| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addlidi | Structured version Visualization version GIF version | ||
| Description: 0 is a left identity for addition. (Contributed by NM, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| addlidi | ⊢ (0 + 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | addlid 11416 | . 2 ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (0 + 𝐴) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 (class class class)co 7403 ℂcc 11125 0cc0 11127 + caddc 11130 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-ltxr 11272 |
| This theorem is referenced by: ine0 11670 muleqadd 11879 inelr 12228 nnne0 12272 0p1e1 12360 num0h 12718 nummul1c 12755 decrmac 12764 fz0tp 13643 fzo0to3tp 13766 cats1fvn 14875 rei 15173 imi 15174 ef01bndlem 16200 5ndvds3 16430 gcdaddmlem 16541 dec5dvds2 17083 2exp11 17107 2exp16 17108 43prm 17139 83prm 17140 139prm 17141 163prm 17142 317prm 17143 631prm 17144 1259lem1 17148 1259lem2 17149 1259lem3 17150 1259lem4 17151 1259lem5 17152 2503lem1 17154 2503lem2 17155 2503lem3 17156 2503prm 17157 4001lem1 17158 4001lem2 17159 4001lem3 17160 4001prm 17162 frgpnabllem1 19852 pcoass 24973 dvradcnv 26380 efhalfpi 26430 sinq34lt0t 26468 efifo 26506 logm1 26548 argimgt0 26571 ang180lem4 26772 1cubr 26802 asin1 26854 atanlogsublem 26875 dvatan 26895 log2ublem3 26908 log2ub 26909 basellem9 27049 cht2 27132 log2sumbnd 27505 ax5seglem7 28860 ex-fac 30378 dp20h 32799 dpmul4 32834 hgt750lem2 34630 12gcd5e1 41962 3exp7 42012 3lexlogpow5ineq1 42013 3lexlogpow5ineq5 42019 aks4d1p1 42035 posbezout 42059 sqn5i 42282 decpmul 42285 sqdeccom12 42286 sq3deccom12 42287 ex-decpmul 42302 fltnltalem 42632 dirkertrigeqlem1 46075 dirkertrigeqlem3 46077 fourierdlem103 46186 sqwvfoura 46205 sqwvfourb 46206 fouriersw 46208 fmtno5lem1 47515 fmtno5lem2 47516 fmtno5lem4 47518 fmtno4prmfac 47534 fmtno5faclem2 47542 fmtno5faclem3 47543 fmtno5fac 47544 139prmALT 47558 127prm 47561 2exp340mod341 47695 nfermltl8rev 47704 ackval1012 48618 ackval2012 48619 ackval3012 48620 |
| Copyright terms: Public domain | W3C validator |