![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eluzelcn | Structured version Visualization version GIF version |
Description: A member of an upper set of integers is a complex number. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
eluzelcn | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelre 12914 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) | |
2 | 1 | recnd 11318 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6573 ℂcc 11182 ℤ≥cuz 12903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-neg 11523 df-z 12640 df-uz 12904 |
This theorem is referenced by: uzp1 12944 peano2uzr 12968 uzaddcl 12969 eluzgtdifelfzo 13778 fzosplitpr 13826 fldiv4lem1div2uz2 13887 mulp1mod1 13963 seqm1 14070 bcval5 14367 swrdfv2 14709 relexpaddg 15102 shftuz 15118 seqshft 15134 climshftlem 15620 climshft 15622 isumshft 15887 dvdsexp 16376 pclem 16885 efgtlen 19768 dvradcnv 26482 logbgcd1irr 26855 clwwlkext2edg 30088 clwwlknonex2lem1 30139 clwwlknonex2lem2 30140 clwwlknonex2 30141 2clwwlk2clwwlk 30382 numclwwlk1lem2foalem 30383 numclwwlk1lem2fo 30390 numclwwlk2 30413 nn0prpwlem 36288 aks4d1p1p1 42020 fimgmcyc 42489 rmspecsqrtnq 42862 rmxm1 42891 rmym1 42892 rmxluc 42893 rmyluc 42894 rmyluc2 42895 jm2.17a 42917 relexpaddss 43680 trclfvdecomr 43690 binomcxplemnn0 44318 stoweidlem14 45935 fmtnorec3 47422 lighneallem4a 47482 lighneallem4b 47483 evengpop3 47672 evengpoap3 47673 nnsum4primeseven 47674 nnsum4primesevenALTV 47675 expnegico01 48247 dignn0ldlem 48336 dignnld 48337 digexp 48341 dig1 48342 nn0sumshdiglemB 48354 |
Copyright terms: Public domain | W3C validator |