Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infmrgelbi Structured version   Visualization version   GIF version

Theorem infmrgelbi 40237
Description: Any lower bound of a nonempty set of real numbers is less than or equal to its infimum, one-direction version. (Contributed by Stefan O'Rear, 1-Sep-2013.) (Revised by AV, 17-Sep-2020.)
Assertion
Ref Expression
infmrgelbi (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑥) → 𝐵 ≤ inf(𝐴, ℝ, < ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem infmrgelbi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpr 488 . 2 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑥) → ∀𝑥𝐴 𝐵𝑥)
2 simpl1 1188 . . 3 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑥) → 𝐴 ⊆ ℝ)
3 simpl2 1189 . . 3 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑥) → 𝐴 ≠ ∅)
4 breq1 5039 . . . . . 6 (𝑧 = 𝐵 → (𝑧𝑥𝐵𝑥))
54ralbidv 3126 . . . . 5 (𝑧 = 𝐵 → (∀𝑥𝐴 𝑧𝑥 ↔ ∀𝑥𝐴 𝐵𝑥))
65rspcev 3543 . . . 4 ((𝐵 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑥) → ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝑥)
763ad2antl3 1184 . . 3 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑥) → ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝑥)
8 simpl3 1190 . . 3 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑥) → 𝐵 ∈ ℝ)
9 infregelb 11674 . . 3 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝑥) ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑥𝐴 𝐵𝑥))
102, 3, 7, 8, 9syl31anc 1370 . 2 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑥) → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑥𝐴 𝐵𝑥))
111, 10mpbird 260 1 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ 𝐵 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑥) → 𝐵 ≤ inf(𝐴, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951  wral 3070  wrex 3071  wss 3860  c0 4227   class class class wbr 5036  infcinf 8951  cr 10587   < clt 10726  cle 10727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-po 5447  df-so 5448  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-sup 8952  df-inf 8953  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924
This theorem is referenced by:  pellfundge  40241  pellfundglb  40244
  Copyright terms: Public domain W3C validator