| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluzelcn | Structured version Visualization version GIF version | ||
| Description: A member of an upper set of integers is a complex number. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| eluzelcn | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelre 12780 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) | |
| 2 | 1 | recnd 11178 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6499 ℂcc 11042 ℤ≥cuz 12769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-cnex 11100 ax-resscn 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-neg 11384 df-z 12506 df-uz 12770 |
| This theorem is referenced by: uzp1 12810 peano2uzr 12838 uzaddcl 12839 ge2halflem1 13044 eluzgtdifelfzo 13664 fzosplitpr 13713 fldiv4lem1div2uz2 13774 mulp1mod1 13852 seqm1 13960 bcval5 14259 swrdfv2 14602 relexpaddg 14995 shftuz 15011 seqshft 15027 climshftlem 15516 climshft 15518 isumshft 15781 dvdsexp 16274 pclem 16785 efgtlen 19640 dvradcnv 26363 logbgcd1irr 26737 clwwlkext2edg 30035 clwwlknonex2lem1 30086 clwwlknonex2lem2 30087 clwwlknonex2 30088 2clwwlk2clwwlk 30329 numclwwlk1lem2foalem 30330 numclwwlk1lem2fo 30337 numclwwlk2 30360 nn0prpwlem 36303 aks4d1p1p1 42044 fimgmcyc 42515 rmspecsqrtnq 42887 rmxm1 42916 rmym1 42917 rmxluc 42918 rmyluc 42919 rmyluc2 42920 jm2.17a 42942 relexpaddss 43700 trclfvdecomr 43710 binomcxplemnn0 44331 stoweidlem14 46005 2tceilhalfelfzo1 47326 fmtnorec3 47542 lighneallem4a 47602 lighneallem4b 47603 evengpop3 47792 evengpoap3 47793 nnsum4primeseven 47794 nnsum4primesevenALTV 47795 gpgedgvtx1 48046 expnegico01 48500 dignn0ldlem 48584 dignnld 48585 digexp 48589 dig1 48590 nn0sumshdiglemB 48602 |
| Copyright terms: Public domain | W3C validator |