![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmat22lem | Structured version Visualization version GIF version |
Description: Lemma for lmat22e11 32399 and co. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
Ref | Expression |
---|---|
lmat22.m | ⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) |
lmat22.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
lmat22.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
lmat22.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
lmat22.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
Ref | Expression |
---|---|
lmat22lem | ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^2)) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 = 0) → 𝑖 = 0) | |
2 | 1 | fveq2d 6846 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 = 0) → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖) = (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘0)) |
3 | lmat22.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | lmat22.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
5 | 3, 4 | s2cld 14760 | . . . . . . . 8 ⊢ (𝜑 → 〈“𝐴𝐵”〉 ∈ Word 𝑉) |
6 | s2fv0 14776 | . . . . . . . 8 ⊢ (〈“𝐴𝐵”〉 ∈ Word 𝑉 → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘0) = 〈“𝐴𝐵”〉) | |
7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘0) = 〈“𝐴𝐵”〉) |
8 | 7 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 = 0) → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘0) = 〈“𝐴𝐵”〉) |
9 | 2, 8 | eqtrd 2776 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 = 0) → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖) = 〈“𝐴𝐵”〉) |
10 | 9 | fveq2d 6846 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 = 0) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = (♯‘〈“𝐴𝐵”〉)) |
11 | s2len 14778 | . . . 4 ⊢ (♯‘〈“𝐴𝐵”〉) = 2 | |
12 | 10, 11 | eqtrdi 2792 | . . 3 ⊢ ((𝜑 ∧ 𝑖 = 0) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) |
13 | 12 | adantlr 713 | . 2 ⊢ (((𝜑 ∧ 𝑖 ∈ (0..^2)) ∧ 𝑖 = 0) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) |
14 | simpr 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 = 1) → 𝑖 = 1) | |
15 | 14 | fveq2d 6846 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 = 1) → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖) = (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘1)) |
16 | lmat22.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
17 | lmat22.d | . . . . . . . . 9 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
18 | 16, 17 | s2cld 14760 | . . . . . . . 8 ⊢ (𝜑 → 〈“𝐶𝐷”〉 ∈ Word 𝑉) |
19 | s2fv1 14777 | . . . . . . . 8 ⊢ (〈“𝐶𝐷”〉 ∈ Word 𝑉 → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘1) = 〈“𝐶𝐷”〉) | |
20 | 18, 19 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘1) = 〈“𝐶𝐷”〉) |
21 | 20 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 = 1) → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘1) = 〈“𝐶𝐷”〉) |
22 | 15, 21 | eqtrd 2776 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 = 1) → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖) = 〈“𝐶𝐷”〉) |
23 | 22 | fveq2d 6846 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 = 1) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = (♯‘〈“𝐶𝐷”〉)) |
24 | s2len 14778 | . . . 4 ⊢ (♯‘〈“𝐶𝐷”〉) = 2 | |
25 | 23, 24 | eqtrdi 2792 | . . 3 ⊢ ((𝜑 ∧ 𝑖 = 1) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) |
26 | 25 | adantlr 713 | . 2 ⊢ (((𝜑 ∧ 𝑖 ∈ (0..^2)) ∧ 𝑖 = 1) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) |
27 | fzo0to2pr 13657 | . . . . . 6 ⊢ (0..^2) = {0, 1} | |
28 | 27 | eleq2i 2829 | . . . . 5 ⊢ (𝑖 ∈ (0..^2) ↔ 𝑖 ∈ {0, 1}) |
29 | vex 3449 | . . . . . 6 ⊢ 𝑖 ∈ V | |
30 | 29 | elpr 4609 | . . . . 5 ⊢ (𝑖 ∈ {0, 1} ↔ (𝑖 = 0 ∨ 𝑖 = 1)) |
31 | 28, 30 | bitri 274 | . . . 4 ⊢ (𝑖 ∈ (0..^2) ↔ (𝑖 = 0 ∨ 𝑖 = 1)) |
32 | 31 | biimpi 215 | . . 3 ⊢ (𝑖 ∈ (0..^2) → (𝑖 = 0 ∨ 𝑖 = 1)) |
33 | 32 | adantl 482 | . 2 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^2)) → (𝑖 = 0 ∨ 𝑖 = 1)) |
34 | 13, 26, 33 | mpjaodan 957 | 1 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^2)) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 {cpr 4588 ‘cfv 6496 (class class class)co 7357 0cc0 11051 1c1 11052 2c2 12208 ..^cfzo 13567 ♯chash 14230 Word cword 14402 〈“cs2 14730 litMatclmat 32392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-n0 12414 df-z 12500 df-uz 12764 df-fz 13425 df-fzo 13568 df-hash 14231 df-word 14403 df-concat 14459 df-s1 14484 df-s2 14737 |
This theorem is referenced by: lmat22e11 32399 lmat22e12 32400 lmat22e21 32401 lmat22e22 32402 lmat22det 32403 |
Copyright terms: Public domain | W3C validator |