Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmat22lem Structured version   Visualization version   GIF version

Theorem lmat22lem 31767
Description: Lemma for lmat22e11 31768 and co. (Contributed by Thierry Arnoux, 28-Aug-2020.)
Hypotheses
Ref Expression
lmat22.m 𝑀 = (litMat‘⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩)
lmat22.a (𝜑𝐴𝑉)
lmat22.b (𝜑𝐵𝑉)
lmat22.c (𝜑𝐶𝑉)
lmat22.d (𝜑𝐷𝑉)
Assertion
Ref Expression
lmat22lem ((𝜑𝑖 ∈ (0..^2)) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = 2)
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝐶,𝑖   𝐷,𝑖   𝑖,𝑀   𝜑,𝑖
Allowed substitution hint:   𝑉(𝑖)

Proof of Theorem lmat22lem
StepHypRef Expression
1 simpr 485 . . . . . . 7 ((𝜑𝑖 = 0) → 𝑖 = 0)
21fveq2d 6778 . . . . . 6 ((𝜑𝑖 = 0) → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖) = (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘0))
3 lmat22.a . . . . . . . . 9 (𝜑𝐴𝑉)
4 lmat22.b . . . . . . . . 9 (𝜑𝐵𝑉)
53, 4s2cld 14584 . . . . . . . 8 (𝜑 → ⟨“𝐴𝐵”⟩ ∈ Word 𝑉)
6 s2fv0 14600 . . . . . . . 8 (⟨“𝐴𝐵”⟩ ∈ Word 𝑉 → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘0) = ⟨“𝐴𝐵”⟩)
75, 6syl 17 . . . . . . 7 (𝜑 → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘0) = ⟨“𝐴𝐵”⟩)
87adantr 481 . . . . . 6 ((𝜑𝑖 = 0) → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘0) = ⟨“𝐴𝐵”⟩)
92, 8eqtrd 2778 . . . . 5 ((𝜑𝑖 = 0) → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖) = ⟨“𝐴𝐵”⟩)
109fveq2d 6778 . . . 4 ((𝜑𝑖 = 0) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = (♯‘⟨“𝐴𝐵”⟩))
11 s2len 14602 . . . 4 (♯‘⟨“𝐴𝐵”⟩) = 2
1210, 11eqtrdi 2794 . . 3 ((𝜑𝑖 = 0) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = 2)
1312adantlr 712 . 2 (((𝜑𝑖 ∈ (0..^2)) ∧ 𝑖 = 0) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = 2)
14 simpr 485 . . . . . . 7 ((𝜑𝑖 = 1) → 𝑖 = 1)
1514fveq2d 6778 . . . . . 6 ((𝜑𝑖 = 1) → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖) = (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘1))
16 lmat22.c . . . . . . . . 9 (𝜑𝐶𝑉)
17 lmat22.d . . . . . . . . 9 (𝜑𝐷𝑉)
1816, 17s2cld 14584 . . . . . . . 8 (𝜑 → ⟨“𝐶𝐷”⟩ ∈ Word 𝑉)
19 s2fv1 14601 . . . . . . . 8 (⟨“𝐶𝐷”⟩ ∈ Word 𝑉 → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘1) = ⟨“𝐶𝐷”⟩)
2018, 19syl 17 . . . . . . 7 (𝜑 → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘1) = ⟨“𝐶𝐷”⟩)
2120adantr 481 . . . . . 6 ((𝜑𝑖 = 1) → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘1) = ⟨“𝐶𝐷”⟩)
2215, 21eqtrd 2778 . . . . 5 ((𝜑𝑖 = 1) → (⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖) = ⟨“𝐶𝐷”⟩)
2322fveq2d 6778 . . . 4 ((𝜑𝑖 = 1) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = (♯‘⟨“𝐶𝐷”⟩))
24 s2len 14602 . . . 4 (♯‘⟨“𝐶𝐷”⟩) = 2
2523, 24eqtrdi 2794 . . 3 ((𝜑𝑖 = 1) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = 2)
2625adantlr 712 . 2 (((𝜑𝑖 ∈ (0..^2)) ∧ 𝑖 = 1) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = 2)
27 fzo0to2pr 13472 . . . . . 6 (0..^2) = {0, 1}
2827eleq2i 2830 . . . . 5 (𝑖 ∈ (0..^2) ↔ 𝑖 ∈ {0, 1})
29 vex 3436 . . . . . 6 𝑖 ∈ V
3029elpr 4584 . . . . 5 (𝑖 ∈ {0, 1} ↔ (𝑖 = 0 ∨ 𝑖 = 1))
3128, 30bitri 274 . . . 4 (𝑖 ∈ (0..^2) ↔ (𝑖 = 0 ∨ 𝑖 = 1))
3231biimpi 215 . . 3 (𝑖 ∈ (0..^2) → (𝑖 = 0 ∨ 𝑖 = 1))
3332adantl 482 . 2 ((𝜑𝑖 ∈ (0..^2)) → (𝑖 = 0 ∨ 𝑖 = 1))
3413, 26, 33mpjaodan 956 1 ((𝜑𝑖 ∈ (0..^2)) → (♯‘(⟨“⟨“𝐴𝐵”⟩⟨“𝐶𝐷”⟩”⟩‘𝑖)) = 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  {cpr 4563  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872  2c2 12028  ..^cfzo 13382  chash 14044  Word cword 14217  ⟨“cs2 14554  litMatclmat 31761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-s2 14561
This theorem is referenced by:  lmat22e11  31768  lmat22e12  31769  lmat22e21  31770  lmat22e22  31771  lmat22det  31772
  Copyright terms: Public domain W3C validator