| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sinbnd | Structured version Visualization version GIF version | ||
| Description: The sine of a real number lies between -1 and 1. Equation 18 of [Gleason] p. 311. (Contributed by NM, 16-Jan-2006.) |
| Ref | Expression |
|---|---|
| sinbnd | ⊢ (𝐴 ∈ ℝ → (-1 ≤ (sin‘𝐴) ∧ (sin‘𝐴) ≤ 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recoscl 16047 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ) | |
| 2 | 1 | sqge0d 14041 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 0 ≤ ((cos‘𝐴)↑2)) |
| 3 | resincl 16046 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) ∈ ℝ) | |
| 4 | 3 | resqcld 14029 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → ((sin‘𝐴)↑2) ∈ ℝ) |
| 5 | 1 | resqcld 14029 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → ((cos‘𝐴)↑2) ∈ ℝ) |
| 6 | 4, 5 | addge01d 11702 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (0 ≤ ((cos‘𝐴)↑2) ↔ ((sin‘𝐴)↑2) ≤ (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)))) |
| 7 | 2, 6 | mpbid 232 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((sin‘𝐴)↑2) ≤ (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2))) |
| 8 | recn 11093 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 9 | sincossq 16082 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) |
| 11 | sq1 14099 | . . . . 5 ⊢ (1↑2) = 1 | |
| 12 | 10, 11 | eqtr4di 2784 | . . . 4 ⊢ (𝐴 ∈ ℝ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (1↑2)) |
| 13 | 7, 12 | breqtrd 5117 | . . 3 ⊢ (𝐴 ∈ ℝ → ((sin‘𝐴)↑2) ≤ (1↑2)) |
| 14 | 1re 11109 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 15 | 0le1 11637 | . . . . . 6 ⊢ 0 ≤ 1 | |
| 16 | lenegsq 15225 | . . . . . 6 ⊢ (((sin‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ≤ 1) → (((sin‘𝐴) ≤ 1 ∧ -(sin‘𝐴) ≤ 1) ↔ ((sin‘𝐴)↑2) ≤ (1↑2))) | |
| 17 | 14, 15, 16 | mp3an23 1455 | . . . . 5 ⊢ ((sin‘𝐴) ∈ ℝ → (((sin‘𝐴) ≤ 1 ∧ -(sin‘𝐴) ≤ 1) ↔ ((sin‘𝐴)↑2) ≤ (1↑2))) |
| 18 | lenegcon1 11618 | . . . . . . 7 ⊢ (((sin‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (-(sin‘𝐴) ≤ 1 ↔ -1 ≤ (sin‘𝐴))) | |
| 19 | 14, 18 | mpan2 691 | . . . . . 6 ⊢ ((sin‘𝐴) ∈ ℝ → (-(sin‘𝐴) ≤ 1 ↔ -1 ≤ (sin‘𝐴))) |
| 20 | 19 | anbi2d 630 | . . . . 5 ⊢ ((sin‘𝐴) ∈ ℝ → (((sin‘𝐴) ≤ 1 ∧ -(sin‘𝐴) ≤ 1) ↔ ((sin‘𝐴) ≤ 1 ∧ -1 ≤ (sin‘𝐴)))) |
| 21 | 17, 20 | bitr3d 281 | . . . 4 ⊢ ((sin‘𝐴) ∈ ℝ → (((sin‘𝐴)↑2) ≤ (1↑2) ↔ ((sin‘𝐴) ≤ 1 ∧ -1 ≤ (sin‘𝐴)))) |
| 22 | 3, 21 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ → (((sin‘𝐴)↑2) ≤ (1↑2) ↔ ((sin‘𝐴) ≤ 1 ∧ -1 ≤ (sin‘𝐴)))) |
| 23 | 13, 22 | mpbid 232 | . 2 ⊢ (𝐴 ∈ ℝ → ((sin‘𝐴) ≤ 1 ∧ -1 ≤ (sin‘𝐴))) |
| 24 | 23 | ancomd 461 | 1 ⊢ (𝐴 ∈ ℝ → (-1 ≤ (sin‘𝐴) ∧ (sin‘𝐴) ≤ 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 ℝcr 11002 0cc0 11003 1c1 11004 + caddc 11006 ≤ cle 11144 -cneg 11342 2c2 12177 ↑cexp 13965 sincsin 15967 cosccos 15968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-n0 12379 df-z 12466 df-uz 12730 df-rp 12888 df-ico 13248 df-fz 13405 df-fzo 13552 df-fl 13693 df-seq 13906 df-exp 13966 df-fac 14178 df-bc 14207 df-hash 14235 df-shft 14971 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-limsup 15375 df-clim 15392 df-rlim 15393 df-sum 15591 df-ef 15971 df-sin 15973 df-cos 15974 |
| This theorem is referenced by: sinbnd2 16088 sinltx 16095 abssinbd 45335 wallispilem1 46102 |
| Copyright terms: Public domain | W3C validator |