MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lenegcon1 Structured version   Visualization version   GIF version

Theorem lenegcon1 11552
Description: Contraposition of negative in 'less than or equal to'. (Contributed by NM, 10-May-2004.)
Assertion
Ref Expression
lenegcon1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴𝐵 ↔ -𝐵𝐴))

Proof of Theorem lenegcon1
StepHypRef Expression
1 renegcl 11357 . . 3 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
2 leneg 11551 . . 3 ((-𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴𝐵 ↔ -𝐵 ≤ --𝐴))
31, 2sylan 580 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴𝐵 ↔ -𝐵 ≤ --𝐴))
4 recn 11034 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
54negnegd 11396 . . . 4 (𝐴 ∈ ℝ → --𝐴 = 𝐴)
65breq2d 5099 . . 3 (𝐴 ∈ ℝ → (-𝐵 ≤ --𝐴 ↔ -𝐵𝐴))
76adantr 481 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐵 ≤ --𝐴 ↔ -𝐵𝐴))
83, 7bitrd 278 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴𝐵 ↔ -𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2105   class class class wbr 5087  cr 10943  cle 11083  -cneg 11279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628  ax-resscn 11001  ax-1cn 11002  ax-icn 11003  ax-addcl 11004  ax-addrcl 11005  ax-mulcl 11006  ax-mulrcl 11007  ax-mulcom 11008  ax-addass 11009  ax-mulass 11010  ax-distr 11011  ax-i2m1 11012  ax-1ne0 11013  ax-1rid 11014  ax-rnegex 11015  ax-rrecex 11016  ax-cnre 11017  ax-pre-lttri 11018  ax-pre-lttrn 11019  ax-pre-ltadd 11020
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-po 5521  df-so 5522  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7272  df-ov 7318  df-oprab 7319  df-mpo 7320  df-er 8546  df-en 8782  df-dom 8783  df-sdom 8784  df-pnf 11084  df-mnf 11085  df-xr 11086  df-ltxr 11087  df-le 11088  df-sub 11280  df-neg 11281
This theorem is referenced by:  lenegcon1i  11600  lenegcon1d  11630  ublbneg  12746  zmax  12758  absle  15099  lenegsq  15104  abs2difabs  15118  o1lo1  15318  infcvgaux2i  15642  sinbnd  15961  cosbnd  15962  xrhmeo  24181  logcj  25833  asinneg  26108
  Copyright terms: Public domain W3C validator