Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1lt3 | Structured version Visualization version GIF version |
Description: 1 is less than 3. (Contributed by NM, 26-Sep-2010.) |
Ref | Expression |
---|---|
1lt3 | ⊢ 1 < 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2 12154 | . 2 ⊢ 1 < 2 | |
2 | 2lt3 12155 | . 2 ⊢ 2 < 3 | |
3 | 1re 10985 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2re 12057 | . . 3 ⊢ 2 ∈ ℝ | |
5 | 3re 12063 | . . 3 ⊢ 3 ∈ ℝ | |
6 | 3, 4, 5 | lttri 11111 | . 2 ⊢ ((1 < 2 ∧ 2 < 3) → 1 < 3) |
7 | 1, 2, 6 | mp2an 689 | 1 ⊢ 1 < 3 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5073 1c1 10882 < clt 11019 2c2 12038 3c3 12039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-po 5498 df-so 5499 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-er 8485 df-en 8721 df-dom 8722 df-sdom 8723 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-2 12046 df-3 12047 |
This theorem is referenced by: 1le3 12195 fztpval 13328 expnass 13934 s4fv1 14619 f1oun2prg 14640 sin01gt0 15909 rpnnen2lem3 15935 rpnnen2lem9 15941 3prm 16409 6nprm 16821 7prm 16822 9nprm 16824 13prm 16827 19prm 16829 prmlem2 16831 37prm 16832 43prm 16833 139prm 16835 163prm 16836 631prm 16838 basendxnmulrndx 17015 basendxnmulrndxOLD 17016 opprbasOLD 19880 log2cnv 26104 cxploglim2 26138 2lgslem3 26562 dchrvmasumlem2 26656 pntibndlem1 26747 tgcgr4 26902 axlowdimlem16 27335 usgrexmpldifpr 27635 upgr3v3e3cycl 28552 upgr4cycl4dv4e 28557 konigsberglem2 28625 konigsberglem3 28626 konigsberglem5 28628 frgrogt3nreg 28769 ex-dif 28795 ex-pss 28800 ex-res 28813 aks4d1p1p3 40085 aks4d1p1p2 40086 aks4d1p1p4 40087 aks4d1p3 40094 acos1half 40178 rabren3dioph 40645 jm2.23 40826 mnringbasedOLD 41811 stoweidlem34 43556 stoweidlem42 43564 smfmullem4 44306 fmtno4prmfac193 45003 3ndvds4 45025 127prm 45029 nnsum4primesodd 45226 nnsum4primesoddALTV 45227 sepfsepc 46199 |
Copyright terms: Public domain | W3C validator |