| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1lt3 | Structured version Visualization version GIF version | ||
| Description: 1 is less than 3. (Contributed by NM, 26-Sep-2010.) |
| Ref | Expression |
|---|---|
| 1lt3 | ⊢ 1 < 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2 12313 | . 2 ⊢ 1 < 2 | |
| 2 | 2lt3 12314 | . 2 ⊢ 2 < 3 | |
| 3 | 1re 11134 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2re 12221 | . . 3 ⊢ 2 ∈ ℝ | |
| 5 | 3re 12227 | . . 3 ⊢ 3 ∈ ℝ | |
| 6 | 3, 4, 5 | lttri 11261 | . 2 ⊢ ((1 < 2 ∧ 2 < 3) → 1 < 3) |
| 7 | 1, 2, 6 | mp2an 692 | 1 ⊢ 1 < 3 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5095 1c1 11029 < clt 11168 2c2 12202 3c3 12203 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-2 12210 df-3 12211 |
| This theorem is referenced by: 1le3 12354 fztpval 13508 fvf1tp 13712 expnass 14134 tpf1ofv1 14423 tpfo 14426 s4fv1 14822 f1oun2prg 14843 sin01gt0 16118 rpnnen2lem3 16144 rpnnen2lem9 16150 3prm 16624 6nprm 17040 7prm 17041 9nprm 17043 13prm 17046 19prm 17048 prmlem2 17050 37prm 17051 43prm 17052 139prm 17054 163prm 17055 631prm 17057 basendxnmulrndx 17219 log2cnv 26871 cxploglim2 26906 2lgslem3 27332 dchrvmasumlem2 27426 pntibndlem1 27517 tgcgr4 28495 axlowdimlem16 28921 usgrexmpldifpr 29222 upgr3v3e3cycl 30143 upgr4cycl4dv4e 30148 konigsberglem2 30216 konigsberglem3 30217 konigsberglem5 30219 frgrogt3nreg 30360 ex-dif 30386 ex-pss 30391 ex-res 30404 evl1deg3 33532 2sqr3minply 33766 cos9thpiminplylem3 33770 cos9thpiminply 33774 aks4d1p1p3 42062 aks4d1p1p2 42063 aks4d1p1p4 42064 aks4d1p3 42071 aks5lem8 42194 acos1half 42351 rabren3dioph 42808 jm2.23 42989 stoweidlem34 46035 stoweidlem42 46043 smfmullem4 46795 fmtno4prmfac193 47577 3ndvds4 47599 127prm 47603 nnsum4primesodd 47800 nnsum4primesoddALTV 47801 usgrexmpl1lem 48025 usgrexmpl2lem 48030 usgrexmpl2nb1 48036 usgrexmpl2nb3 48038 usgrexmpl2trifr 48041 gpg5grlim 48097 gpg5grlic 48098 sepfsepc 48932 |
| Copyright terms: Public domain | W3C validator |