![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eluzelcn | Structured version Visualization version GIF version |
Description: A member of an upper set of integers is a complex number. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
eluzelcn | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelre 12887 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) | |
2 | 1 | recnd 11287 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ‘cfv 6563 ℂcc 11151 ℤ≥cuz 12876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-cnex 11209 ax-resscn 11210 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-neg 11493 df-z 12612 df-uz 12877 |
This theorem is referenced by: uzp1 12917 peano2uzr 12943 uzaddcl 12944 ge2halflem1 13148 eluzgtdifelfzo 13763 fzosplitpr 13812 fldiv4lem1div2uz2 13873 mulp1mod1 13949 seqm1 14057 bcval5 14354 swrdfv2 14696 relexpaddg 15089 shftuz 15105 seqshft 15121 climshftlem 15607 climshft 15609 isumshft 15872 dvdsexp 16362 pclem 16872 efgtlen 19759 dvradcnv 26479 logbgcd1irr 26852 clwwlkext2edg 30085 clwwlknonex2lem1 30136 clwwlknonex2lem2 30137 clwwlknonex2 30138 2clwwlk2clwwlk 30379 numclwwlk1lem2foalem 30380 numclwwlk1lem2fo 30387 numclwwlk2 30410 nn0prpwlem 36305 aks4d1p1p1 42045 fimgmcyc 42521 rmspecsqrtnq 42894 rmxm1 42923 rmym1 42924 rmxluc 42925 rmyluc 42926 rmyluc2 42927 jm2.17a 42949 relexpaddss 43708 trclfvdecomr 43718 binomcxplemnn0 44345 stoweidlem14 45970 fmtnorec3 47473 lighneallem4a 47533 lighneallem4b 47534 evengpop3 47723 evengpoap3 47724 nnsum4primeseven 47725 nnsum4primesevenALTV 47726 2tceilhalfelfzo1 47953 gpgedgvtx1 47955 expnegico01 48364 dignn0ldlem 48452 dignnld 48453 digexp 48457 dig1 48458 nn0sumshdiglemB 48470 |
Copyright terms: Public domain | W3C validator |