523, 24eqtrdi 2793 . . 3 ((𝜑𝑖 = 1) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = 2)
2625adantlr 715 . 2 (((𝜑𝑖 ∈ (0..^2)) ∧ 𝑖 = 1) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = 2)
27 fzo0to2pr 13789 . . . . . 6 (0..^2) = {0, 1}
2827eleq2i 2833 . . . . 5 (𝑖 ∈ (0..^2) ↔ 𝑖 ∈ {0, 1})
29 vex 3484 . . . . . 6 𝑖 ∈ V
3029elpr 4650 . . . . 5 (𝑖 ∈ {0, 1} ↔ (𝑖 = 0 ∨ 𝑖 = 1))
3128, 30bitri 275 . . . 4 (𝑖 ∈ (0..^2) ↔ (𝑖 = 0 ∨ 𝑖 = 1))
3231biimpi 216 . . 3 (𝑖 ∈ (0..^2) → (𝑖 = 0 ∨ 𝑖 = 1))
3332adantl 481 . 2 ((𝜑𝑖 ∈ (0..^2)) → (𝑖 = 0 ∨ 𝑖 = 1))
3413, 26, 33mpjaodan 961 1 ((𝜑𝑖 ∈ (0..^2)) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848   = wceq 1540  wcel 2108  {cpr 4628  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156  2c2 12321  ..^cfzo 13694  chash 14369  Word cword 14552  ⟨“cs2 14880  litMatclmat 33810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-concat 14609  df-s1 14634  df-s2 14887
This theorem is referenced by:  lmat22e11  33817  lmat22e12  33818  lmat22e21  33819  lmat22e22  33820  lmat22det  33821
  Copyright terms: Public domain W3C validator