MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atanlogsublem Structured version   Visualization version   GIF version

Theorem atanlogsublem 26265
Description: Lemma for atanlogsub 26266. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
atanlogsublem ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π))

Proof of Theorem atanlogsublem
StepHypRef Expression
1 ax-1cn 11109 . . . . . 6 1 ∈ ℂ
2 ax-icn 11110 . . . . . . 7 i ∈ ℂ
3 simpl 483 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 𝐴 ∈ dom arctan)
4 atandm2 26227 . . . . . . . . 9 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
53, 4sylib 217 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
65simp1d 1142 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 𝐴 ∈ ℂ)
7 mulcl 11135 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
82, 6, 7sylancr 587 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · 𝐴) ∈ ℂ)
9 addcl 11133 . . . . . 6 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
101, 8, 9sylancr 587 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (1 + (i · 𝐴)) ∈ ℂ)
115simp3d 1144 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (1 + (i · 𝐴)) ≠ 0)
1210, 11logcld 25926 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(1 + (i · 𝐴))) ∈ ℂ)
13 subcl 11400 . . . . . 6 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
141, 8, 13sylancr 587 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (1 − (i · 𝐴)) ∈ ℂ)
155simp2d 1143 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (1 − (i · 𝐴)) ≠ 0)
1614, 15logcld 25926 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(1 − (i · 𝐴))) ∈ ℂ)
1712, 16imsubd 15102 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = ((ℑ‘(log‘(1 + (i · 𝐴)))) − (ℑ‘(log‘(1 − (i · 𝐴))))))
182a1i 11 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → i ∈ ℂ)
1918, 6, 18subdid 11611 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · (𝐴 − i)) = ((i · 𝐴) − (i · i)))
20 ixi 11784 . . . . . . . . . . 11 (i · i) = -1
2120oveq2i 7368 . . . . . . . . . 10 ((i · 𝐴) − (i · i)) = ((i · 𝐴) − -1)
22 subneg 11450 . . . . . . . . . . 11 (((i · 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · 𝐴) − -1) = ((i · 𝐴) + 1))
238, 1, 22sylancl 586 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((i · 𝐴) − -1) = ((i · 𝐴) + 1))
2421, 23eqtrid 2788 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((i · 𝐴) − (i · i)) = ((i · 𝐴) + 1))
25 addcom 11341 . . . . . . . . . 10 (((i · 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · 𝐴) + 1) = (1 + (i · 𝐴)))
268, 1, 25sylancl 586 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((i · 𝐴) + 1) = (1 + (i · 𝐴)))
2719, 24, 263eqtrd 2780 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · (𝐴 − i)) = (1 + (i · 𝐴)))
2827fveq2d 6846 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(i · (𝐴 − i))) = (log‘(1 + (i · 𝐴))))
29 subcl 11400 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 − i) ∈ ℂ)
306, 2, 29sylancl 586 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (𝐴 − i) ∈ ℂ)
31 resub 15012 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (ℜ‘(𝐴 − i)) = ((ℜ‘𝐴) − (ℜ‘i)))
326, 2, 31sylancl 586 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 − i)) = ((ℜ‘𝐴) − (ℜ‘i)))
33 rei 15041 . . . . . . . . . . . . 13 (ℜ‘i) = 0
3433oveq2i 7368 . . . . . . . . . . . 12 ((ℜ‘𝐴) − (ℜ‘i)) = ((ℜ‘𝐴) − 0)
356recld 15079 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ∈ ℝ)
3635recnd 11183 . . . . . . . . . . . . 13 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ∈ ℂ)
3736subid1d 11501 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℜ‘𝐴) − 0) = (ℜ‘𝐴))
3834, 37eqtrid 2788 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℜ‘𝐴) − (ℜ‘i)) = (ℜ‘𝐴))
3932, 38eqtrd 2776 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 − i)) = (ℜ‘𝐴))
40 gt0ne0 11620 . . . . . . . . . . 11 (((ℜ‘𝐴) ∈ ℝ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ≠ 0)
4135, 40sylancom 588 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ≠ 0)
4239, 41eqnetrd 3011 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 − i)) ≠ 0)
43 fveq2 6842 . . . . . . . . . . 11 ((𝐴 − i) = 0 → (ℜ‘(𝐴 − i)) = (ℜ‘0))
44 re0 15037 . . . . . . . . . . 11 (ℜ‘0) = 0
4543, 44eqtrdi 2792 . . . . . . . . . 10 ((𝐴 − i) = 0 → (ℜ‘(𝐴 − i)) = 0)
4645necon3i 2976 . . . . . . . . 9 ((ℜ‘(𝐴 − i)) ≠ 0 → (𝐴 − i) ≠ 0)
4742, 46syl 17 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (𝐴 − i) ≠ 0)
48 simpr 485 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘𝐴))
49 0re 11157 . . . . . . . . . . 11 0 ∈ ℝ
50 ltle 11243 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (0 < (ℜ‘𝐴) → 0 ≤ (ℜ‘𝐴)))
5149, 35, 50sylancr 587 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (0 < (ℜ‘𝐴) → 0 ≤ (ℜ‘𝐴)))
5248, 51mpd 15 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 ≤ (ℜ‘𝐴))
5352, 39breqtrrd 5133 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 ≤ (ℜ‘(𝐴 − i)))
54 logimul 25969 . . . . . . . 8 (((𝐴 − i) ∈ ℂ ∧ (𝐴 − i) ≠ 0 ∧ 0 ≤ (ℜ‘(𝐴 − i))) → (log‘(i · (𝐴 − i))) = ((log‘(𝐴 − i)) + (i · (π / 2))))
5530, 47, 53, 54syl3anc 1371 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(i · (𝐴 − i))) = ((log‘(𝐴 − i)) + (i · (π / 2))))
5628, 55eqtr3d 2778 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(1 + (i · 𝐴))) = ((log‘(𝐴 − i)) + (i · (π / 2))))
5756fveq2d 6846 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 + (i · 𝐴)))) = (ℑ‘((log‘(𝐴 − i)) + (i · (π / 2)))))
5830, 47logcld 25926 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(𝐴 − i)) ∈ ℂ)
59 halfpire 25821 . . . . . . . . 9 (π / 2) ∈ ℝ
6059recni 11169 . . . . . . . 8 (π / 2) ∈ ℂ
612, 60mulcli 11162 . . . . . . 7 (i · (π / 2)) ∈ ℂ
62 imadd 15019 . . . . . . 7 (((log‘(𝐴 − i)) ∈ ℂ ∧ (i · (π / 2)) ∈ ℂ) → (ℑ‘((log‘(𝐴 − i)) + (i · (π / 2)))) = ((ℑ‘(log‘(𝐴 − i))) + (ℑ‘(i · (π / 2)))))
6358, 61, 62sylancl 586 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(𝐴 − i)) + (i · (π / 2)))) = ((ℑ‘(log‘(𝐴 − i))) + (ℑ‘(i · (π / 2)))))
64 reim 14994 . . . . . . . . 9 ((π / 2) ∈ ℂ → (ℜ‘(π / 2)) = (ℑ‘(i · (π / 2))))
6560, 64ax-mp 5 . . . . . . . 8 (ℜ‘(π / 2)) = (ℑ‘(i · (π / 2)))
66 rere 15007 . . . . . . . . 9 ((π / 2) ∈ ℝ → (ℜ‘(π / 2)) = (π / 2))
6759, 66ax-mp 5 . . . . . . . 8 (ℜ‘(π / 2)) = (π / 2)
6865, 67eqtr3i 2766 . . . . . . 7 (ℑ‘(i · (π / 2))) = (π / 2)
6968oveq2i 7368 . . . . . 6 ((ℑ‘(log‘(𝐴 − i))) + (ℑ‘(i · (π / 2)))) = ((ℑ‘(log‘(𝐴 − i))) + (π / 2))
7063, 69eqtrdi 2792 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(𝐴 − i)) + (i · (π / 2)))) = ((ℑ‘(log‘(𝐴 − i))) + (π / 2)))
7157, 70eqtrd 2776 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 + (i · 𝐴)))) = ((ℑ‘(log‘(𝐴 − i))) + (π / 2)))
72 addcl 11133 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 + i) ∈ ℂ)
736, 2, 72sylancl 586 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (𝐴 + i) ∈ ℂ)
74 mulcl 11135 . . . . . . . . 9 ((i ∈ ℂ ∧ (𝐴 + i) ∈ ℂ) → (i · (𝐴 + i)) ∈ ℂ)
752, 73, 74sylancr 587 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · (𝐴 + i)) ∈ ℂ)
76 reim 14994 . . . . . . . . . . 11 ((𝐴 + i) ∈ ℂ → (ℜ‘(𝐴 + i)) = (ℑ‘(i · (𝐴 + i))))
7773, 76syl 17 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 + i)) = (ℑ‘(i · (𝐴 + i))))
78 readd 15011 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (ℜ‘(𝐴 + i)) = ((ℜ‘𝐴) + (ℜ‘i)))
796, 2, 78sylancl 586 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 + i)) = ((ℜ‘𝐴) + (ℜ‘i)))
8033oveq2i 7368 . . . . . . . . . . . 12 ((ℜ‘𝐴) + (ℜ‘i)) = ((ℜ‘𝐴) + 0)
8136addid1d 11355 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℜ‘𝐴) + 0) = (ℜ‘𝐴))
8280, 81eqtrid 2788 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℜ‘𝐴) + (ℜ‘i)) = (ℜ‘𝐴))
8379, 82eqtrd 2776 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 + i)) = (ℜ‘𝐴))
8477, 83eqtr3d 2778 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(i · (𝐴 + i))) = (ℜ‘𝐴))
8548, 84breqtrrd 5133 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℑ‘(i · (𝐴 + i))))
86 logneg2 25970 . . . . . . . 8 (((i · (𝐴 + i)) ∈ ℂ ∧ 0 < (ℑ‘(i · (𝐴 + i)))) → (log‘-(i · (𝐴 + i))) = ((log‘(i · (𝐴 + i))) − (i · π)))
8775, 85, 86syl2anc 584 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘-(i · (𝐴 + i))) = ((log‘(i · (𝐴 + i))) − (i · π)))
8818, 6, 18adddid 11179 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · (𝐴 + i)) = ((i · 𝐴) + (i · i)))
8920oveq2i 7368 . . . . . . . . . . . 12 ((i · 𝐴) + (i · i)) = ((i · 𝐴) + -1)
90 negsub 11449 . . . . . . . . . . . . 13 (((i · 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · 𝐴) + -1) = ((i · 𝐴) − 1))
918, 1, 90sylancl 586 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((i · 𝐴) + -1) = ((i · 𝐴) − 1))
9289, 91eqtrid 2788 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((i · 𝐴) + (i · i)) = ((i · 𝐴) − 1))
9388, 92eqtrd 2776 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · (𝐴 + i)) = ((i · 𝐴) − 1))
9493negeqd 11395 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -(i · (𝐴 + i)) = -((i · 𝐴) − 1))
95 negsubdi2 11460 . . . . . . . . . 10 (((i · 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → -((i · 𝐴) − 1) = (1 − (i · 𝐴)))
968, 1, 95sylancl 586 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -((i · 𝐴) − 1) = (1 − (i · 𝐴)))
9794, 96eqtrd 2776 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -(i · (𝐴 + i)) = (1 − (i · 𝐴)))
9897fveq2d 6846 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘-(i · (𝐴 + i))) = (log‘(1 − (i · 𝐴))))
9983, 41eqnetrd 3011 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 + i)) ≠ 0)
100 fveq2 6842 . . . . . . . . . . . 12 ((𝐴 + i) = 0 → (ℜ‘(𝐴 + i)) = (ℜ‘0))
101100, 44eqtrdi 2792 . . . . . . . . . . 11 ((𝐴 + i) = 0 → (ℜ‘(𝐴 + i)) = 0)
102101necon3i 2976 . . . . . . . . . 10 ((ℜ‘(𝐴 + i)) ≠ 0 → (𝐴 + i) ≠ 0)
10399, 102syl 17 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (𝐴 + i) ≠ 0)
10473, 103logcld 25926 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(𝐴 + i)) ∈ ℂ)
10561a1i 11 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · (π / 2)) ∈ ℂ)
106 picn 25816 . . . . . . . . . 10 π ∈ ℂ
1072, 106mulcli 11162 . . . . . . . . 9 (i · π) ∈ ℂ
108107a1i 11 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · π) ∈ ℂ)
10952, 83breqtrrd 5133 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 ≤ (ℜ‘(𝐴 + i)))
110 logimul 25969 . . . . . . . . . 10 (((𝐴 + i) ∈ ℂ ∧ (𝐴 + i) ≠ 0 ∧ 0 ≤ (ℜ‘(𝐴 + i))) → (log‘(i · (𝐴 + i))) = ((log‘(𝐴 + i)) + (i · (π / 2))))
11173, 103, 109, 110syl3anc 1371 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(i · (𝐴 + i))) = ((log‘(𝐴 + i)) + (i · (π / 2))))
112111oveq1d 7372 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((log‘(i · (𝐴 + i))) − (i · π)) = (((log‘(𝐴 + i)) + (i · (π / 2))) − (i · π)))
113104, 105, 108, 112assraddsubd 11569 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((log‘(i · (𝐴 + i))) − (i · π)) = ((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π))))
11487, 98, 1133eqtr3d 2784 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(1 − (i · 𝐴))) = ((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π))))
115114fveq2d 6846 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 − (i · 𝐴)))) = (ℑ‘((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π)))))
11661, 107subcli 11477 . . . . . . 7 ((i · (π / 2)) − (i · π)) ∈ ℂ
117 imadd 15019 . . . . . . 7 (((log‘(𝐴 + i)) ∈ ℂ ∧ ((i · (π / 2)) − (i · π)) ∈ ℂ) → (ℑ‘((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π)))) = ((ℑ‘(log‘(𝐴 + i))) + (ℑ‘((i · (π / 2)) − (i · π)))))
118104, 116, 117sylancl 586 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π)))) = ((ℑ‘(log‘(𝐴 + i))) + (ℑ‘((i · (π / 2)) − (i · π)))))
119 imsub 15020 . . . . . . . . 9 (((i · (π / 2)) ∈ ℂ ∧ (i · π) ∈ ℂ) → (ℑ‘((i · (π / 2)) − (i · π))) = ((ℑ‘(i · (π / 2))) − (ℑ‘(i · π))))
12061, 107, 119mp2an 690 . . . . . . . 8 (ℑ‘((i · (π / 2)) − (i · π))) = ((ℑ‘(i · (π / 2))) − (ℑ‘(i · π)))
121 reim 14994 . . . . . . . . . . 11 (π ∈ ℂ → (ℜ‘π) = (ℑ‘(i · π)))
122106, 121ax-mp 5 . . . . . . . . . 10 (ℜ‘π) = (ℑ‘(i · π))
123 pire 25815 . . . . . . . . . . 11 π ∈ ℝ
124 rere 15007 . . . . . . . . . . 11 (π ∈ ℝ → (ℜ‘π) = π)
125123, 124ax-mp 5 . . . . . . . . . 10 (ℜ‘π) = π
126122, 125eqtr3i 2766 . . . . . . . . 9 (ℑ‘(i · π)) = π
12768, 126oveq12i 7369 . . . . . . . 8 ((ℑ‘(i · (π / 2))) − (ℑ‘(i · π))) = ((π / 2) − π)
12860negcli 11469 . . . . . . . . 9 -(π / 2) ∈ ℂ
129106, 60negsubi 11479 . . . . . . . . . 10 (π + -(π / 2)) = (π − (π / 2))
130 pidiv2halves 25824 . . . . . . . . . . 11 ((π / 2) + (π / 2)) = π
131106, 60, 60, 130subaddrii 11490 . . . . . . . . . 10 (π − (π / 2)) = (π / 2)
132129, 131eqtri 2764 . . . . . . . . 9 (π + -(π / 2)) = (π / 2)
13360, 106, 128, 132subaddrii 11490 . . . . . . . 8 ((π / 2) − π) = -(π / 2)
134120, 127, 1333eqtri 2768 . . . . . . 7 (ℑ‘((i · (π / 2)) − (i · π))) = -(π / 2)
135134oveq2i 7368 . . . . . 6 ((ℑ‘(log‘(𝐴 + i))) + (ℑ‘((i · (π / 2)) − (i · π)))) = ((ℑ‘(log‘(𝐴 + i))) + -(π / 2))
136118, 135eqtrdi 2792 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π)))) = ((ℑ‘(log‘(𝐴 + i))) + -(π / 2)))
137115, 136eqtrd 2776 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 − (i · 𝐴)))) = ((ℑ‘(log‘(𝐴 + i))) + -(π / 2)))
13871, 137oveq12d 7375 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) − (ℑ‘(log‘(1 − (i · 𝐴))))) = (((ℑ‘(log‘(𝐴 − i))) + (π / 2)) − ((ℑ‘(log‘(𝐴 + i))) + -(π / 2))))
13958imcld 15080 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 − i))) ∈ ℝ)
140139recnd 11183 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 − i))) ∈ ℂ)
14160a1i 11 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (π / 2) ∈ ℂ)
142104imcld 15080 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 + i))) ∈ ℝ)
143142recnd 11183 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 + i))) ∈ ℂ)
144128a1i 11 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -(π / 2) ∈ ℂ)
145140, 141, 143, 144addsub4d 11559 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) + (π / 2)) − ((ℑ‘(log‘(𝐴 + i))) + -(π / 2))) = (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + ((π / 2) − -(π / 2))))
14660, 60subnegi 11480 . . . . . 6 ((π / 2) − -(π / 2)) = ((π / 2) + (π / 2))
147146, 130eqtri 2764 . . . . 5 ((π / 2) − -(π / 2)) = π
148147oveq2i 7368 . . . 4 (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + ((π / 2) − -(π / 2))) = (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π)
149145, 148eqtrdi 2792 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) + (π / 2)) − ((ℑ‘(log‘(𝐴 + i))) + -(π / 2))) = (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π))
15017, 138, 1493eqtrd 2780 . 2 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π))
151139, 142resubcld 11583 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) ∈ ℝ)
152 readdcl 11134 . . . 4 ((((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) ∈ ℝ ∧ π ∈ ℝ) → (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ ℝ)
153151, 123, 152sylancl 586 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ ℝ)
154123renegcli 11462 . . . . . . 7 -π ∈ ℝ
155154recni 11169 . . . . . 6 -π ∈ ℂ
156155, 106negsubi 11479 . . . . 5 (-π + -π) = (-π − π)
157154a1i 11 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π ∈ ℝ)
158142renegcld 11582 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -(ℑ‘(log‘(𝐴 + i))) ∈ ℝ)
15930, 47logimcld 25927 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (-π < (ℑ‘(log‘(𝐴 − i))) ∧ (ℑ‘(log‘(𝐴 − i))) ≤ π))
160159simpld 495 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π < (ℑ‘(log‘(𝐴 − i))))
16173, 103logimcld 25927 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (-π < (ℑ‘(log‘(𝐴 + i))) ∧ (ℑ‘(log‘(𝐴 + i))) ≤ π))
162161simprd 496 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 + i))) ≤ π)
163 leneg 11658 . . . . . . . . 9 (((ℑ‘(log‘(𝐴 + i))) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘(log‘(𝐴 + i))) ≤ π ↔ -π ≤ -(ℑ‘(log‘(𝐴 + i)))))
164142, 123, 163sylancl 586 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(𝐴 + i))) ≤ π ↔ -π ≤ -(ℑ‘(log‘(𝐴 + i)))))
165162, 164mpbid 231 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π ≤ -(ℑ‘(log‘(𝐴 + i))))
166157, 157, 139, 158, 160, 165ltleaddd 11776 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (-π + -π) < ((ℑ‘(log‘(𝐴 − i))) + -(ℑ‘(log‘(𝐴 + i)))))
167140, 143negsubd 11518 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(𝐴 − i))) + -(ℑ‘(log‘(𝐴 + i)))) = ((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))))
168166, 167breqtrd 5131 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (-π + -π) < ((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))))
169156, 168eqbrtrrid 5141 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (-π − π) < ((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))))
170123a1i 11 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → π ∈ ℝ)
171157, 170, 151ltsubaddd 11751 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((-π − π) < ((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) ↔ -π < (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π)))
172169, 171mpbid 231 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π < (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π))
173 0red 11158 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 ∈ ℝ)
1746imcld 15080 . . . . . . . . . . . . 13 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘𝐴) ∈ ℝ)
175 peano2rem 11468 . . . . . . . . . . . . 13 ((ℑ‘𝐴) ∈ ℝ → ((ℑ‘𝐴) − 1) ∈ ℝ)
176174, 175syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘𝐴) − 1) ∈ ℝ)
177 peano2re 11328 . . . . . . . . . . . . 13 ((ℑ‘𝐴) ∈ ℝ → ((ℑ‘𝐴) + 1) ∈ ℝ)
178174, 177syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘𝐴) + 1) ∈ ℝ)
179174ltm1d 12087 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘𝐴) − 1) < (ℑ‘𝐴))
180174ltp1d 12085 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘𝐴) < ((ℑ‘𝐴) + 1))
181176, 174, 178, 179, 180lttrd 11316 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘𝐴) − 1) < ((ℑ‘𝐴) + 1))
182 ltdiv1 12019 . . . . . . . . . . . 12 ((((ℑ‘𝐴) − 1) ∈ ℝ ∧ ((ℑ‘𝐴) + 1) ∈ ℝ ∧ ((ℜ‘𝐴) ∈ ℝ ∧ 0 < (ℜ‘𝐴))) → (((ℑ‘𝐴) − 1) < ((ℑ‘𝐴) + 1) ↔ (((ℑ‘𝐴) − 1) / (ℜ‘𝐴)) < (((ℑ‘𝐴) + 1) / (ℜ‘𝐴))))
183176, 178, 35, 48, 182syl112anc 1374 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘𝐴) − 1) < ((ℑ‘𝐴) + 1) ↔ (((ℑ‘𝐴) − 1) / (ℜ‘𝐴)) < (((ℑ‘𝐴) + 1) / (ℜ‘𝐴))))
184181, 183mpbid 231 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘𝐴) − 1) / (ℜ‘𝐴)) < (((ℑ‘𝐴) + 1) / (ℜ‘𝐴)))
185 imsub 15020 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (ℑ‘(𝐴 − i)) = ((ℑ‘𝐴) − (ℑ‘i)))
1866, 2, 185sylancl 586 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(𝐴 − i)) = ((ℑ‘𝐴) − (ℑ‘i)))
187 imi 15042 . . . . . . . . . . . . 13 (ℑ‘i) = 1
188187oveq2i 7368 . . . . . . . . . . . 12 ((ℑ‘𝐴) − (ℑ‘i)) = ((ℑ‘𝐴) − 1)
189186, 188eqtrdi 2792 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(𝐴 − i)) = ((ℑ‘𝐴) − 1))
190189, 39oveq12d 7375 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(𝐴 − i)) / (ℜ‘(𝐴 − i))) = (((ℑ‘𝐴) − 1) / (ℜ‘𝐴)))
191 imadd 15019 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (ℑ‘(𝐴 + i)) = ((ℑ‘𝐴) + (ℑ‘i)))
1926, 2, 191sylancl 586 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(𝐴 + i)) = ((ℑ‘𝐴) + (ℑ‘i)))
193187oveq2i 7368 . . . . . . . . . . . 12 ((ℑ‘𝐴) + (ℑ‘i)) = ((ℑ‘𝐴) + 1)
194192, 193eqtrdi 2792 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(𝐴 + i)) = ((ℑ‘𝐴) + 1))
195194, 83oveq12d 7375 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(𝐴 + i)) / (ℜ‘(𝐴 + i))) = (((ℑ‘𝐴) + 1) / (ℜ‘𝐴)))
196184, 190, 1953brtr4d 5137 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(𝐴 − i)) / (ℜ‘(𝐴 − i))) < ((ℑ‘(𝐴 + i)) / (ℜ‘(𝐴 + i))))
197 tanarg 25974 . . . . . . . . . 10 (((𝐴 − i) ∈ ℂ ∧ (ℜ‘(𝐴 − i)) ≠ 0) → (tan‘(ℑ‘(log‘(𝐴 − i)))) = ((ℑ‘(𝐴 − i)) / (ℜ‘(𝐴 − i))))
19830, 42, 197syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (tan‘(ℑ‘(log‘(𝐴 − i)))) = ((ℑ‘(𝐴 − i)) / (ℜ‘(𝐴 − i))))
199 tanarg 25974 . . . . . . . . . 10 (((𝐴 + i) ∈ ℂ ∧ (ℜ‘(𝐴 + i)) ≠ 0) → (tan‘(ℑ‘(log‘(𝐴 + i)))) = ((ℑ‘(𝐴 + i)) / (ℜ‘(𝐴 + i))))
20073, 99, 199syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (tan‘(ℑ‘(log‘(𝐴 + i)))) = ((ℑ‘(𝐴 + i)) / (ℜ‘(𝐴 + i))))
201196, 198, 2003brtr4d 5137 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (tan‘(ℑ‘(log‘(𝐴 − i)))) < (tan‘(ℑ‘(log‘(𝐴 + i)))))
20248, 39breqtrrd 5133 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘(𝐴 − i)))
203 argregt0 25965 . . . . . . . . . 10 (((𝐴 − i) ∈ ℂ ∧ 0 < (ℜ‘(𝐴 − i))) → (ℑ‘(log‘(𝐴 − i))) ∈ (-(π / 2)(,)(π / 2)))
20430, 202, 203syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 − i))) ∈ (-(π / 2)(,)(π / 2)))
20548, 83breqtrrd 5133 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘(𝐴 + i)))
206 argregt0 25965 . . . . . . . . . 10 (((𝐴 + i) ∈ ℂ ∧ 0 < (ℜ‘(𝐴 + i))) → (ℑ‘(log‘(𝐴 + i))) ∈ (-(π / 2)(,)(π / 2)))
20773, 205, 206syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 + i))) ∈ (-(π / 2)(,)(π / 2)))
208 tanord 25894 . . . . . . . . 9 (((ℑ‘(log‘(𝐴 − i))) ∈ (-(π / 2)(,)(π / 2)) ∧ (ℑ‘(log‘(𝐴 + i))) ∈ (-(π / 2)(,)(π / 2))) → ((ℑ‘(log‘(𝐴 − i))) < (ℑ‘(log‘(𝐴 + i))) ↔ (tan‘(ℑ‘(log‘(𝐴 − i)))) < (tan‘(ℑ‘(log‘(𝐴 + i))))))
209204, 207, 208syl2anc 584 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(𝐴 − i))) < (ℑ‘(log‘(𝐴 + i))) ↔ (tan‘(ℑ‘(log‘(𝐴 − i)))) < (tan‘(ℑ‘(log‘(𝐴 + i))))))
210201, 209mpbird 256 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 − i))) < (ℑ‘(log‘(𝐴 + i))))
211143addid2d 11356 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (0 + (ℑ‘(log‘(𝐴 + i)))) = (ℑ‘(log‘(𝐴 + i))))
212210, 211breqtrrd 5133 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 − i))) < (0 + (ℑ‘(log‘(𝐴 + i)))))
213139, 142, 173ltsubaddd 11751 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) < 0 ↔ (ℑ‘(log‘(𝐴 − i))) < (0 + (ℑ‘(log‘(𝐴 + i))))))
214212, 213mpbird 256 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) < 0)
215151, 173, 170, 214ltadd1dd 11766 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) < (0 + π))
216106addid2i 11343 . . . 4 (0 + π) = π
217215, 216breqtrdi 5146 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) < π)
218154rexri 11213 . . . 4 -π ∈ ℝ*
219123rexri 11213 . . . 4 π ∈ ℝ*
220 elioo2 13305 . . . 4 ((-π ∈ ℝ* ∧ π ∈ ℝ*) → ((((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ (-π(,)π) ↔ ((((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ ℝ ∧ -π < (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∧ (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) < π)))
221218, 219, 220mp2an 690 . . 3 ((((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ (-π(,)π) ↔ ((((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ ℝ ∧ -π < (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∧ (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) < π))
222153, 172, 217, 221syl3anbrc 1343 . 2 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ (-π(,)π))
223150, 222eqeltrd 2838 1 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  dom cdm 5633  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052  ici 11053   + caddc 11054   · cmul 11056  *cxr 11188   < clt 11189  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  2c2 12208  (,)cioo 13264  cre 14982  cim 14983  tanctan 15948  πcpi 15949  logclog 25910  arctancatan 26214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-tan 15954  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912  df-atan 26217
This theorem is referenced by:  atanlogsub  26266  atanbndlem  26275
  Copyright terms: Public domain W3C validator