Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2106
≠ wne 2940 (class class class)co 7408
ℝcr 11108 0cc0 11109
/ cdiv 11870 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 |
This theorem is referenced by: recp1lt1
12111 ledivp1
12115 supmul1
12182 rimul
12202 div4p1lem1div2
12466 divelunit
13470 fldiv4p1lem1div2
13799 fldiv4lem1div2uz2
13800 quoremz
13819 intfracq
13823 fldiv
13824 modmulnn
13853 modmuladd
13877 modmuladdnn0
13879 expnbnd
14194 discr1
14201 discr
14202 sqreulem
15305 fprodle
15939 fldivndvdslt
16356 flodddiv4t2lthalf
16358 iccpnfhmeo
24460 ipcau2
24750 mbfmulc2lem
25163 i1fmulc
25220 itg1mulc
25221 itg2monolem3
25269 dvferm2lem
25502 dvcvx
25536 radcnvlem1
25924 tanord1
26045 logf1o2
26157 relogbcl
26275 ang180lem2
26312 chordthmlem2
26335 jensenlem2
26489 regamcl
26562 gausslemma2dlem0d
26859 gausslemma2dlem3
26868 gausslemma2dlem4
26869 gausslemma2dlem5
26871 2lgslem1a2
26890 2lgslem1
26894 2lgslem2
26895 2lgsoddprmlem2
26909 selberg3lem1
27057 selberg4lem1
27060 ostth2
27137 ttgcontlem1
28139 colinearalg
28165 axsegconlem8
28179 axpaschlem
28195 axeuclidlem
28217 nmophmi
31279 unitdivcld
32876 dya2icoseg
33271 dya2iocucvr
33278 signsply0
33557 logdivsqrle
33657 hgt750lem
33658 hgt750leme
33665 tgoldbachgtde
33667 sinccvglem
34652 circum
34654 knoppndvlem1
35383 knoppndvlem14
35396 knoppndvlem15
35397 knoppndvlem17
35399 knoppndvlem18
35400 knoppndvlem19
35401 knoppndvlem21
35403 poimirlem31
36514 itg2addnclem
36534 itg2addnclem2
36535 areacirclem1
36571 areacirclem4
36574 lcmineqlem15
40903 3lexlogpow5ineq2
40915 3lexlogpow5ineq4
40916 3lexlogpow2ineq1
40918 3lexlogpow2ineq2
40919 3lexlogpow5ineq5
40920 dvrelog2
40924 dvrelog3
40925 dvrelog2b
40926 dvrelogpow2b
40928 aks4d1p1p4
40931 aks4d1p1p6
40933 aks4d1p1p7
40934 aks4d1p1p5
40935 aks4d1p5
40940 aks4d1p8
40947 2ap1caineq
40956 pellexlem1
41557 pellexlem6
41562 reglogcl
41618 modabsdifz
41715 areaquad
41955 imo72b2
42914 hashnzfzclim
43071 sineq0ALT
43688 suplesup
44039 reclt0d
44087 xrralrecnnge
44090 ltdiv23neg
44094 iooiinioc
44259 0ellimcdiv
44355 dvdivbd
44629 ioodvbdlimc1lem1
44637 ioodvbdlimc1lem2
44638 ioodvbdlimc2lem
44640 stoweidlem1
44707 stoweidlem13
44719 stoweidlem26
44732 stoweidlem34
44740 stoweidlem36
44742 stoweidlem51
44757 stoweidlem60
44766 wallispilem4
44774 wallispilem5
44775 stirlingr
44796 dirker2re
44798 dirkerval2
44800 dirkerre
44801 dirkertrigeq
44807 dirkeritg
44808 dirkercncflem1
44809 dirkercncflem4
44812 fourierdlem4
44817 fourierdlem7
44820 fourierdlem9
44822 fourierdlem16
44829 fourierdlem19
44832 fourierdlem21
44834 fourierdlem22
44835 fourierdlem24
44837 fourierdlem26
44839 fourierdlem30
44843 fourierdlem39
44852 fourierdlem41
44854 fourierdlem42
44855 fourierdlem43
44856 fourierdlem47
44859 fourierdlem48
44860 fourierdlem49
44861 fourierdlem51
44863 fourierdlem56
44868 fourierdlem57
44869 fourierdlem58
44870 fourierdlem59
44871 fourierdlem63
44875 fourierdlem64
44876 fourierdlem66
44878 fourierdlem71
44883 fourierdlem72
44884 fourierdlem78
44890 fourierdlem83
44895 fourierdlem87
44899 fourierdlem89
44901 fourierdlem90
44902 fourierdlem91
44903 fourierdlem95
44907 fourierdlem103
44915 fourierdlem104
44916 etransclem48
44988 qndenserrnbllem
45000 sge0rpcpnf
45127 sge0ad2en
45137 ovnsubaddlem1
45276 hoidmvlelem3
45303 ovolval5lem1
45358 ovolval5lem2
45359 vonioolem2
45387 vonicclem2
45390 pimrecltneg
45430 smfrec
45495 smfdiv
45503 sigardiv
45567 lighneallem2
46264 requad01
46279 requad1
46280 requad2
46281 modn0mul
47196 refdivmptf
47218 fldivexpfllog2
47241 dignnld
47279 dig2nn1st
47281 dig2bits
47290 dignn0flhalflem2
47292 affinecomb1
47378 eenglngeehlnmlem1
47413 eenglngeehlnmlem2
47414 rrx2vlinest
47417 line2ylem
47427 line2
47428 line2xlem
47429 itsclc0lem1
47432 itsclc0lem2
47433 itscnhlc0yqe
47435 itsclquadb
47452 |