![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imi | Structured version Visualization version GIF version |
Description: The imaginary part of i. (Contributed by Scott Fenton, 9-Jun-2006.) |
Ref | Expression |
---|---|
imi | ⊢ (ℑ‘i) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn 11173 | . . . . . 6 ⊢ i ∈ ℂ | |
2 | ax-1cn 11172 | . . . . . 6 ⊢ 1 ∈ ℂ | |
3 | 1, 2 | mulcli 11227 | . . . . 5 ⊢ (i · 1) ∈ ℂ |
4 | 3 | addlidi 11408 | . . . 4 ⊢ (0 + (i · 1)) = (i · 1) |
5 | 4 | eqcomi 2739 | . . 3 ⊢ (i · 1) = (0 + (i · 1)) |
6 | 5 | fveq2i 6895 | . 2 ⊢ (ℑ‘(i · 1)) = (ℑ‘(0 + (i · 1))) |
7 | 1 | mulridi 11224 | . . 3 ⊢ (i · 1) = i |
8 | 7 | fveq2i 6895 | . 2 ⊢ (ℑ‘(i · 1)) = (ℑ‘i) |
9 | 0re 11222 | . . 3 ⊢ 0 ∈ ℝ | |
10 | 1re 11220 | . . 3 ⊢ 1 ∈ ℝ | |
11 | crim 15068 | . . 3 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (ℑ‘(0 + (i · 1))) = 1) | |
12 | 9, 10, 11 | mp2an 688 | . 2 ⊢ (ℑ‘(0 + (i · 1))) = 1 |
13 | 6, 8, 12 | 3eqtr3i 2766 | 1 ⊢ (ℑ‘i) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 ‘cfv 6544 (class class class)co 7413 ℝcr 11113 0cc0 11114 1c1 11115 ici 11116 + caddc 11117 · cmul 11119 ℑcim 15051 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-div 11878 df-2 12281 df-cj 15052 df-re 15053 df-im 15054 |
This theorem is referenced by: cji 15112 igz 16873 atanlogsublem 26654 |
Copyright terms: Public domain | W3C validator |