| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addlidi | Structured version Visualization version GIF version | ||
| Description: 0 is a left identity for addition. (Contributed by NM, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| addlidi | ⊢ (0 + 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | addlid 11293 | . 2 ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (0 + 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11001 0cc0 11003 + caddc 11006 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-ltxr 11148 |
| This theorem is referenced by: ine0 11549 muleqadd 11758 nnne0 12156 0p1e1 12239 num0h 12597 nummul1c 12634 decrmac 12643 fz0tp 13525 fzo0to3tp 13649 cats1fvn 14762 rei 15060 imi 15061 ef01bndlem 16090 5ndvds3 16321 gcdaddmlem 16432 dec5dvds2 16974 2exp11 16998 2exp16 16999 43prm 17030 83prm 17031 139prm 17032 163prm 17033 317prm 17034 631prm 17035 1259lem1 17039 1259lem2 17040 1259lem3 17041 1259lem4 17042 1259lem5 17043 2503lem1 17045 2503lem2 17046 2503lem3 17047 2503prm 17048 4001lem1 17049 4001lem2 17050 4001lem3 17051 4001prm 17053 frgpnabllem1 19783 pcoass 24949 dvradcnv 26355 efhalfpi 26405 sinq34lt0t 26443 efifo 26481 logm1 26523 argimgt0 26546 ang180lem4 26747 1cubr 26777 asin1 26829 atanlogsublem 26850 dvatan 26870 log2ublem3 26883 log2ub 26884 basellem9 27024 cht2 27107 log2sumbnd 27480 ax5seglem7 28911 ex-fac 30426 dp20h 32854 dpmul4 32889 hgt750lem2 34660 12gcd5e1 42035 3exp7 42085 3lexlogpow5ineq1 42086 3lexlogpow5ineq5 42092 aks4d1p1 42108 posbezout 42132 sqn5i 42317 decpmul 42320 sqdeccom12 42321 sq3deccom12 42322 ex-decpmul 42338 fltnltalem 42694 dirkertrigeqlem1 46135 dirkertrigeqlem3 46137 fourierdlem103 46246 sqwvfoura 46265 sqwvfourb 46266 fouriersw 46268 fmtno5lem1 47583 fmtno5lem2 47584 fmtno5lem4 47586 fmtno4prmfac 47602 fmtno5faclem2 47610 fmtno5faclem3 47611 fmtno5fac 47612 139prmALT 47626 127prm 47629 2exp340mod341 47763 nfermltl8rev 47772 gpg5edgnedg 48160 ackval1012 48721 ackval2012 48722 ackval3012 48723 |
| Copyright terms: Public domain | W3C validator |