Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fdivpm | Structured version Visualization version GIF version |
Description: The quotient of two functions into the complex numbers is a partial function. (Contributed by AV, 16-May-2020.) |
Ref | Expression |
---|---|
fdivpm | ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺) ∈ (ℂ ↑pm 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 10952 | . . 3 ⊢ ℂ ∈ V | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → ℂ ∈ V) |
3 | simp3 1137 | . 2 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
4 | fdivmptf 45887 | . 2 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℂ) | |
5 | suppssdm 7993 | . . 3 ⊢ (𝐺 supp 0) ⊆ dom 𝐺 | |
6 | fdm 6609 | . . . . 5 ⊢ (𝐺:𝐴⟶ℂ → dom 𝐺 = 𝐴) | |
7 | 6 | eqcomd 2744 | . . . 4 ⊢ (𝐺:𝐴⟶ℂ → 𝐴 = dom 𝐺) |
8 | 7 | 3ad2ant2 1133 | . . 3 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → 𝐴 = dom 𝐺) |
9 | 5, 8 | sseqtrrid 3974 | . 2 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝐺 supp 0) ⊆ 𝐴) |
10 | elpm2r 8633 | . 2 ⊢ (((ℂ ∈ V ∧ 𝐴 ∈ 𝑉) ∧ ((𝐹 /f 𝐺):(𝐺 supp 0)⟶ℂ ∧ (𝐺 supp 0) ⊆ 𝐴)) → (𝐹 /f 𝐺) ∈ (ℂ ↑pm 𝐴)) | |
11 | 2, 3, 4, 9, 10 | syl22anc 836 | 1 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺) ∈ (ℂ ↑pm 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 dom cdm 5589 ⟶wf 6429 (class class class)co 7275 supp csupp 7977 ↑pm cpm 8616 ℂcc 10869 0cc0 10871 /f cfdiv 45883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-supp 7978 df-er 8498 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-fdiv 45884 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |