Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eluzelcn | Structured version Visualization version GIF version |
Description: A member of an upper set of integers is a complex number. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
eluzelcn | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelre 12522 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) | |
2 | 1 | recnd 10934 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6418 ℂcc 10800 ℤ≥cuz 12511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-neg 11138 df-z 12250 df-uz 12512 |
This theorem is referenced by: uzp1 12548 peano2uzr 12572 uzaddcl 12573 eluzgtdifelfzo 13377 fzosplitpr 13424 fldiv4lem1div2uz2 13484 mulp1mod1 13560 seqm1 13668 bcval5 13960 swrdfv2 14302 relexpaddg 14692 shftuz 14708 seqshft 14724 climshftlem 15211 climshft 15213 isumshft 15479 dvdsexp 15965 pclem 16467 efgtlen 19247 dvradcnv 25485 logbgcd1irr 25849 clwwlkext2edg 28321 clwwlknonex2lem1 28372 clwwlknonex2lem2 28373 clwwlknonex2 28374 2clwwlk2clwwlk 28615 numclwwlk1lem2foalem 28616 numclwwlk1lem2fo 28623 numclwwlk2 28646 nn0prpwlem 34438 aks4d1p1p1 39999 rmspecsqrtnq 40644 rmxm1 40672 rmym1 40673 rmxluc 40674 rmyluc 40675 rmyluc2 40676 jm2.17a 40698 relexpaddss 41215 trclfvdecomr 41225 binomcxplemnn0 41856 stoweidlem14 43445 fmtnorec3 44888 lighneallem4a 44948 lighneallem4b 44949 evengpop3 45138 evengpoap3 45139 nnsum4primeseven 45140 nnsum4primesevenALTV 45141 expnegico01 45747 dignn0ldlem 45836 dignnld 45837 digexp 45841 dig1 45842 nn0sumshdiglemB 45854 |
Copyright terms: Public domain | W3C validator |