| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1lt3 | Structured version Visualization version GIF version | ||
| Description: 1 is less than 3. (Contributed by NM, 26-Sep-2010.) |
| Ref | Expression |
|---|---|
| 1lt3 | ⊢ 1 < 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2 12352 | . 2 ⊢ 1 < 2 | |
| 2 | 2lt3 12353 | . 2 ⊢ 2 < 3 | |
| 3 | 1re 11174 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2re 12260 | . . 3 ⊢ 2 ∈ ℝ | |
| 5 | 3re 12266 | . . 3 ⊢ 3 ∈ ℝ | |
| 6 | 3, 4, 5 | lttri 11300 | . 2 ⊢ ((1 < 2 ∧ 2 < 3) → 1 < 3) |
| 7 | 1, 2, 6 | mp2an 692 | 1 ⊢ 1 < 3 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5107 1c1 11069 < clt 11208 2c2 12241 3c3 12242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-2 12249 df-3 12250 |
| This theorem is referenced by: 1le3 12393 fztpval 13547 fvf1tp 13751 expnass 14173 tpf1ofv1 14462 tpfo 14465 s4fv1 14862 f1oun2prg 14883 sin01gt0 16158 rpnnen2lem3 16184 rpnnen2lem9 16190 3prm 16664 6nprm 17080 7prm 17081 9nprm 17083 13prm 17086 19prm 17088 prmlem2 17090 37prm 17091 43prm 17092 139prm 17094 163prm 17095 631prm 17097 basendxnmulrndx 17259 log2cnv 26854 cxploglim2 26889 2lgslem3 27315 dchrvmasumlem2 27409 pntibndlem1 27500 tgcgr4 28458 axlowdimlem16 28884 usgrexmpldifpr 29185 upgr3v3e3cycl 30109 upgr4cycl4dv4e 30114 konigsberglem2 30182 konigsberglem3 30183 konigsberglem5 30185 frgrogt3nreg 30326 ex-dif 30352 ex-pss 30357 ex-res 30370 evl1deg3 33547 2sqr3minply 33770 cos9thpiminplylem3 33774 cos9thpiminply 33778 aks4d1p1p3 42057 aks4d1p1p2 42058 aks4d1p1p4 42059 aks4d1p3 42066 aks5lem8 42189 acos1half 42346 rabren3dioph 42803 jm2.23 42985 stoweidlem34 46032 stoweidlem42 46040 smfmullem4 46792 fmtno4prmfac193 47574 3ndvds4 47596 127prm 47600 nnsum4primesodd 47797 nnsum4primesoddALTV 47798 usgrexmpl1lem 48012 usgrexmpl2lem 48017 usgrexmpl2nb1 48023 usgrexmpl2nb3 48025 usgrexmpl2trifr 48028 gpg5grlic 48084 sepfsepc 48916 |
| Copyright terms: Public domain | W3C validator |