Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1lt3 | Structured version Visualization version GIF version |
Description: 1 is less than 3. (Contributed by NM, 26-Sep-2010.) |
Ref | Expression |
---|---|
1lt3 | ⊢ 1 < 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2 12153 | . 2 ⊢ 1 < 2 | |
2 | 2lt3 12154 | . 2 ⊢ 2 < 3 | |
3 | 1re 10984 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2re 12056 | . . 3 ⊢ 2 ∈ ℝ | |
5 | 3re 12062 | . . 3 ⊢ 3 ∈ ℝ | |
6 | 3, 4, 5 | lttri 11110 | . 2 ⊢ ((1 < 2 ∧ 2 < 3) → 1 < 3) |
7 | 1, 2, 6 | mp2an 689 | 1 ⊢ 1 < 3 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5075 1c1 10881 < clt 11018 2c2 12037 3c3 12038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-2 12045 df-3 12046 |
This theorem is referenced by: 1le3 12194 fztpval 13327 expnass 13933 s4fv1 14618 f1oun2prg 14639 sin01gt0 15908 rpnnen2lem3 15934 rpnnen2lem9 15940 3prm 16408 6nprm 16820 7prm 16821 9nprm 16823 13prm 16826 19prm 16828 prmlem2 16830 37prm 16831 43prm 16832 139prm 16834 163prm 16835 631prm 16837 basendxnmulrndx 17014 basendxnmulrndxOLD 17015 opprbasOLD 19879 log2cnv 26103 cxploglim2 26137 2lgslem3 26561 dchrvmasumlem2 26655 pntibndlem1 26746 tgcgr4 26901 axlowdimlem16 27334 usgrexmpldifpr 27634 upgr3v3e3cycl 28553 upgr4cycl4dv4e 28558 konigsberglem2 28626 konigsberglem3 28627 konigsberglem5 28629 frgrogt3nreg 28770 ex-dif 28796 ex-pss 28801 ex-res 28814 aks4d1p1p3 40084 aks4d1p1p2 40085 aks4d1p1p4 40086 aks4d1p3 40093 acos1half 40177 rabren3dioph 40644 jm2.23 40825 mnringbasedOLD 41837 stoweidlem34 43582 stoweidlem42 43590 smfmullem4 44339 fmtno4prmfac193 45036 3ndvds4 45058 127prm 45062 nnsum4primesodd 45259 nnsum4primesoddALTV 45260 sepfsepc 46232 |
Copyright terms: Public domain | W3C validator |