Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmat22lem Structured version   Visualization version   GIF version

Theorem lmat22lem 31669
Description: Lemma for lmat22e11 31670 and co. (Contributed by Thierry Arnoux, 28-Aug-2020.)
Hypotheses
Ref Expression
lmat22.m 𝑀 = (litMat‘⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩)
lmat22.a (𝜑𝐴𝑉)
lmat22.b (𝜑𝐵𝑉)
lmat22.c (𝜑𝐶𝑉)
lmat22.d (𝜑𝐷𝑉)
Assertion
Ref Expression
lmat22lem ((𝜑𝑖 ∈ (0..^2)) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = 2)
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝐶,𝑖   𝐷,𝑖   𝑖,𝑀   𝜑,𝑖
Allowed substitution hint:   𝑉(𝑖)

Proof of Theorem lmat22lem
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((𝜑𝑖 = 0) → 𝑖 = 0)
21fveq2d 6760 . . . . . 6 ((𝜑𝑖 = 0) → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖) = (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘0))
3 lmat22.a . . . . . . . . 9 (𝜑𝐴𝑉)
4 lmat22.b . . . . . . . . 9 (𝜑𝐵𝑉)
53, 4s2cld 14512 . . . . . . . 8 (𝜑 → ⟨“𝐴𝐵”⟩ ∈ Word 𝑉)
6 s2fv0 14528 . . . . . . . 8 (⟨“𝐴𝐵”⟩ ∈ Word 𝑉 → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘0) = ⟨“𝐴𝐵”⟩)
75, 6syl 17 . . . . . . 7 (𝜑 → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘0) = ⟨“𝐴𝐵”⟩)
87adantr 480 . . . . . 6 ((𝜑𝑖 = 0) → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘0) = ⟨“𝐴𝐵”⟩)
92, 8eqtrd 2778 . . . . 5 ((𝜑𝑖 = 0) → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖) = ⟨“𝐴𝐵”⟩)
109fveq2d 6760 . . . 4 ((𝜑𝑖 = 0) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = (♯‘⟨“𝐴𝐵”⟩))
11 s2len 14530 . . . 4 (♯‘⟨“𝐴𝐵”⟩) = 2
1210, 11eqtrdi 2795 . . 3 ((𝜑𝑖 = 0) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = 2)
1312adantlr 711 . 2 (((𝜑𝑖 ∈ (0..^2)) ∧ 𝑖 = 0) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = 2)
14 simpr 484 . . . . . . 7 ((𝜑𝑖 = 1) → 𝑖 = 1)
1514fveq2d 6760 . . . . . 6 ((𝜑𝑖 = 1) → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖) = (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘1))
16 lmat22.c . . . . . . . . 9 (𝜑𝐶𝑉)
17 lmat22.d . . . . . . . . 9 (𝜑𝐷𝑉)
1816, 17s2cld 14512 . . . . . . . 8 (𝜑 → ⟨“𝐶𝐷”⟩ ∈ Word 𝑉)
19 s2fv1 14529 . . . . . . . 8 (⟨“𝐶𝐷”⟩ ∈ Word 𝑉 → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘1) = ⟨“𝐶𝐷”⟩)
2018, 19syl 17 . . . . . . 7 (𝜑 → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘1) = ⟨“𝐶𝐷”⟩)
2120adantr 480 . . . . . 6 ((𝜑𝑖 = 1) → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘1) = ⟨“𝐶𝐷”⟩)
2215, 21eqtrd 2778 . . . . 5 ((𝜑𝑖 = 1) → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖) = ⟨“𝐶𝐷”⟩)
2322fveq2d 6760 . . . 4 ((𝜑𝑖 = 1) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = (♯‘⟨“𝐶𝐷”⟩))
24 s2len 14530 . . . 4 (♯‘⟨“𝐶𝐷”⟩) = 2
2523, 24eqtrdi 2795 . . 3 ((𝜑𝑖 = 1) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = 2)
2625adantlr 711 . 2 (((𝜑𝑖 ∈ (0..^2)) ∧ 𝑖 = 1) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = 2)
27 fzo0to2pr 13400 . . . . . 6 (0..^2) = {0, 1}
2827eleq2i 2830 . . . . 5 (𝑖 ∈ (0..^2) ↔ 𝑖 ∈ {0, 1})
29 vex 3426 . . . . . 6 𝑖 ∈ V
3029elpr 4581 . . . . 5 (𝑖 ∈ {0, 1} ↔ (𝑖 = 0 ∨ 𝑖 = 1))
3128, 30bitri 274 . . . 4 (𝑖 ∈ (0..^2) ↔ (𝑖 = 0 ∨ 𝑖 = 1))
3231biimpi 215 . . 3 (𝑖 ∈ (0..^2) → (𝑖 = 0 ∨ 𝑖 = 1))
3332adantl 481 . 2 ((𝜑𝑖 ∈ (0..^2)) → (𝑖 = 0 ∨ 𝑖 = 1))
3413, 26, 33mpjaodan 955 1 ((𝜑𝑖 ∈ (0..^2)) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  {cpr 4560  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803  2c2 11958  ..^cfzo 13311  chash 13972  Word cword 14145  ⟨“cs2 14482  litMatclmat 31663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-s2 14489
This theorem is referenced by:  lmat22e11  31670  lmat22e12  31671  lmat22e21  31672  lmat22e22  31673  lmat22det  31674
  Copyright terms: Public domain W3C validator