| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1lt3 | Structured version Visualization version GIF version | ||
| Description: 1 is less than 3. (Contributed by NM, 26-Sep-2010.) |
| Ref | Expression |
|---|---|
| 1lt3 | ⊢ 1 < 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2 12411 | . 2 ⊢ 1 < 2 | |
| 2 | 2lt3 12412 | . 2 ⊢ 2 < 3 | |
| 3 | 1re 11235 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2re 12314 | . . 3 ⊢ 2 ∈ ℝ | |
| 5 | 3re 12320 | . . 3 ⊢ 3 ∈ ℝ | |
| 6 | 3, 4, 5 | lttri 11361 | . 2 ⊢ ((1 < 2 ∧ 2 < 3) → 1 < 3) |
| 7 | 1, 2, 6 | mp2an 692 | 1 ⊢ 1 < 3 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5119 1c1 11130 < clt 11269 2c2 12295 3c3 12296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-2 12303 df-3 12304 |
| This theorem is referenced by: 1le3 12452 fztpval 13603 fvf1tp 13806 expnass 14226 tpf1ofv1 14515 tpfo 14518 s4fv1 14915 f1oun2prg 14936 sin01gt0 16208 rpnnen2lem3 16234 rpnnen2lem9 16240 3prm 16713 6nprm 17129 7prm 17130 9nprm 17132 13prm 17135 19prm 17137 prmlem2 17139 37prm 17140 43prm 17141 139prm 17143 163prm 17144 631prm 17146 basendxnmulrndx 17310 log2cnv 26906 cxploglim2 26941 2lgslem3 27367 dchrvmasumlem2 27461 pntibndlem1 27552 tgcgr4 28510 axlowdimlem16 28936 usgrexmpldifpr 29237 upgr3v3e3cycl 30161 upgr4cycl4dv4e 30166 konigsberglem2 30234 konigsberglem3 30235 konigsberglem5 30237 frgrogt3nreg 30378 ex-dif 30404 ex-pss 30409 ex-res 30422 evl1deg3 33591 2sqr3minply 33814 cos9thpiminplylem3 33818 cos9thpiminply 33822 aks4d1p1p3 42082 aks4d1p1p2 42083 aks4d1p1p4 42084 aks4d1p3 42091 aks5lem8 42214 acos1half 42401 rabren3dioph 42838 jm2.23 43020 stoweidlem34 46063 stoweidlem42 46071 smfmullem4 46823 fmtno4prmfac193 47587 3ndvds4 47609 127prm 47613 nnsum4primesodd 47810 nnsum4primesoddALTV 47811 usgrexmpl1lem 48025 usgrexmpl2lem 48030 usgrexmpl2nb1 48036 usgrexmpl2nb3 48038 usgrexmpl2trifr 48041 gpg5grlic 48093 sepfsepc 48902 |
| Copyright terms: Public domain | W3C validator |