| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addlidi | Structured version Visualization version GIF version | ||
| Description: 0 is a left identity for addition. (Contributed by NM, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| addlidi | ⊢ (0 + 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | addlid 11317 | . 2 ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (0 + 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 0cc0 11028 + caddc 11031 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 |
| This theorem is referenced by: ine0 11573 muleqadd 11782 nnne0 12180 0p1e1 12263 num0h 12621 nummul1c 12658 decrmac 12667 fz0tp 13549 fzo0to3tp 13673 cats1fvn 14783 rei 15081 imi 15082 ef01bndlem 16111 5ndvds3 16342 gcdaddmlem 16453 dec5dvds2 16995 2exp11 17019 2exp16 17020 43prm 17051 83prm 17052 139prm 17053 163prm 17054 317prm 17055 631prm 17056 1259lem1 17060 1259lem2 17061 1259lem3 17062 1259lem4 17063 1259lem5 17064 2503lem1 17066 2503lem2 17067 2503lem3 17068 2503prm 17069 4001lem1 17070 4001lem2 17071 4001lem3 17072 4001prm 17074 frgpnabllem1 19770 pcoass 24940 dvradcnv 26346 efhalfpi 26396 sinq34lt0t 26434 efifo 26472 logm1 26514 argimgt0 26537 ang180lem4 26738 1cubr 26768 asin1 26820 atanlogsublem 26841 dvatan 26861 log2ublem3 26874 log2ub 26875 basellem9 27015 cht2 27098 log2sumbnd 27471 ax5seglem7 28898 ex-fac 30413 dp20h 32832 dpmul4 32867 hgt750lem2 34619 12gcd5e1 41976 3exp7 42026 3lexlogpow5ineq1 42027 3lexlogpow5ineq5 42033 aks4d1p1 42049 posbezout 42073 sqn5i 42258 decpmul 42261 sqdeccom12 42262 sq3deccom12 42263 ex-decpmul 42279 fltnltalem 42635 dirkertrigeqlem1 46080 dirkertrigeqlem3 46082 fourierdlem103 46191 sqwvfoura 46210 sqwvfourb 46211 fouriersw 46213 fmtno5lem1 47538 fmtno5lem2 47539 fmtno5lem4 47541 fmtno4prmfac 47557 fmtno5faclem2 47565 fmtno5faclem3 47566 fmtno5fac 47567 139prmALT 47581 127prm 47584 2exp340mod341 47718 nfermltl8rev 47727 gpg5edgnedg 48115 ackval1012 48676 ackval2012 48677 ackval3012 48678 |
| Copyright terms: Public domain | W3C validator |