| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ge2halflem1 | Structured version Visualization version GIF version | ||
| Description: Half of an integer greater than 1 is less than or equal to the integer minus 1. (Contributed by AV, 1-Sep-2025.) |
| Ref | Expression |
|---|---|
| ge2halflem1 | ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 / 2) ≤ (𝑁 − 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12312 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 ∈ ℝ) |
| 3 | eluzelre 12861 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℝ) | |
| 4 | 2, 3 | remulcld 11263 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → (2 · 𝑁) ∈ ℝ) |
| 5 | eluzle 12863 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 ≤ 𝑁) | |
| 6 | 2m1e1 12364 | . . . . . . . . 9 ⊢ (2 − 1) = 1 | |
| 7 | 6 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → (2 − 1) = 1) |
| 8 | 7 | oveq1d 7418 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) → ((2 − 1) · 𝑁) = (1 · 𝑁)) |
| 9 | eluzelcn 12862 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℂ) | |
| 10 | 9 | mullidd 11251 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) → (1 · 𝑁) = 𝑁) |
| 11 | 8, 10 | eqtrd 2770 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘2) → ((2 − 1) · 𝑁) = 𝑁) |
| 12 | 5, 11 | breqtrrd 5147 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 ≤ ((2 − 1) · 𝑁)) |
| 13 | 2cnd 12316 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 ∈ ℂ) | |
| 14 | 13, 9 | mulsubfacd 11696 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → ((2 · 𝑁) − 𝑁) = ((2 − 1) · 𝑁)) |
| 15 | 12, 14 | breqtrrd 5147 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 ≤ ((2 · 𝑁) − 𝑁)) |
| 16 | 2, 4, 3, 15 | lesubd 11839 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ≤ ((2 · 𝑁) − 2)) |
| 17 | 13, 9 | muls1d 11695 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (2 · (𝑁 − 1)) = ((2 · 𝑁) − 2)) |
| 18 | 16, 17 | breqtrrd 5147 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ≤ (2 · (𝑁 − 1))) |
| 19 | 1red 11234 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 ∈ ℝ) | |
| 20 | 3, 19 | resubcld 11663 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ ℝ) |
| 21 | 2rp 13011 | . . . 4 ⊢ 2 ∈ ℝ+ | |
| 22 | 21 | a1i 11 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 ∈ ℝ+) |
| 23 | 3, 20, 22 | ledivmuld 13102 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → ((𝑁 / 2) ≤ (𝑁 − 1) ↔ 𝑁 ≤ (2 · (𝑁 − 1)))) |
| 24 | 18, 23 | mpbird 257 | 1 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 / 2) ≤ (𝑁 − 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6530 (class class class)co 7403 ℝcr 11126 1c1 11128 · cmul 11132 ≤ cle 11268 − cmin 11464 / cdiv 11892 2c2 12293 ℤ≥cuz 12850 ℝ+crp 13006 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-2 12301 df-z 12587 df-uz 12851 df-rp 13007 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |