Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > redivcld | Structured version Visualization version GIF version |
Description: Closure law for division of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
redivcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
redivcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
redivcld.3 | ⊢ (𝜑 → 𝐵 ≠ 0) |
Ref | Expression |
---|---|
redivcld | ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | redivcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | redivcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | redivcld.3 | . 2 ⊢ (𝜑 → 𝐵 ≠ 0) | |
4 | redivcl 11703 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | 1 ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℝ) |
Copyright terms: Public domain | W3C validator |