| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1lt3 | Structured version Visualization version GIF version | ||
| Description: 1 is less than 3. (Contributed by NM, 26-Sep-2010.) |
| Ref | Expression |
|---|---|
| 1lt3 | ⊢ 1 < 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2 12302 | . 2 ⊢ 1 < 2 | |
| 2 | 2lt3 12303 | . 2 ⊢ 2 < 3 | |
| 3 | 1re 11123 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2re 12210 | . . 3 ⊢ 2 ∈ ℝ | |
| 5 | 3re 12216 | . . 3 ⊢ 3 ∈ ℝ | |
| 6 | 3, 4, 5 | lttri 11250 | . 2 ⊢ ((1 < 2 ∧ 2 < 3) → 1 < 3) |
| 7 | 1, 2, 6 | mp2an 692 | 1 ⊢ 1 < 3 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5095 1c1 11018 < clt 11157 2c2 12191 3c3 12192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-2 12199 df-3 12200 |
| This theorem is referenced by: 1le3 12343 fztpval 13493 fvf1tp 13700 expnass 14122 tpf1ofv1 14411 tpfo 14414 s4fv1 14810 f1oun2prg 14831 sin01gt0 16106 rpnnen2lem3 16132 rpnnen2lem9 16138 3prm 16612 6nprm 17028 7prm 17029 9nprm 17031 13prm 17034 19prm 17036 prmlem2 17038 37prm 17039 43prm 17040 139prm 17042 163prm 17043 631prm 17045 basendxnmulrndx 17207 log2cnv 26901 cxploglim2 26936 2lgslem3 27362 dchrvmasumlem2 27456 pntibndlem1 27547 tgcgr4 28529 axlowdimlem16 28956 usgrexmpldifpr 29257 upgr3v3e3cycl 30181 upgr4cycl4dv4e 30186 konigsberglem2 30254 konigsberglem3 30255 konigsberglem5 30257 frgrogt3nreg 30398 ex-dif 30424 ex-pss 30429 ex-res 30442 evl1deg3 33587 2sqr3minply 33865 cos9thpiminplylem3 33869 cos9thpiminply 33873 aks4d1p1p3 42235 aks4d1p1p2 42236 aks4d1p1p4 42237 aks4d1p3 42244 aks5lem8 42367 acos1half 42528 rabren3dioph 42972 jm2.23 43153 stoweidlem34 46194 stoweidlem42 46202 smfmullem4 46954 fmtno4prmfac193 47735 3ndvds4 47757 127prm 47761 nnsum4primesodd 47958 nnsum4primesoddALTV 47959 usgrexmpl1lem 48183 usgrexmpl2lem 48188 usgrexmpl2nb1 48194 usgrexmpl2nb3 48196 usgrexmpl2trifr 48199 gpg5grlim 48255 gpg5grlic 48256 sepfsepc 49089 |
| Copyright terms: Public domain | W3C validator |