| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1lt3 | Structured version Visualization version GIF version | ||
| Description: 1 is less than 3. (Contributed by NM, 26-Sep-2010.) |
| Ref | Expression |
|---|---|
| 1lt3 | ⊢ 1 < 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2 12328 | . 2 ⊢ 1 < 2 | |
| 2 | 2lt3 12329 | . 2 ⊢ 2 < 3 | |
| 3 | 1re 11150 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2re 12236 | . . 3 ⊢ 2 ∈ ℝ | |
| 5 | 3re 12242 | . . 3 ⊢ 3 ∈ ℝ | |
| 6 | 3, 4, 5 | lttri 11276 | . 2 ⊢ ((1 < 2 ∧ 2 < 3) → 1 < 3) |
| 7 | 1, 2, 6 | mp2an 692 | 1 ⊢ 1 < 3 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5102 1c1 11045 < clt 11184 2c2 12217 3c3 12218 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-2 12225 df-3 12226 |
| This theorem is referenced by: 1le3 12369 fztpval 13523 fvf1tp 13727 expnass 14149 tpf1ofv1 14438 tpfo 14441 s4fv1 14838 f1oun2prg 14859 sin01gt0 16134 rpnnen2lem3 16160 rpnnen2lem9 16166 3prm 16640 6nprm 17056 7prm 17057 9nprm 17059 13prm 17062 19prm 17064 prmlem2 17066 37prm 17067 43prm 17068 139prm 17070 163prm 17071 631prm 17073 basendxnmulrndx 17235 log2cnv 26830 cxploglim2 26865 2lgslem3 27291 dchrvmasumlem2 27385 pntibndlem1 27476 tgcgr4 28434 axlowdimlem16 28860 usgrexmpldifpr 29161 upgr3v3e3cycl 30082 upgr4cycl4dv4e 30087 konigsberglem2 30155 konigsberglem3 30156 konigsberglem5 30158 frgrogt3nreg 30299 ex-dif 30325 ex-pss 30330 ex-res 30343 evl1deg3 33520 2sqr3minply 33743 cos9thpiminplylem3 33747 cos9thpiminply 33751 aks4d1p1p3 42030 aks4d1p1p2 42031 aks4d1p1p4 42032 aks4d1p3 42039 aks5lem8 42162 acos1half 42319 rabren3dioph 42776 jm2.23 42958 stoweidlem34 46005 stoweidlem42 46013 smfmullem4 46765 fmtno4prmfac193 47547 3ndvds4 47569 127prm 47573 nnsum4primesodd 47770 nnsum4primesoddALTV 47771 usgrexmpl1lem 47985 usgrexmpl2lem 47990 usgrexmpl2nb1 47996 usgrexmpl2nb3 47998 usgrexmpl2trifr 48001 gpg5grlic 48057 sepfsepc 48889 |
| Copyright terms: Public domain | W3C validator |