Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmat22lem | Structured version Visualization version GIF version |
Description: Lemma for lmat22e11 31670 and co. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
Ref | Expression |
---|---|
lmat22.m | ⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) |
lmat22.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
lmat22.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
lmat22.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
lmat22.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
Ref | Expression |
---|---|
lmat22lem | ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^2)) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 = 0) → 𝑖 = 0) | |
2 | 1 | fveq2d 6760 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 = 0) → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖) = (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘0)) |
3 | lmat22.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | lmat22.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
5 | 3, 4 | s2cld 14512 | . . . . . . . 8 ⊢ (𝜑 → 〈“𝐴𝐵”〉 ∈ Word 𝑉) |
6 | s2fv0 14528 | . . . . . . . 8 ⊢ (〈“𝐴𝐵”〉 ∈ Word 𝑉 → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘0) = 〈“𝐴𝐵”〉) | |
7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘0) = 〈“𝐴𝐵”〉) |
8 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 = 0) → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘0) = 〈“𝐴𝐵”〉) |
9 | 2, 8 | eqtrd 2778 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 = 0) → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖) = 〈“𝐴𝐵”〉) |
10 | 9 | fveq2d 6760 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 = 0) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = (♯‘〈“𝐴𝐵”〉)) |
11 | s2len 14530 | . . . 4 ⊢ (♯‘〈“𝐴𝐵”〉) = 2 | |
12 | 10, 11 | eqtrdi 2795 | . . 3 ⊢ ((𝜑 ∧ 𝑖 = 0) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) |
13 | 12 | adantlr 711 | . 2 ⊢ (((𝜑 ∧ 𝑖 ∈ (0..^2)) ∧ 𝑖 = 0) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) |
14 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 = 1) → 𝑖 = 1) | |
15 | 14 | fveq2d 6760 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 = 1) → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖) = (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘1)) |
16 | lmat22.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
17 | lmat22.d | . . . . . . . . 9 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
18 | 16, 17 | s2cld 14512 | . . . . . . . 8 ⊢ (𝜑 → 〈“𝐶𝐷”〉 ∈ Word 𝑉) |
19 | s2fv1 14529 | . . . . . . . 8 ⊢ (〈“𝐶𝐷”〉 ∈ Word 𝑉 → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘1) = 〈“𝐶𝐷”〉) | |
20 | 18, 19 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘1) = 〈“𝐶𝐷”〉) |
21 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 = 1) → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘1) = 〈“𝐶𝐷”〉) |
22 | 15, 21 | eqtrd 2778 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 = 1) → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖) = 〈“𝐶𝐷”〉) |
23 | 22 | fveq2d 6760 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 = 1) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = (♯‘〈“𝐶𝐷”〉)) |
24 | s2len 14530 | . . . 4 ⊢ (♯‘〈“𝐶𝐷”〉) = 2 | |
25 | 23, 24 | eqtrdi 2795 | . . 3 ⊢ ((𝜑 ∧ 𝑖 = 1) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) |
26 | 25 | adantlr 711 | . 2 ⊢ (((𝜑 ∧ 𝑖 ∈ (0..^2)) ∧ 𝑖 = 1) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) |
27 | fzo0to2pr 13400 | . . . . . 6 ⊢ (0..^2) = {0, 1} | |
28 | 27 | eleq2i 2830 | . . . . 5 ⊢ (𝑖 ∈ (0..^2) ↔ 𝑖 ∈ {0, 1}) |
29 | vex 3426 | . . . . . 6 ⊢ 𝑖 ∈ V | |
30 | 29 | elpr 4581 | . . . . 5 ⊢ (𝑖 ∈ {0, 1} ↔ (𝑖 = 0 ∨ 𝑖 = 1)) |
31 | 28, 30 | bitri 274 | . . . 4 ⊢ (𝑖 ∈ (0..^2) ↔ (𝑖 = 0 ∨ 𝑖 = 1)) |
32 | 31 | biimpi 215 | . . 3 ⊢ (𝑖 ∈ (0..^2) → (𝑖 = 0 ∨ 𝑖 = 1)) |
33 | 32 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^2)) → (𝑖 = 0 ∨ 𝑖 = 1)) |
34 | 13, 26, 33 | mpjaodan 955 | 1 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^2)) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 {cpr 4560 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 2c2 11958 ..^cfzo 13311 ♯chash 13972 Word cword 14145 〈“cs2 14482 litMatclmat 31663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-s2 14489 |
This theorem is referenced by: lmat22e11 31670 lmat22e12 31671 lmat22e21 31672 lmat22e22 31673 lmat22det 31674 |
Copyright terms: Public domain | W3C validator |