| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluzelcn | Structured version Visualization version GIF version | ||
| Description: A member of an upper set of integers is a complex number. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| eluzelcn | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelre 12746 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) | |
| 2 | 1 | recnd 11143 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6482 ℂcc 11007 ℤ≥cuz 12735 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-cnex 11065 ax-resscn 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-neg 11350 df-z 12472 df-uz 12736 |
| This theorem is referenced by: uzp1 12776 peano2uzr 12804 uzaddcl 12805 ge2halflem1 13010 eluzgtdifelfzo 13630 fzosplitpr 13679 fldiv4lem1div2uz2 13740 mulp1mod1 13818 seqm1 13926 bcval5 14225 swrdfv2 14568 relexpaddg 14960 shftuz 14976 seqshft 14992 climshftlem 15481 climshft 15483 isumshft 15746 dvdsexp 16239 pclem 16750 efgtlen 19605 dvradcnv 26328 logbgcd1irr 26702 clwwlkext2edg 30000 clwwlknonex2lem1 30051 clwwlknonex2lem2 30052 clwwlknonex2 30053 2clwwlk2clwwlk 30294 numclwwlk1lem2foalem 30295 numclwwlk1lem2fo 30302 numclwwlk2 30325 nn0prpwlem 36306 aks4d1p1p1 42046 fimgmcyc 42517 rmspecsqrtnq 42889 rmxm1 42917 rmym1 42918 rmxluc 42919 rmyluc 42920 rmyluc2 42921 jm2.17a 42943 relexpaddss 43701 trclfvdecomr 43711 binomcxplemnn0 44332 stoweidlem14 46005 2tceilhalfelfzo1 47326 fmtnorec3 47542 lighneallem4a 47602 lighneallem4b 47603 evengpop3 47792 evengpoap3 47793 nnsum4primeseven 47794 nnsum4primesevenALTV 47795 gpgedgvtx1 48056 expnegico01 48513 dignn0ldlem 48597 dignnld 48598 digexp 48602 dig1 48603 nn0sumshdiglemB 48615 |
| Copyright terms: Public domain | W3C validator |