| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1lt3 | Structured version Visualization version GIF version | ||
| Description: 1 is less than 3. (Contributed by NM, 26-Sep-2010.) |
| Ref | Expression |
|---|---|
| 1lt3 | ⊢ 1 < 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2 12286 | . 2 ⊢ 1 < 2 | |
| 2 | 2lt3 12287 | . 2 ⊢ 2 < 3 | |
| 3 | 1re 11107 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2re 12194 | . . 3 ⊢ 2 ∈ ℝ | |
| 5 | 3re 12200 | . . 3 ⊢ 3 ∈ ℝ | |
| 6 | 3, 4, 5 | lttri 11234 | . 2 ⊢ ((1 < 2 ∧ 2 < 3) → 1 < 3) |
| 7 | 1, 2, 6 | mp2an 692 | 1 ⊢ 1 < 3 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5086 1c1 11002 < clt 11141 2c2 12175 3c3 12176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-2 12183 df-3 12184 |
| This theorem is referenced by: 1le3 12327 fztpval 13481 fvf1tp 13688 expnass 14110 tpf1ofv1 14399 tpfo 14402 s4fv1 14798 f1oun2prg 14819 sin01gt0 16094 rpnnen2lem3 16120 rpnnen2lem9 16126 3prm 16600 6nprm 17016 7prm 17017 9nprm 17019 13prm 17022 19prm 17024 prmlem2 17026 37prm 17027 43prm 17028 139prm 17030 163prm 17031 631prm 17033 basendxnmulrndx 17195 log2cnv 26876 cxploglim2 26911 2lgslem3 27337 dchrvmasumlem2 27431 pntibndlem1 27522 tgcgr4 28504 axlowdimlem16 28930 usgrexmpldifpr 29231 upgr3v3e3cycl 30152 upgr4cycl4dv4e 30157 konigsberglem2 30225 konigsberglem3 30226 konigsberglem5 30228 frgrogt3nreg 30369 ex-dif 30395 ex-pss 30400 ex-res 30413 evl1deg3 33533 2sqr3minply 33785 cos9thpiminplylem3 33789 cos9thpiminply 33793 aks4d1p1p3 42102 aks4d1p1p2 42103 aks4d1p1p4 42104 aks4d1p3 42111 aks5lem8 42234 acos1half 42391 rabren3dioph 42848 jm2.23 43029 stoweidlem34 46072 stoweidlem42 46080 smfmullem4 46832 fmtno4prmfac193 47604 3ndvds4 47626 127prm 47630 nnsum4primesodd 47827 nnsum4primesoddALTV 47828 usgrexmpl1lem 48052 usgrexmpl2lem 48057 usgrexmpl2nb1 48063 usgrexmpl2nb3 48065 usgrexmpl2trifr 48068 gpg5grlim 48124 gpg5grlic 48125 sepfsepc 48959 |
| Copyright terms: Public domain | W3C validator |