| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluzelcn | Structured version Visualization version GIF version | ||
| Description: A member of an upper set of integers is a complex number. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| eluzelcn | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelre 12743 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) | |
| 2 | 1 | recnd 11140 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ‘cfv 6481 ℂcc 11004 ℤ≥cuz 12732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-neg 11347 df-z 12469 df-uz 12733 |
| This theorem is referenced by: uzp1 12773 peano2uzr 12801 uzaddcl 12802 ge2halflem1 13007 eluzgtdifelfzo 13627 fzosplitpr 13677 fldiv4lem1div2uz2 13740 mulp1mod1 13818 seqm1 13926 bcval5 14225 swrdfv2 14569 relexpaddg 14960 shftuz 14976 seqshft 14992 climshftlem 15481 climshft 15483 isumshft 15746 dvdsexp 16239 pclem 16750 efgtlen 19638 dvradcnv 26357 logbgcd1irr 26731 clwwlkext2edg 30036 clwwlknonex2lem1 30087 clwwlknonex2lem2 30088 clwwlknonex2 30089 2clwwlk2clwwlk 30330 numclwwlk1lem2foalem 30331 numclwwlk1lem2fo 30338 numclwwlk2 30361 nn0prpwlem 36366 aks4d1p1p1 42155 fimgmcyc 42626 rmspecsqrtnq 42998 rmxm1 43026 rmym1 43027 rmxluc 43028 rmyluc 43029 rmyluc2 43030 jm2.17a 43052 relexpaddss 43810 trclfvdecomr 43820 binomcxplemnn0 44441 stoweidlem14 46111 2tceilhalfelfzo1 47431 fmtnorec3 47647 lighneallem4a 47707 lighneallem4b 47708 evengpop3 47897 evengpoap3 47898 nnsum4primeseven 47899 nnsum4primesevenALTV 47900 gpgedgvtx1 48161 expnegico01 48618 dignn0ldlem 48702 dignnld 48703 digexp 48707 dig1 48708 nn0sumshdiglemB 48720 |
| Copyright terms: Public domain | W3C validator |