![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmat22lem | Structured version Visualization version GIF version |
Description: Lemma for lmat22e11 33764 and co. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
Ref | Expression |
---|---|
lmat22.m | ⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) |
lmat22.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
lmat22.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
lmat22.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
lmat22.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
Ref | Expression |
---|---|
lmat22lem | ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^2)) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 = 0) → 𝑖 = 0) | |
2 | 1 | fveq2d 6924 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 = 0) → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖) = (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘0)) |
3 | lmat22.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | lmat22.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
5 | 3, 4 | s2cld 14920 | . . . . . . . 8 ⊢ (𝜑 → 〈“𝐴𝐵”〉 ∈ Word 𝑉) |
6 | s2fv0 14936 | . . . . . . . 8 ⊢ (〈“𝐴𝐵”〉 ∈ Word 𝑉 → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘0) = 〈“𝐴𝐵”〉) | |
7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘0) = 〈“𝐴𝐵”〉) |
8 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 = 0) → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘0) = 〈“𝐴𝐵”〉) |
9 | 2, 8 | eqtrd 2780 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 = 0) → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖) = 〈“𝐴𝐵”〉) |
10 | 9 | fveq2d 6924 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 = 0) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = (♯‘〈“𝐴𝐵”〉)) |
11 | s2len 14938 | . . . 4 ⊢ (♯‘〈“𝐴𝐵”〉) = 2 | |
12 | 10, 11 | eqtrdi 2796 | . . 3 ⊢ ((𝜑 ∧ 𝑖 = 0) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) |
13 | 12 | adantlr 714 | . 2 ⊢ (((𝜑 ∧ 𝑖 ∈ (0..^2)) ∧ 𝑖 = 0) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) |
14 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 = 1) → 𝑖 = 1) | |
15 | 14 | fveq2d 6924 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 = 1) → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖) = (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘1)) |
16 | lmat22.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
17 | lmat22.d | . . . . . . . . 9 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
18 | 16, 17 | s2cld 14920 | . . . . . . . 8 ⊢ (𝜑 → 〈“𝐶𝐷”〉 ∈ Word 𝑉) |
19 | s2fv1 14937 | . . . . . . . 8 ⊢ (〈“𝐶𝐷”〉 ∈ Word 𝑉 → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘1) = 〈“𝐶𝐷”〉) | |
20 | 18, 19 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘1) = 〈“𝐶𝐷”〉) |
21 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 = 1) → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘1) = 〈“𝐶𝐷”〉) |
22 | 15, 21 | eqtrd 2780 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 = 1) → (〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖) = 〈“𝐶𝐷”〉) |
23 | 22 | fveq2d 6924 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 = 1) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = (♯‘〈“𝐶𝐷”〉)) |
24 | s2len 14938 | . . . 4 ⊢ (♯‘〈“𝐶𝐷”〉) = 2 | |
25 | 23, 24 | eqtrdi 2796 | . . 3 ⊢ ((𝜑 ∧ 𝑖 = 1) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) |
26 | 25 | adantlr 714 | . 2 ⊢ (((𝜑 ∧ 𝑖 ∈ (0..^2)) ∧ 𝑖 = 1) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) |
27 | fzo0to2pr 13801 | . . . . . 6 ⊢ (0..^2) = {0, 1} | |
28 | 27 | eleq2i 2836 | . . . . 5 ⊢ (𝑖 ∈ (0..^2) ↔ 𝑖 ∈ {0, 1}) |
29 | vex 3492 | . . . . . 6 ⊢ 𝑖 ∈ V | |
30 | 29 | elpr 4672 | . . . . 5 ⊢ (𝑖 ∈ {0, 1} ↔ (𝑖 = 0 ∨ 𝑖 = 1)) |
31 | 28, 30 | bitri 275 | . . . 4 ⊢ (𝑖 ∈ (0..^2) ↔ (𝑖 = 0 ∨ 𝑖 = 1)) |
32 | 31 | biimpi 216 | . . 3 ⊢ (𝑖 ∈ (0..^2) → (𝑖 = 0 ∨ 𝑖 = 1)) |
33 | 32 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^2)) → (𝑖 = 0 ∨ 𝑖 = 1)) |
34 | 13, 26, 33 | mpjaodan 959 | 1 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^2)) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 {cpr 4650 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 2c2 12348 ..^cfzo 13711 ♯chash 14379 Word cword 14562 〈“cs2 14890 litMatclmat 33757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-hash 14380 df-word 14563 df-concat 14619 df-s1 14644 df-s2 14897 |
This theorem is referenced by: lmat22e11 33764 lmat22e12 33765 lmat22e21 33766 lmat22e22 33767 lmat22det 33768 |
Copyright terms: Public domain | W3C validator |