![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1lt3 | Structured version Visualization version GIF version |
Description: 1 is less than 3. (Contributed by NM, 26-Sep-2010.) |
Ref | Expression |
---|---|
1lt3 | ⊢ 1 < 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2 12435 | . 2 ⊢ 1 < 2 | |
2 | 2lt3 12436 | . 2 ⊢ 2 < 3 | |
3 | 1re 11259 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2re 12338 | . . 3 ⊢ 2 ∈ ℝ | |
5 | 3re 12344 | . . 3 ⊢ 3 ∈ ℝ | |
6 | 3, 4, 5 | lttri 11385 | . 2 ⊢ ((1 < 2 ∧ 2 < 3) → 1 < 3) |
7 | 1, 2, 6 | mp2an 692 | 1 ⊢ 1 < 3 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5148 1c1 11154 < clt 11293 2c2 12319 3c3 12320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-2 12327 df-3 12328 |
This theorem is referenced by: 1le3 12476 fztpval 13623 fvf1tp 13826 expnass 14244 tpf1ofv1 14533 tpfo 14536 s4fv1 14932 f1oun2prg 14953 sin01gt0 16223 rpnnen2lem3 16249 rpnnen2lem9 16255 3prm 16728 6nprm 17144 7prm 17145 9nprm 17147 13prm 17150 19prm 17152 prmlem2 17154 37prm 17155 43prm 17156 139prm 17158 163prm 17159 631prm 17161 basendxnmulrndx 17341 basendxnmulrndxOLD 17342 opprbasOLD 20359 log2cnv 27002 cxploglim2 27037 2lgslem3 27463 dchrvmasumlem2 27557 pntibndlem1 27648 tgcgr4 28554 axlowdimlem16 28987 usgrexmpldifpr 29290 upgr3v3e3cycl 30209 upgr4cycl4dv4e 30214 konigsberglem2 30282 konigsberglem3 30283 konigsberglem5 30285 frgrogt3nreg 30426 ex-dif 30452 ex-pss 30457 ex-res 30470 evl1deg3 33583 2sqr3minply 33753 aks4d1p1p3 42051 aks4d1p1p2 42052 aks4d1p1p4 42053 aks4d1p3 42060 aks5lem8 42183 acos1half 42367 rabren3dioph 42803 jm2.23 42985 mnringbasedOLD 44208 stoweidlem34 45990 stoweidlem42 45998 smfmullem4 46750 fmtno4prmfac193 47498 3ndvds4 47520 127prm 47524 nnsum4primesodd 47721 nnsum4primesoddALTV 47722 usgrexmpl1lem 47916 usgrexmpl2lem 47921 usgrexmpl2nb1 47927 usgrexmpl2nb3 47929 usgrexmpl2trifr 47932 gpg5grlic 47975 sepfsepc 48724 |
Copyright terms: Public domain | W3C validator |