| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addlidi | Structured version Visualization version GIF version | ||
| Description: 0 is a left identity for addition. (Contributed by NM, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| addlidi | ⊢ (0 + 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | addlid 11357 | . 2 ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (0 + 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 0cc0 11068 + caddc 11071 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 |
| This theorem is referenced by: ine0 11613 muleqadd 11822 nnne0 12220 0p1e1 12303 num0h 12661 nummul1c 12698 decrmac 12707 fz0tp 13589 fzo0to3tp 13713 cats1fvn 14824 rei 15122 imi 15123 ef01bndlem 16152 5ndvds3 16383 gcdaddmlem 16494 dec5dvds2 17036 2exp11 17060 2exp16 17061 43prm 17092 83prm 17093 139prm 17094 163prm 17095 317prm 17096 631prm 17097 1259lem1 17101 1259lem2 17102 1259lem3 17103 1259lem4 17104 1259lem5 17105 2503lem1 17107 2503lem2 17108 2503lem3 17109 2503prm 17110 4001lem1 17111 4001lem2 17112 4001lem3 17113 4001prm 17115 frgpnabllem1 19803 pcoass 24924 dvradcnv 26330 efhalfpi 26380 sinq34lt0t 26418 efifo 26456 logm1 26498 argimgt0 26521 ang180lem4 26722 1cubr 26752 asin1 26804 atanlogsublem 26825 dvatan 26845 log2ublem3 26858 log2ub 26859 basellem9 26999 cht2 27082 log2sumbnd 27455 ax5seglem7 28862 ex-fac 30380 dp20h 32799 dpmul4 32834 hgt750lem2 34643 12gcd5e1 41991 3exp7 42041 3lexlogpow5ineq1 42042 3lexlogpow5ineq5 42048 aks4d1p1 42064 posbezout 42088 sqn5i 42273 decpmul 42276 sqdeccom12 42277 sq3deccom12 42278 ex-decpmul 42294 fltnltalem 42650 dirkertrigeqlem1 46096 dirkertrigeqlem3 46098 fourierdlem103 46207 sqwvfoura 46226 sqwvfourb 46227 fouriersw 46229 fmtno5lem1 47554 fmtno5lem2 47555 fmtno5lem4 47557 fmtno4prmfac 47573 fmtno5faclem2 47581 fmtno5faclem3 47582 fmtno5fac 47583 139prmALT 47597 127prm 47600 2exp340mod341 47734 nfermltl8rev 47743 ackval1012 48679 ackval2012 48680 ackval3012 48681 |
| Copyright terms: Public domain | W3C validator |