| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addlidi | Structured version Visualization version GIF version | ||
| Description: 0 is a left identity for addition. (Contributed by NM, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| addlidi | ⊢ (0 + 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | addlid 11364 | . 2 ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (0 + 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 0cc0 11075 + caddc 11078 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 |
| This theorem is referenced by: ine0 11620 muleqadd 11829 nnne0 12227 0p1e1 12310 num0h 12668 nummul1c 12705 decrmac 12714 fz0tp 13596 fzo0to3tp 13720 cats1fvn 14831 rei 15129 imi 15130 ef01bndlem 16159 5ndvds3 16390 gcdaddmlem 16501 dec5dvds2 17043 2exp11 17067 2exp16 17068 43prm 17099 83prm 17100 139prm 17101 163prm 17102 317prm 17103 631prm 17104 1259lem1 17108 1259lem2 17109 1259lem3 17110 1259lem4 17111 1259lem5 17112 2503lem1 17114 2503lem2 17115 2503lem3 17116 2503prm 17117 4001lem1 17118 4001lem2 17119 4001lem3 17120 4001prm 17122 frgpnabllem1 19810 pcoass 24931 dvradcnv 26337 efhalfpi 26387 sinq34lt0t 26425 efifo 26463 logm1 26505 argimgt0 26528 ang180lem4 26729 1cubr 26759 asin1 26811 atanlogsublem 26832 dvatan 26852 log2ublem3 26865 log2ub 26866 basellem9 27006 cht2 27089 log2sumbnd 27462 ax5seglem7 28869 ex-fac 30387 dp20h 32806 dpmul4 32841 hgt750lem2 34650 12gcd5e1 41998 3exp7 42048 3lexlogpow5ineq1 42049 3lexlogpow5ineq5 42055 aks4d1p1 42071 posbezout 42095 sqn5i 42280 decpmul 42283 sqdeccom12 42284 sq3deccom12 42285 ex-decpmul 42301 fltnltalem 42657 dirkertrigeqlem1 46103 dirkertrigeqlem3 46105 fourierdlem103 46214 sqwvfoura 46233 sqwvfourb 46234 fouriersw 46236 fmtno5lem1 47558 fmtno5lem2 47559 fmtno5lem4 47561 fmtno4prmfac 47577 fmtno5faclem2 47585 fmtno5faclem3 47586 fmtno5fac 47587 139prmALT 47601 127prm 47604 2exp340mod341 47738 nfermltl8rev 47747 ackval1012 48683 ackval2012 48684 ackval3012 48685 |
| Copyright terms: Public domain | W3C validator |