Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fiufl | Structured version Visualization version GIF version |
Description: A finite set satisfies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
fiufl | ⊢ (𝑋 ∈ Fin → 𝑋 ∈ UFL) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwfi 9018 | . 2 ⊢ (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin) | |
2 | pwfi 9018 | . . 3 ⊢ (𝒫 𝑋 ∈ Fin ↔ 𝒫 𝒫 𝑋 ∈ Fin) | |
3 | finnum 9774 | . . . 4 ⊢ (𝒫 𝒫 𝑋 ∈ Fin → 𝒫 𝒫 𝑋 ∈ dom card) | |
4 | numufl 23137 | . . . 4 ⊢ (𝒫 𝒫 𝑋 ∈ dom card → 𝑋 ∈ UFL) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝒫 𝒫 𝑋 ∈ Fin → 𝑋 ∈ UFL) |
6 | 2, 5 | sylbi 216 | . 2 ⊢ (𝒫 𝑋 ∈ Fin → 𝑋 ∈ UFL) |
7 | 1, 6 | sylbi 216 | 1 ⊢ (𝑋 ∈ Fin → 𝑋 ∈ UFL) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 𝒫 cpw 4543 dom cdm 5605 Fincfn 8779 cardccrd 9761 UFLcufl 23122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-int 4891 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-se 5561 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-isom 6472 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-rpss 7614 df-om 7756 df-1st 7874 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-1o 8342 df-oadd 8346 df-er 8544 df-en 8780 df-dom 8781 df-fin 8783 df-fi 9238 df-dju 9727 df-card 9765 df-fbas 20665 df-fg 20666 df-fil 23068 df-ufil 23123 df-ufl 23124 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |