Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eluzelcn | Structured version Visualization version GIF version |
Description: A member of an upper set of integers is a complex number. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
eluzelcn | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelre 12593 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) | |
2 | 1 | recnd 11003 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ‘cfv 6433 ℂcc 10869 ℤ≥cuz 12582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-cnex 10927 ax-resscn 10928 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-neg 11208 df-z 12320 df-uz 12583 |
This theorem is referenced by: uzp1 12619 peano2uzr 12643 uzaddcl 12644 eluzgtdifelfzo 13449 fzosplitpr 13496 fldiv4lem1div2uz2 13556 mulp1mod1 13632 seqm1 13740 bcval5 14032 swrdfv2 14374 relexpaddg 14764 shftuz 14780 seqshft 14796 climshftlem 15283 climshft 15285 isumshft 15551 dvdsexp 16037 pclem 16539 efgtlen 19332 dvradcnv 25580 logbgcd1irr 25944 clwwlkext2edg 28420 clwwlknonex2lem1 28471 clwwlknonex2lem2 28472 clwwlknonex2 28473 2clwwlk2clwwlk 28714 numclwwlk1lem2foalem 28715 numclwwlk1lem2fo 28722 numclwwlk2 28745 nn0prpwlem 34511 aks4d1p1p1 40071 rmspecsqrtnq 40728 rmxm1 40756 rmym1 40757 rmxluc 40758 rmyluc 40759 rmyluc2 40760 jm2.17a 40782 relexpaddss 41326 trclfvdecomr 41336 binomcxplemnn0 41967 stoweidlem14 43555 fmtnorec3 45000 lighneallem4a 45060 lighneallem4b 45061 evengpop3 45250 evengpoap3 45251 nnsum4primeseven 45252 nnsum4primesevenALTV 45253 expnegico01 45859 dignn0ldlem 45948 dignnld 45949 digexp 45953 dig1 45954 nn0sumshdiglemB 45966 |
Copyright terms: Public domain | W3C validator |