![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fdivpm | Structured version Visualization version GIF version |
Description: The quotient of two functions into the complex numbers is a partial function. (Contributed by AV, 16-May-2020.) |
Ref | Expression |
---|---|
fdivpm | β’ ((πΉ:π΄βΆβ β§ πΊ:π΄βΆβ β§ π΄ β π) β (πΉ /f πΊ) β (β βpm π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 11195 | . . 3 β’ β β V | |
2 | 1 | a1i 11 | . 2 β’ ((πΉ:π΄βΆβ β§ πΊ:π΄βΆβ β§ π΄ β π) β β β V) |
3 | simp3 1136 | . 2 β’ ((πΉ:π΄βΆβ β§ πΊ:π΄βΆβ β§ π΄ β π) β π΄ β π) | |
4 | fdivmptf 47316 | . 2 β’ ((πΉ:π΄βΆβ β§ πΊ:π΄βΆβ β§ π΄ β π) β (πΉ /f πΊ):(πΊ supp 0)βΆβ) | |
5 | suppssdm 8166 | . . 3 β’ (πΊ supp 0) β dom πΊ | |
6 | fdm 6727 | . . . . 5 β’ (πΊ:π΄βΆβ β dom πΊ = π΄) | |
7 | 6 | eqcomd 2736 | . . . 4 β’ (πΊ:π΄βΆβ β π΄ = dom πΊ) |
8 | 7 | 3ad2ant2 1132 | . . 3 β’ ((πΉ:π΄βΆβ β§ πΊ:π΄βΆβ β§ π΄ β π) β π΄ = dom πΊ) |
9 | 5, 8 | sseqtrrid 4036 | . 2 β’ ((πΉ:π΄βΆβ β§ πΊ:π΄βΆβ β§ π΄ β π) β (πΊ supp 0) β π΄) |
10 | elpm2r 8843 | . 2 β’ (((β β V β§ π΄ β π) β§ ((πΉ /f πΊ):(πΊ supp 0)βΆβ β§ (πΊ supp 0) β π΄)) β (πΉ /f πΊ) β (β βpm π΄)) | |
11 | 2, 3, 4, 9, 10 | syl22anc 835 | 1 β’ ((πΉ:π΄βΆβ β§ πΊ:π΄βΆβ β§ π΄ β π) β (πΉ /f πΊ) β (β βpm π΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1085 = wceq 1539 β wcel 2104 Vcvv 3472 β wss 3949 dom cdm 5677 βΆwf 6540 (class class class)co 7413 supp csupp 8150 βpm cpm 8825 βcc 11112 0cc0 11114 /f cfdiv 47312 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7674 df-supp 8151 df-er 8707 df-pm 8827 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-div 11878 df-fdiv 47313 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |