MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atanlogsublem Structured version   Visualization version   GIF version

Theorem atanlogsublem 26763
Description: Lemma for atanlogsub 26764. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
atanlogsublem ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π))

Proof of Theorem atanlogsublem
StepHypRef Expression
1 ax-1cn 11164 . . . . . 6 1 ∈ ℂ
2 ax-icn 11165 . . . . . . 7 i ∈ ℂ
3 simpl 482 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 𝐴 ∈ dom arctan)
4 atandm2 26725 . . . . . . . . 9 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
53, 4sylib 217 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
65simp1d 1139 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 𝐴 ∈ ℂ)
7 mulcl 11190 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
82, 6, 7sylancr 586 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · 𝐴) ∈ ℂ)
9 addcl 11188 . . . . . 6 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
101, 8, 9sylancr 586 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (1 + (i · 𝐴)) ∈ ℂ)
115simp3d 1141 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (1 + (i · 𝐴)) ≠ 0)
1210, 11logcld 26421 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(1 + (i · 𝐴))) ∈ ℂ)
13 subcl 11456 . . . . . 6 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
141, 8, 13sylancr 586 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (1 − (i · 𝐴)) ∈ ℂ)
155simp2d 1140 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (1 − (i · 𝐴)) ≠ 0)
1614, 15logcld 26421 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(1 − (i · 𝐴))) ∈ ℂ)
1712, 16imsubd 15161 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = ((ℑ‘(log‘(1 + (i · 𝐴)))) − (ℑ‘(log‘(1 − (i · 𝐴))))))
182a1i 11 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → i ∈ ℂ)
1918, 6, 18subdid 11667 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · (𝐴 − i)) = ((i · 𝐴) − (i · i)))
20 ixi 11840 . . . . . . . . . . 11 (i · i) = -1
2120oveq2i 7412 . . . . . . . . . 10 ((i · 𝐴) − (i · i)) = ((i · 𝐴) − -1)
22 subneg 11506 . . . . . . . . . . 11 (((i · 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · 𝐴) − -1) = ((i · 𝐴) + 1))
238, 1, 22sylancl 585 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((i · 𝐴) − -1) = ((i · 𝐴) + 1))
2421, 23eqtrid 2776 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((i · 𝐴) − (i · i)) = ((i · 𝐴) + 1))
25 addcom 11397 . . . . . . . . . 10 (((i · 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · 𝐴) + 1) = (1 + (i · 𝐴)))
268, 1, 25sylancl 585 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((i · 𝐴) + 1) = (1 + (i · 𝐴)))
2719, 24, 263eqtrd 2768 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · (𝐴 − i)) = (1 + (i · 𝐴)))
2827fveq2d 6885 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(i · (𝐴 − i))) = (log‘(1 + (i · 𝐴))))
29 subcl 11456 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 − i) ∈ ℂ)
306, 2, 29sylancl 585 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (𝐴 − i) ∈ ℂ)
31 resub 15071 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (ℜ‘(𝐴 − i)) = ((ℜ‘𝐴) − (ℜ‘i)))
326, 2, 31sylancl 585 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 − i)) = ((ℜ‘𝐴) − (ℜ‘i)))
33 rei 15100 . . . . . . . . . . . . 13 (ℜ‘i) = 0
3433oveq2i 7412 . . . . . . . . . . . 12 ((ℜ‘𝐴) − (ℜ‘i)) = ((ℜ‘𝐴) − 0)
356recld 15138 . . . . . . . . . . . . . 14 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ∈ ℝ)
3635recnd 11239 . . . . . . . . . . . . 13 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ∈ ℂ)
3736subid1d 11557 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℜ‘𝐴) − 0) = (ℜ‘𝐴))
3834, 37eqtrid 2776 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℜ‘𝐴) − (ℜ‘i)) = (ℜ‘𝐴))
3932, 38eqtrd 2764 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 − i)) = (ℜ‘𝐴))
40 gt0ne0 11676 . . . . . . . . . . 11 (((ℜ‘𝐴) ∈ ℝ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ≠ 0)
4135, 40sylancom 587 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ≠ 0)
4239, 41eqnetrd 3000 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 − i)) ≠ 0)
43 fveq2 6881 . . . . . . . . . . 11 ((𝐴 − i) = 0 → (ℜ‘(𝐴 − i)) = (ℜ‘0))
44 re0 15096 . . . . . . . . . . 11 (ℜ‘0) = 0
4543, 44eqtrdi 2780 . . . . . . . . . 10 ((𝐴 − i) = 0 → (ℜ‘(𝐴 − i)) = 0)
4645necon3i 2965 . . . . . . . . 9 ((ℜ‘(𝐴 − i)) ≠ 0 → (𝐴 − i) ≠ 0)
4742, 46syl 17 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (𝐴 − i) ≠ 0)
48 simpr 484 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘𝐴))
49 0re 11213 . . . . . . . . . . 11 0 ∈ ℝ
50 ltle 11299 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (0 < (ℜ‘𝐴) → 0 ≤ (ℜ‘𝐴)))
5149, 35, 50sylancr 586 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (0 < (ℜ‘𝐴) → 0 ≤ (ℜ‘𝐴)))
5248, 51mpd 15 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 ≤ (ℜ‘𝐴))
5352, 39breqtrrd 5166 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 ≤ (ℜ‘(𝐴 − i)))
54 logimul 26464 . . . . . . . 8 (((𝐴 − i) ∈ ℂ ∧ (𝐴 − i) ≠ 0 ∧ 0 ≤ (ℜ‘(𝐴 − i))) → (log‘(i · (𝐴 − i))) = ((log‘(𝐴 − i)) + (i · (π / 2))))
5530, 47, 53, 54syl3anc 1368 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(i · (𝐴 − i))) = ((log‘(𝐴 − i)) + (i · (π / 2))))
5628, 55eqtr3d 2766 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(1 + (i · 𝐴))) = ((log‘(𝐴 − i)) + (i · (π / 2))))
5756fveq2d 6885 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 + (i · 𝐴)))) = (ℑ‘((log‘(𝐴 − i)) + (i · (π / 2)))))
5830, 47logcld 26421 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(𝐴 − i)) ∈ ℂ)
59 halfpire 26316 . . . . . . . . 9 (π / 2) ∈ ℝ
6059recni 11225 . . . . . . . 8 (π / 2) ∈ ℂ
612, 60mulcli 11218 . . . . . . 7 (i · (π / 2)) ∈ ℂ
62 imadd 15078 . . . . . . 7 (((log‘(𝐴 − i)) ∈ ℂ ∧ (i · (π / 2)) ∈ ℂ) → (ℑ‘((log‘(𝐴 − i)) + (i · (π / 2)))) = ((ℑ‘(log‘(𝐴 − i))) + (ℑ‘(i · (π / 2)))))
6358, 61, 62sylancl 585 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(𝐴 − i)) + (i · (π / 2)))) = ((ℑ‘(log‘(𝐴 − i))) + (ℑ‘(i · (π / 2)))))
64 reim 15053 . . . . . . . . 9 ((π / 2) ∈ ℂ → (ℜ‘(π / 2)) = (ℑ‘(i · (π / 2))))
6560, 64ax-mp 5 . . . . . . . 8 (ℜ‘(π / 2)) = (ℑ‘(i · (π / 2)))
66 rere 15066 . . . . . . . . 9 ((π / 2) ∈ ℝ → (ℜ‘(π / 2)) = (π / 2))
6759, 66ax-mp 5 . . . . . . . 8 (ℜ‘(π / 2)) = (π / 2)
6865, 67eqtr3i 2754 . . . . . . 7 (ℑ‘(i · (π / 2))) = (π / 2)
6968oveq2i 7412 . . . . . 6 ((ℑ‘(log‘(𝐴 − i))) + (ℑ‘(i · (π / 2)))) = ((ℑ‘(log‘(𝐴 − i))) + (π / 2))
7063, 69eqtrdi 2780 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(𝐴 − i)) + (i · (π / 2)))) = ((ℑ‘(log‘(𝐴 − i))) + (π / 2)))
7157, 70eqtrd 2764 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 + (i · 𝐴)))) = ((ℑ‘(log‘(𝐴 − i))) + (π / 2)))
72 addcl 11188 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (𝐴 + i) ∈ ℂ)
736, 2, 72sylancl 585 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (𝐴 + i) ∈ ℂ)
74 mulcl 11190 . . . . . . . . 9 ((i ∈ ℂ ∧ (𝐴 + i) ∈ ℂ) → (i · (𝐴 + i)) ∈ ℂ)
752, 73, 74sylancr 586 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · (𝐴 + i)) ∈ ℂ)
76 reim 15053 . . . . . . . . . . 11 ((𝐴 + i) ∈ ℂ → (ℜ‘(𝐴 + i)) = (ℑ‘(i · (𝐴 + i))))
7773, 76syl 17 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 + i)) = (ℑ‘(i · (𝐴 + i))))
78 readd 15070 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (ℜ‘(𝐴 + i)) = ((ℜ‘𝐴) + (ℜ‘i)))
796, 2, 78sylancl 585 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 + i)) = ((ℜ‘𝐴) + (ℜ‘i)))
8033oveq2i 7412 . . . . . . . . . . . 12 ((ℜ‘𝐴) + (ℜ‘i)) = ((ℜ‘𝐴) + 0)
8136addridd 11411 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℜ‘𝐴) + 0) = (ℜ‘𝐴))
8280, 81eqtrid 2776 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℜ‘𝐴) + (ℜ‘i)) = (ℜ‘𝐴))
8379, 82eqtrd 2764 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 + i)) = (ℜ‘𝐴))
8477, 83eqtr3d 2766 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(i · (𝐴 + i))) = (ℜ‘𝐴))
8548, 84breqtrrd 5166 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℑ‘(i · (𝐴 + i))))
86 logneg2 26465 . . . . . . . 8 (((i · (𝐴 + i)) ∈ ℂ ∧ 0 < (ℑ‘(i · (𝐴 + i)))) → (log‘-(i · (𝐴 + i))) = ((log‘(i · (𝐴 + i))) − (i · π)))
8775, 85, 86syl2anc 583 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘-(i · (𝐴 + i))) = ((log‘(i · (𝐴 + i))) − (i · π)))
8818, 6, 18adddid 11235 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · (𝐴 + i)) = ((i · 𝐴) + (i · i)))
8920oveq2i 7412 . . . . . . . . . . . 12 ((i · 𝐴) + (i · i)) = ((i · 𝐴) + -1)
90 negsub 11505 . . . . . . . . . . . . 13 (((i · 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · 𝐴) + -1) = ((i · 𝐴) − 1))
918, 1, 90sylancl 585 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((i · 𝐴) + -1) = ((i · 𝐴) − 1))
9289, 91eqtrid 2776 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((i · 𝐴) + (i · i)) = ((i · 𝐴) − 1))
9388, 92eqtrd 2764 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · (𝐴 + i)) = ((i · 𝐴) − 1))
9493negeqd 11451 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -(i · (𝐴 + i)) = -((i · 𝐴) − 1))
95 negsubdi2 11516 . . . . . . . . . 10 (((i · 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → -((i · 𝐴) − 1) = (1 − (i · 𝐴)))
968, 1, 95sylancl 585 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -((i · 𝐴) − 1) = (1 − (i · 𝐴)))
9794, 96eqtrd 2764 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -(i · (𝐴 + i)) = (1 − (i · 𝐴)))
9897fveq2d 6885 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘-(i · (𝐴 + i))) = (log‘(1 − (i · 𝐴))))
9983, 41eqnetrd 3000 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 + i)) ≠ 0)
100 fveq2 6881 . . . . . . . . . . . 12 ((𝐴 + i) = 0 → (ℜ‘(𝐴 + i)) = (ℜ‘0))
101100, 44eqtrdi 2780 . . . . . . . . . . 11 ((𝐴 + i) = 0 → (ℜ‘(𝐴 + i)) = 0)
102101necon3i 2965 . . . . . . . . . 10 ((ℜ‘(𝐴 + i)) ≠ 0 → (𝐴 + i) ≠ 0)
10399, 102syl 17 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (𝐴 + i) ≠ 0)
10473, 103logcld 26421 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(𝐴 + i)) ∈ ℂ)
10561a1i 11 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · (π / 2)) ∈ ℂ)
106 picn 26311 . . . . . . . . . 10 π ∈ ℂ
1072, 106mulcli 11218 . . . . . . . . 9 (i · π) ∈ ℂ
108107a1i 11 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (i · π) ∈ ℂ)
10952, 83breqtrrd 5166 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 ≤ (ℜ‘(𝐴 + i)))
110 logimul 26464 . . . . . . . . . 10 (((𝐴 + i) ∈ ℂ ∧ (𝐴 + i) ≠ 0 ∧ 0 ≤ (ℜ‘(𝐴 + i))) → (log‘(i · (𝐴 + i))) = ((log‘(𝐴 + i)) + (i · (π / 2))))
11173, 103, 109, 110syl3anc 1368 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(i · (𝐴 + i))) = ((log‘(𝐴 + i)) + (i · (π / 2))))
112111oveq1d 7416 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((log‘(i · (𝐴 + i))) − (i · π)) = (((log‘(𝐴 + i)) + (i · (π / 2))) − (i · π)))
113104, 105, 108, 112assraddsubd 11625 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((log‘(i · (𝐴 + i))) − (i · π)) = ((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π))))
11487, 98, 1133eqtr3d 2772 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (log‘(1 − (i · 𝐴))) = ((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π))))
115114fveq2d 6885 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 − (i · 𝐴)))) = (ℑ‘((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π)))))
11661, 107subcli 11533 . . . . . . 7 ((i · (π / 2)) − (i · π)) ∈ ℂ
117 imadd 15078 . . . . . . 7 (((log‘(𝐴 + i)) ∈ ℂ ∧ ((i · (π / 2)) − (i · π)) ∈ ℂ) → (ℑ‘((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π)))) = ((ℑ‘(log‘(𝐴 + i))) + (ℑ‘((i · (π / 2)) − (i · π)))))
118104, 116, 117sylancl 585 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π)))) = ((ℑ‘(log‘(𝐴 + i))) + (ℑ‘((i · (π / 2)) − (i · π)))))
119 imsub 15079 . . . . . . . . 9 (((i · (π / 2)) ∈ ℂ ∧ (i · π) ∈ ℂ) → (ℑ‘((i · (π / 2)) − (i · π))) = ((ℑ‘(i · (π / 2))) − (ℑ‘(i · π))))
12061, 107, 119mp2an 689 . . . . . . . 8 (ℑ‘((i · (π / 2)) − (i · π))) = ((ℑ‘(i · (π / 2))) − (ℑ‘(i · π)))
121 reim 15053 . . . . . . . . . . 11 (π ∈ ℂ → (ℜ‘π) = (ℑ‘(i · π)))
122106, 121ax-mp 5 . . . . . . . . . 10 (ℜ‘π) = (ℑ‘(i · π))
123 pire 26310 . . . . . . . . . . 11 π ∈ ℝ
124 rere 15066 . . . . . . . . . . 11 (π ∈ ℝ → (ℜ‘π) = π)
125123, 124ax-mp 5 . . . . . . . . . 10 (ℜ‘π) = π
126122, 125eqtr3i 2754 . . . . . . . . 9 (ℑ‘(i · π)) = π
12768, 126oveq12i 7413 . . . . . . . 8 ((ℑ‘(i · (π / 2))) − (ℑ‘(i · π))) = ((π / 2) − π)
12860negcli 11525 . . . . . . . . 9 -(π / 2) ∈ ℂ
129106, 60negsubi 11535 . . . . . . . . . 10 (π + -(π / 2)) = (π − (π / 2))
130 pidiv2halves 26319 . . . . . . . . . . 11 ((π / 2) + (π / 2)) = π
131106, 60, 60, 130subaddrii 11546 . . . . . . . . . 10 (π − (π / 2)) = (π / 2)
132129, 131eqtri 2752 . . . . . . . . 9 (π + -(π / 2)) = (π / 2)
13360, 106, 128, 132subaddrii 11546 . . . . . . . 8 ((π / 2) − π) = -(π / 2)
134120, 127, 1333eqtri 2756 . . . . . . 7 (ℑ‘((i · (π / 2)) − (i · π))) = -(π / 2)
135134oveq2i 7412 . . . . . 6 ((ℑ‘(log‘(𝐴 + i))) + (ℑ‘((i · (π / 2)) − (i · π)))) = ((ℑ‘(log‘(𝐴 + i))) + -(π / 2))
136118, 135eqtrdi 2780 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(𝐴 + i)) + ((i · (π / 2)) − (i · π)))) = ((ℑ‘(log‘(𝐴 + i))) + -(π / 2)))
137115, 136eqtrd 2764 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(1 − (i · 𝐴)))) = ((ℑ‘(log‘(𝐴 + i))) + -(π / 2)))
13871, 137oveq12d 7419 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(1 + (i · 𝐴)))) − (ℑ‘(log‘(1 − (i · 𝐴))))) = (((ℑ‘(log‘(𝐴 − i))) + (π / 2)) − ((ℑ‘(log‘(𝐴 + i))) + -(π / 2))))
13958imcld 15139 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 − i))) ∈ ℝ)
140139recnd 11239 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 − i))) ∈ ℂ)
14160a1i 11 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (π / 2) ∈ ℂ)
142104imcld 15139 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 + i))) ∈ ℝ)
143142recnd 11239 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 + i))) ∈ ℂ)
144128a1i 11 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -(π / 2) ∈ ℂ)
145140, 141, 143, 144addsub4d 11615 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) + (π / 2)) − ((ℑ‘(log‘(𝐴 + i))) + -(π / 2))) = (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + ((π / 2) − -(π / 2))))
14660, 60subnegi 11536 . . . . . 6 ((π / 2) − -(π / 2)) = ((π / 2) + (π / 2))
147146, 130eqtri 2752 . . . . 5 ((π / 2) − -(π / 2)) = π
148147oveq2i 7412 . . . 4 (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + ((π / 2) − -(π / 2))) = (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π)
149145, 148eqtrdi 2780 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) + (π / 2)) − ((ℑ‘(log‘(𝐴 + i))) + -(π / 2))) = (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π))
15017, 138, 1493eqtrd 2768 . 2 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π))
151139, 142resubcld 11639 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) ∈ ℝ)
152 readdcl 11189 . . . 4 ((((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) ∈ ℝ ∧ π ∈ ℝ) → (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ ℝ)
153151, 123, 152sylancl 585 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ ℝ)
154123renegcli 11518 . . . . . . 7 -π ∈ ℝ
155154recni 11225 . . . . . 6 -π ∈ ℂ
156155, 106negsubi 11535 . . . . 5 (-π + -π) = (-π − π)
157154a1i 11 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π ∈ ℝ)
158142renegcld 11638 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -(ℑ‘(log‘(𝐴 + i))) ∈ ℝ)
15930, 47logimcld 26422 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (-π < (ℑ‘(log‘(𝐴 − i))) ∧ (ℑ‘(log‘(𝐴 − i))) ≤ π))
160159simpld 494 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π < (ℑ‘(log‘(𝐴 − i))))
16173, 103logimcld 26422 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (-π < (ℑ‘(log‘(𝐴 + i))) ∧ (ℑ‘(log‘(𝐴 + i))) ≤ π))
162161simprd 495 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 + i))) ≤ π)
163 leneg 11714 . . . . . . . . 9 (((ℑ‘(log‘(𝐴 + i))) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘(log‘(𝐴 + i))) ≤ π ↔ -π ≤ -(ℑ‘(log‘(𝐴 + i)))))
164142, 123, 163sylancl 585 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(𝐴 + i))) ≤ π ↔ -π ≤ -(ℑ‘(log‘(𝐴 + i)))))
165162, 164mpbid 231 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π ≤ -(ℑ‘(log‘(𝐴 + i))))
166157, 157, 139, 158, 160, 165ltleaddd 11832 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (-π + -π) < ((ℑ‘(log‘(𝐴 − i))) + -(ℑ‘(log‘(𝐴 + i)))))
167140, 143negsubd 11574 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(𝐴 − i))) + -(ℑ‘(log‘(𝐴 + i)))) = ((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))))
168166, 167breqtrd 5164 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (-π + -π) < ((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))))
169156, 168eqbrtrrid 5174 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (-π − π) < ((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))))
170123a1i 11 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → π ∈ ℝ)
171157, 170, 151ltsubaddd 11807 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((-π − π) < ((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) ↔ -π < (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π)))
172169, 171mpbid 231 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → -π < (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π))
173 0red 11214 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 ∈ ℝ)
1746imcld 15139 . . . . . . . . . . . . 13 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘𝐴) ∈ ℝ)
175 peano2rem 11524 . . . . . . . . . . . . 13 ((ℑ‘𝐴) ∈ ℝ → ((ℑ‘𝐴) − 1) ∈ ℝ)
176174, 175syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘𝐴) − 1) ∈ ℝ)
177 peano2re 11384 . . . . . . . . . . . . 13 ((ℑ‘𝐴) ∈ ℝ → ((ℑ‘𝐴) + 1) ∈ ℝ)
178174, 177syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘𝐴) + 1) ∈ ℝ)
179174ltm1d 12143 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘𝐴) − 1) < (ℑ‘𝐴))
180174ltp1d 12141 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘𝐴) < ((ℑ‘𝐴) + 1))
181176, 174, 178, 179, 180lttrd 11372 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘𝐴) − 1) < ((ℑ‘𝐴) + 1))
182 ltdiv1 12075 . . . . . . . . . . . 12 ((((ℑ‘𝐴) − 1) ∈ ℝ ∧ ((ℑ‘𝐴) + 1) ∈ ℝ ∧ ((ℜ‘𝐴) ∈ ℝ ∧ 0 < (ℜ‘𝐴))) → (((ℑ‘𝐴) − 1) < ((ℑ‘𝐴) + 1) ↔ (((ℑ‘𝐴) − 1) / (ℜ‘𝐴)) < (((ℑ‘𝐴) + 1) / (ℜ‘𝐴))))
183176, 178, 35, 48, 182syl112anc 1371 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘𝐴) − 1) < ((ℑ‘𝐴) + 1) ↔ (((ℑ‘𝐴) − 1) / (ℜ‘𝐴)) < (((ℑ‘𝐴) + 1) / (ℜ‘𝐴))))
184181, 183mpbid 231 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘𝐴) − 1) / (ℜ‘𝐴)) < (((ℑ‘𝐴) + 1) / (ℜ‘𝐴)))
185 imsub 15079 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (ℑ‘(𝐴 − i)) = ((ℑ‘𝐴) − (ℑ‘i)))
1866, 2, 185sylancl 585 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(𝐴 − i)) = ((ℑ‘𝐴) − (ℑ‘i)))
187 imi 15101 . . . . . . . . . . . . 13 (ℑ‘i) = 1
188187oveq2i 7412 . . . . . . . . . . . 12 ((ℑ‘𝐴) − (ℑ‘i)) = ((ℑ‘𝐴) − 1)
189186, 188eqtrdi 2780 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(𝐴 − i)) = ((ℑ‘𝐴) − 1))
190189, 39oveq12d 7419 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(𝐴 − i)) / (ℜ‘(𝐴 − i))) = (((ℑ‘𝐴) − 1) / (ℜ‘𝐴)))
191 imadd 15078 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → (ℑ‘(𝐴 + i)) = ((ℑ‘𝐴) + (ℑ‘i)))
1926, 2, 191sylancl 585 . . . . . . . . . . . 12 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(𝐴 + i)) = ((ℑ‘𝐴) + (ℑ‘i)))
193187oveq2i 7412 . . . . . . . . . . . 12 ((ℑ‘𝐴) + (ℑ‘i)) = ((ℑ‘𝐴) + 1)
194192, 193eqtrdi 2780 . . . . . . . . . . 11 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(𝐴 + i)) = ((ℑ‘𝐴) + 1))
195194, 83oveq12d 7419 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(𝐴 + i)) / (ℜ‘(𝐴 + i))) = (((ℑ‘𝐴) + 1) / (ℜ‘𝐴)))
196184, 190, 1953brtr4d 5170 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(𝐴 − i)) / (ℜ‘(𝐴 − i))) < ((ℑ‘(𝐴 + i)) / (ℜ‘(𝐴 + i))))
197 tanarg 26469 . . . . . . . . . 10 (((𝐴 − i) ∈ ℂ ∧ (ℜ‘(𝐴 − i)) ≠ 0) → (tan‘(ℑ‘(log‘(𝐴 − i)))) = ((ℑ‘(𝐴 − i)) / (ℜ‘(𝐴 − i))))
19830, 42, 197syl2anc 583 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (tan‘(ℑ‘(log‘(𝐴 − i)))) = ((ℑ‘(𝐴 − i)) / (ℜ‘(𝐴 − i))))
199 tanarg 26469 . . . . . . . . . 10 (((𝐴 + i) ∈ ℂ ∧ (ℜ‘(𝐴 + i)) ≠ 0) → (tan‘(ℑ‘(log‘(𝐴 + i)))) = ((ℑ‘(𝐴 + i)) / (ℜ‘(𝐴 + i))))
20073, 99, 199syl2anc 583 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (tan‘(ℑ‘(log‘(𝐴 + i)))) = ((ℑ‘(𝐴 + i)) / (ℜ‘(𝐴 + i))))
201196, 198, 2003brtr4d 5170 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (tan‘(ℑ‘(log‘(𝐴 − i)))) < (tan‘(ℑ‘(log‘(𝐴 + i)))))
20248, 39breqtrrd 5166 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘(𝐴 − i)))
203 argregt0 26460 . . . . . . . . . 10 (((𝐴 − i) ∈ ℂ ∧ 0 < (ℜ‘(𝐴 − i))) → (ℑ‘(log‘(𝐴 − i))) ∈ (-(π / 2)(,)(π / 2)))
20430, 202, 203syl2anc 583 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 − i))) ∈ (-(π / 2)(,)(π / 2)))
20548, 83breqtrrd 5166 . . . . . . . . . 10 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘(𝐴 + i)))
206 argregt0 26460 . . . . . . . . . 10 (((𝐴 + i) ∈ ℂ ∧ 0 < (ℜ‘(𝐴 + i))) → (ℑ‘(log‘(𝐴 + i))) ∈ (-(π / 2)(,)(π / 2)))
20773, 205, 206syl2anc 583 . . . . . . . . 9 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 + i))) ∈ (-(π / 2)(,)(π / 2)))
208 tanord 26389 . . . . . . . . 9 (((ℑ‘(log‘(𝐴 − i))) ∈ (-(π / 2)(,)(π / 2)) ∧ (ℑ‘(log‘(𝐴 + i))) ∈ (-(π / 2)(,)(π / 2))) → ((ℑ‘(log‘(𝐴 − i))) < (ℑ‘(log‘(𝐴 + i))) ↔ (tan‘(ℑ‘(log‘(𝐴 − i)))) < (tan‘(ℑ‘(log‘(𝐴 + i))))))
209204, 207, 208syl2anc 583 . . . . . . . 8 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(𝐴 − i))) < (ℑ‘(log‘(𝐴 + i))) ↔ (tan‘(ℑ‘(log‘(𝐴 − i)))) < (tan‘(ℑ‘(log‘(𝐴 + i))))))
210201, 209mpbird 257 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 − i))) < (ℑ‘(log‘(𝐴 + i))))
211143addlidd 11412 . . . . . . 7 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (0 + (ℑ‘(log‘(𝐴 + i)))) = (ℑ‘(log‘(𝐴 + i))))
212210, 211breqtrrd 5166 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘(𝐴 − i))) < (0 + (ℑ‘(log‘(𝐴 + i)))))
213139, 142, 173ltsubaddd 11807 . . . . . 6 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) < 0 ↔ (ℑ‘(log‘(𝐴 − i))) < (0 + (ℑ‘(log‘(𝐴 + i))))))
214212, 213mpbird 257 . . . . 5 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → ((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) < 0)
215151, 173, 170, 214ltadd1dd 11822 . . . 4 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) < (0 + π))
216106addlidi 11399 . . . 4 (0 + π) = π
217215, 216breqtrdi 5179 . . 3 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) < π)
218154rexri 11269 . . . 4 -π ∈ ℝ*
219123rexri 11269 . . . 4 π ∈ ℝ*
220 elioo2 13362 . . . 4 ((-π ∈ ℝ* ∧ π ∈ ℝ*) → ((((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ (-π(,)π) ↔ ((((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ ℝ ∧ -π < (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∧ (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) < π)))
221218, 219, 220mp2an 689 . . 3 ((((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ (-π(,)π) ↔ ((((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ ℝ ∧ -π < (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∧ (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) < π))
222153, 172, 217, 221syl3anbrc 1340 . 2 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (((ℑ‘(log‘(𝐴 − i))) − (ℑ‘(log‘(𝐴 + i)))) + π) ∈ (-π(,)π))
223150, 222eqeltrd 2825 1 ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2932   class class class wbr 5138  dom cdm 5666  cfv 6533  (class class class)co 7401  cc 11104  cr 11105  0cc0 11106  1c1 11107  ici 11108   + caddc 11109   · cmul 11111  *cxr 11244   < clt 11245  cle 11246  cmin 11441  -cneg 11442   / cdiv 11868  2c2 12264  (,)cioo 13321  cre 15041  cim 15042  tanctan 16006  πcpi 16007  logclog 26405  arctancatan 26712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-q 12930  df-rp 12972  df-xneg 13089  df-xadd 13090  df-xmul 13091  df-ioo 13325  df-ioc 13326  df-ico 13327  df-icc 13328  df-fz 13482  df-fzo 13625  df-fl 13754  df-mod 13832  df-seq 13964  df-exp 14025  df-fac 14231  df-bc 14260  df-hash 14288  df-shft 15011  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-limsup 15412  df-clim 15429  df-rlim 15430  df-sum 15630  df-ef 16008  df-sin 16010  df-cos 16011  df-tan 16012  df-pi 16013  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17367  df-topn 17368  df-0g 17386  df-gsum 17387  df-topgen 17388  df-pt 17389  df-prds 17392  df-xrs 17447  df-qtop 17452  df-imas 17453  df-xps 17455  df-mre 17529  df-mrc 17530  df-acs 17532  df-mgm 18563  df-sgrp 18642  df-mnd 18658  df-submnd 18704  df-mulg 18986  df-cntz 19223  df-cmn 19692  df-psmet 21220  df-xmet 21221  df-met 21222  df-bl 21223  df-mopn 21224  df-fbas 21225  df-fg 21226  df-cnfld 21229  df-top 22718  df-topon 22735  df-topsp 22757  df-bases 22771  df-cld 22845  df-ntr 22846  df-cls 22847  df-nei 22924  df-lp 22962  df-perf 22963  df-cn 23053  df-cnp 23054  df-haus 23141  df-tx 23388  df-hmeo 23581  df-fil 23672  df-fm 23764  df-flim 23765  df-flf 23766  df-xms 24148  df-ms 24149  df-tms 24150  df-cncf 24720  df-limc 25717  df-dv 25718  df-log 26407  df-atan 26715
This theorem is referenced by:  atanlogsub  26764  atanbndlem  26773
  Copyright terms: Public domain W3C validator