MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cji Structured version   Visualization version   GIF version

Theorem cji 15198
Description: The complex conjugate of the imaginary unit. (Contributed by NM, 26-Mar-2005.)
Assertion
Ref Expression
cji (∗‘i) = -i

Proof of Theorem cji
StepHypRef Expression
1 rei 15195 . . 3 (ℜ‘i) = 0
2 imi 15196 . . . . 5 (ℑ‘i) = 1
32oveq2i 7442 . . . 4 (i · (ℑ‘i)) = (i · 1)
4 ax-icn 11214 . . . . 5 i ∈ ℂ
54mulridi 11265 . . . 4 (i · 1) = i
63, 5eqtri 2765 . . 3 (i · (ℑ‘i)) = i
71, 6oveq12i 7443 . 2 ((ℜ‘i) − (i · (ℑ‘i))) = (0 − i)
8 remim 15156 . . 3 (i ∈ ℂ → (∗‘i) = ((ℜ‘i) − (i · (ℑ‘i))))
94, 8ax-mp 5 . 2 (∗‘i) = ((ℜ‘i) − (i · (ℑ‘i)))
10 df-neg 11495 . 2 -i = (0 − i)
117, 9, 103eqtr4i 2775 1 (∗‘i) = -i
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156  ici 11157   · cmul 11160  cmin 11492  -cneg 11493  ccj 15135  cre 15136  cim 15137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-2 12329  df-cj 15138  df-re 15139  df-im 15140
This theorem is referenced by:  cjreim  15199  absi  15325  resinval  16171  recosval  16172  cphassir  25249  cosargd  26650  1cubrlem  26884  atancj  26953  ipasslem10  30858  polid2i  31176  lnophmlem2  32036
  Copyright terms: Public domain W3C validator