Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1lt3 | Structured version Visualization version GIF version |
Description: 1 is less than 3. (Contributed by NM, 26-Sep-2010.) |
Ref | Expression |
---|---|
1lt3 | ⊢ 1 < 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2 12074 | . 2 ⊢ 1 < 2 | |
2 | 2lt3 12075 | . 2 ⊢ 2 < 3 | |
3 | 1re 10906 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2re 11977 | . . 3 ⊢ 2 ∈ ℝ | |
5 | 3re 11983 | . . 3 ⊢ 3 ∈ ℝ | |
6 | 3, 4, 5 | lttri 11031 | . 2 ⊢ ((1 < 2 ∧ 2 < 3) → 1 < 3) |
7 | 1, 2, 6 | mp2an 688 | 1 ⊢ 1 < 3 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5070 1c1 10803 < clt 10940 2c2 11958 3c3 11959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-2 11966 df-3 11967 |
This theorem is referenced by: 1le3 12115 fztpval 13247 expnass 13852 s4fv1 14537 f1oun2prg 14558 sin01gt0 15827 rpnnen2lem3 15853 rpnnen2lem9 15859 3prm 16327 6nprm 16739 7prm 16740 9nprm 16742 13prm 16745 19prm 16747 prmlem2 16749 37prm 16750 43prm 16751 139prm 16753 163prm 16754 631prm 16756 basendxnmulrndx 16931 basendxnmulrndxOLD 16932 opprbasOLD 19785 log2cnv 25999 cxploglim2 26033 2lgslem3 26457 dchrvmasumlem2 26551 pntibndlem1 26642 tgcgr4 26796 axlowdimlem16 27228 usgrexmpldifpr 27528 upgr3v3e3cycl 28445 upgr4cycl4dv4e 28450 konigsberglem2 28518 konigsberglem3 28519 konigsberglem5 28521 frgrogt3nreg 28662 ex-dif 28688 ex-pss 28693 ex-res 28706 aks4d1p1p3 40005 aks4d1p1p2 40006 aks4d1p1p4 40007 aks4d1p3 40014 acos1half 40098 rabren3dioph 40553 jm2.23 40734 mnringbasedOLD 41719 stoweidlem34 43465 stoweidlem42 43473 smfmullem4 44215 fmtno4prmfac193 44913 3ndvds4 44935 127prm 44939 nnsum4primesodd 45136 nnsum4primesoddALTV 45137 sepfsepc 46109 |
Copyright terms: Public domain | W3C validator |