| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1lt3 | Structured version Visualization version GIF version | ||
| Description: 1 is less than 3. (Contributed by NM, 26-Sep-2010.) |
| Ref | Expression |
|---|---|
| 1lt3 | ⊢ 1 < 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2 12359 | . 2 ⊢ 1 < 2 | |
| 2 | 2lt3 12360 | . 2 ⊢ 2 < 3 | |
| 3 | 1re 11181 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2re 12267 | . . 3 ⊢ 2 ∈ ℝ | |
| 5 | 3re 12273 | . . 3 ⊢ 3 ∈ ℝ | |
| 6 | 3, 4, 5 | lttri 11307 | . 2 ⊢ ((1 < 2 ∧ 2 < 3) → 1 < 3) |
| 7 | 1, 2, 6 | mp2an 692 | 1 ⊢ 1 < 3 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5110 1c1 11076 < clt 11215 2c2 12248 3c3 12249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-2 12256 df-3 12257 |
| This theorem is referenced by: 1le3 12400 fztpval 13554 fvf1tp 13758 expnass 14180 tpf1ofv1 14469 tpfo 14472 s4fv1 14869 f1oun2prg 14890 sin01gt0 16165 rpnnen2lem3 16191 rpnnen2lem9 16197 3prm 16671 6nprm 17087 7prm 17088 9nprm 17090 13prm 17093 19prm 17095 prmlem2 17097 37prm 17098 43prm 17099 139prm 17101 163prm 17102 631prm 17104 basendxnmulrndx 17266 log2cnv 26861 cxploglim2 26896 2lgslem3 27322 dchrvmasumlem2 27416 pntibndlem1 27507 tgcgr4 28465 axlowdimlem16 28891 usgrexmpldifpr 29192 upgr3v3e3cycl 30116 upgr4cycl4dv4e 30121 konigsberglem2 30189 konigsberglem3 30190 konigsberglem5 30192 frgrogt3nreg 30333 ex-dif 30359 ex-pss 30364 ex-res 30377 evl1deg3 33554 2sqr3minply 33777 cos9thpiminplylem3 33781 cos9thpiminply 33785 aks4d1p1p3 42064 aks4d1p1p2 42065 aks4d1p1p4 42066 aks4d1p3 42073 aks5lem8 42196 acos1half 42353 rabren3dioph 42810 jm2.23 42992 stoweidlem34 46039 stoweidlem42 46047 smfmullem4 46799 fmtno4prmfac193 47578 3ndvds4 47600 127prm 47604 nnsum4primesodd 47801 nnsum4primesoddALTV 47802 usgrexmpl1lem 48016 usgrexmpl2lem 48021 usgrexmpl2nb1 48027 usgrexmpl2nb3 48029 usgrexmpl2trifr 48032 gpg5grlic 48088 sepfsepc 48920 |
| Copyright terms: Public domain | W3C validator |