![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sinbnd | Structured version Visualization version GIF version |
Description: The sine of a real number lies between -1 and 1. Equation 18 of [Gleason] p. 311. (Contributed by NM, 16-Jan-2006.) |
Ref | Expression |
---|---|
sinbnd | ⊢ (𝐴 ∈ ℝ → (-1 ≤ (sin‘𝐴) ∧ (sin‘𝐴) ≤ 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recoscl 15204 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ) | |
2 | 1 | sqge0d 13288 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 0 ≤ ((cos‘𝐴)↑2)) |
3 | resincl 15203 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) ∈ ℝ) | |
4 | 3 | resqcld 13287 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → ((sin‘𝐴)↑2) ∈ ℝ) |
5 | 1 | resqcld 13287 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → ((cos‘𝐴)↑2) ∈ ℝ) |
6 | 4, 5 | addge01d 10905 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (0 ≤ ((cos‘𝐴)↑2) ↔ ((sin‘𝐴)↑2) ≤ (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)))) |
7 | 2, 6 | mpbid 224 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((sin‘𝐴)↑2) ≤ (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2))) |
8 | recn 10312 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
9 | sincossq 15239 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) |
11 | sq1 13208 | . . . . 5 ⊢ (1↑2) = 1 | |
12 | 10, 11 | syl6eqr 2849 | . . . 4 ⊢ (𝐴 ∈ ℝ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (1↑2)) |
13 | 7, 12 | breqtrd 4867 | . . 3 ⊢ (𝐴 ∈ ℝ → ((sin‘𝐴)↑2) ≤ (1↑2)) |
14 | 1re 10326 | . . . . . 6 ⊢ 1 ∈ ℝ | |
15 | 0le1 10841 | . . . . . 6 ⊢ 0 ≤ 1 | |
16 | lenegsq 14398 | . . . . . 6 ⊢ (((sin‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ≤ 1) → (((sin‘𝐴) ≤ 1 ∧ -(sin‘𝐴) ≤ 1) ↔ ((sin‘𝐴)↑2) ≤ (1↑2))) | |
17 | 14, 15, 16 | mp3an23 1578 | . . . . 5 ⊢ ((sin‘𝐴) ∈ ℝ → (((sin‘𝐴) ≤ 1 ∧ -(sin‘𝐴) ≤ 1) ↔ ((sin‘𝐴)↑2) ≤ (1↑2))) |
18 | lenegcon1 10822 | . . . . . . 7 ⊢ (((sin‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (-(sin‘𝐴) ≤ 1 ↔ -1 ≤ (sin‘𝐴))) | |
19 | 14, 18 | mpan2 683 | . . . . . 6 ⊢ ((sin‘𝐴) ∈ ℝ → (-(sin‘𝐴) ≤ 1 ↔ -1 ≤ (sin‘𝐴))) |
20 | 19 | anbi2d 623 | . . . . 5 ⊢ ((sin‘𝐴) ∈ ℝ → (((sin‘𝐴) ≤ 1 ∧ -(sin‘𝐴) ≤ 1) ↔ ((sin‘𝐴) ≤ 1 ∧ -1 ≤ (sin‘𝐴)))) |
21 | 17, 20 | bitr3d 273 | . . . 4 ⊢ ((sin‘𝐴) ∈ ℝ → (((sin‘𝐴)↑2) ≤ (1↑2) ↔ ((sin‘𝐴) ≤ 1 ∧ -1 ≤ (sin‘𝐴)))) |
22 | 3, 21 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ → (((sin‘𝐴)↑2) ≤ (1↑2) ↔ ((sin‘𝐴) ≤ 1 ∧ -1 ≤ (sin‘𝐴)))) |
23 | 13, 22 | mpbid 224 | . 2 ⊢ (𝐴 ∈ ℝ → ((sin‘𝐴) ≤ 1 ∧ -1 ≤ (sin‘𝐴))) |
24 | 23 | ancomd 454 | 1 ⊢ (𝐴 ∈ ℝ → (-1 ≤ (sin‘𝐴) ∧ (sin‘𝐴) ≤ 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 class class class wbr 4841 ‘cfv 6099 (class class class)co 6876 ℂcc 10220 ℝcr 10221 0cc0 10222 1c1 10223 + caddc 10225 ≤ cle 10362 -cneg 10555 2c2 11364 ↑cexp 13110 sincsin 15127 cosccos 15128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-inf2 8786 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 ax-pre-sup 10300 ax-addf 10301 ax-mulf 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-int 4666 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-se 5270 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-isom 6108 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-1st 7399 df-2nd 7400 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-oadd 7801 df-er 7980 df-pm 8096 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-sup 8588 df-inf 8589 df-oi 8655 df-card 9049 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-div 10975 df-nn 11311 df-2 11372 df-3 11373 df-n0 11577 df-z 11663 df-uz 11927 df-rp 12071 df-ico 12426 df-fz 12577 df-fzo 12717 df-fl 12844 df-seq 13052 df-exp 13111 df-fac 13310 df-bc 13339 df-hash 13367 df-shft 14145 df-cj 14177 df-re 14178 df-im 14179 df-sqrt 14313 df-abs 14314 df-limsup 14540 df-clim 14557 df-rlim 14558 df-sum 14755 df-ef 15131 df-sin 15133 df-cos 15134 |
This theorem is referenced by: sinbnd2 15245 sinltx 15252 abssinbd 40242 wallispilem1 41013 |
Copyright terms: Public domain | W3C validator |