| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluzelcn | Structured version Visualization version GIF version | ||
| Description: A member of an upper set of integers is a complex number. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| eluzelcn | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelre 12804 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) | |
| 2 | 1 | recnd 11202 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6511 ℂcc 11066 ℤ≥cuz 12793 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-neg 11408 df-z 12530 df-uz 12794 |
| This theorem is referenced by: uzp1 12834 peano2uzr 12862 uzaddcl 12863 ge2halflem1 13068 eluzgtdifelfzo 13688 fzosplitpr 13737 fldiv4lem1div2uz2 13798 mulp1mod1 13876 seqm1 13984 bcval5 14283 swrdfv2 14626 relexpaddg 15019 shftuz 15035 seqshft 15051 climshftlem 15540 climshft 15542 isumshft 15805 dvdsexp 16298 pclem 16809 efgtlen 19656 dvradcnv 26330 logbgcd1irr 26704 clwwlkext2edg 29985 clwwlknonex2lem1 30036 clwwlknonex2lem2 30037 clwwlknonex2 30038 2clwwlk2clwwlk 30279 numclwwlk1lem2foalem 30280 numclwwlk1lem2fo 30287 numclwwlk2 30310 nn0prpwlem 36310 aks4d1p1p1 42051 fimgmcyc 42522 rmspecsqrtnq 42894 rmxm1 42923 rmym1 42924 rmxluc 42925 rmyluc 42926 rmyluc2 42927 jm2.17a 42949 relexpaddss 43707 trclfvdecomr 43717 binomcxplemnn0 44338 stoweidlem14 46012 2tceilhalfelfzo1 47330 fmtnorec3 47546 lighneallem4a 47606 lighneallem4b 47607 evengpop3 47796 evengpoap3 47797 nnsum4primeseven 47798 nnsum4primesevenALTV 47799 gpgedgvtx1 48050 expnegico01 48504 dignn0ldlem 48588 dignnld 48589 digexp 48593 dig1 48594 nn0sumshdiglemB 48606 |
| Copyright terms: Public domain | W3C validator |