![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1lt3 | Structured version Visualization version GIF version |
Description: 1 is less than 3. (Contributed by NM, 26-Sep-2010.) |
Ref | Expression |
---|---|
1lt3 | ⊢ 1 < 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2 12464 | . 2 ⊢ 1 < 2 | |
2 | 2lt3 12465 | . 2 ⊢ 2 < 3 | |
3 | 1re 11290 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2re 12367 | . . 3 ⊢ 2 ∈ ℝ | |
5 | 3re 12373 | . . 3 ⊢ 3 ∈ ℝ | |
6 | 3, 4, 5 | lttri 11416 | . 2 ⊢ ((1 < 2 ∧ 2 < 3) → 1 < 3) |
7 | 1, 2, 6 | mp2an 691 | 1 ⊢ 1 < 3 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5166 1c1 11185 < clt 11324 2c2 12348 3c3 12349 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-2 12356 df-3 12357 |
This theorem is referenced by: 1le3 12505 fztpval 13646 fvf1tp 13840 expnass 14257 tpf1ofv1 14546 tpfo 14549 s4fv1 14945 f1oun2prg 14966 sin01gt0 16238 rpnnen2lem3 16264 rpnnen2lem9 16270 3prm 16741 6nprm 17157 7prm 17158 9nprm 17160 13prm 17163 19prm 17165 prmlem2 17167 37prm 17168 43prm 17169 139prm 17171 163prm 17172 631prm 17174 basendxnmulrndx 17354 basendxnmulrndxOLD 17355 opprbasOLD 20368 log2cnv 27005 cxploglim2 27040 2lgslem3 27466 dchrvmasumlem2 27560 pntibndlem1 27651 tgcgr4 28557 axlowdimlem16 28990 usgrexmpldifpr 29293 upgr3v3e3cycl 30212 upgr4cycl4dv4e 30217 konigsberglem2 30285 konigsberglem3 30286 konigsberglem5 30288 frgrogt3nreg 30429 ex-dif 30455 ex-pss 30460 ex-res 30473 evl1deg3 33568 2sqr3minply 33738 aks4d1p1p3 42026 aks4d1p1p2 42027 aks4d1p1p4 42028 aks4d1p3 42035 aks5lem8 42158 acos1half 42340 rabren3dioph 42771 jm2.23 42953 mnringbasedOLD 44181 stoweidlem34 45955 stoweidlem42 45963 smfmullem4 46715 fmtno4prmfac193 47447 3ndvds4 47469 127prm 47473 nnsum4primesodd 47670 nnsum4primesoddALTV 47671 usgrexmpl1lem 47836 usgrexmpl2lem 47841 usgrexmpl2nb1 47847 usgrexmpl2nb3 47849 usgrexmpl2trifr 47852 sepfsepc 48607 |
Copyright terms: Public domain | W3C validator |