![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cosbnd | Structured version Visualization version GIF version |
Description: The cosine of a real number lies between -1 and 1. Equation 18 of [Gleason] p. 311. (Contributed by NM, 16-Jan-2006.) |
Ref | Expression |
---|---|
cosbnd | ⊢ (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resincl 16188 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) ∈ ℝ) | |
2 | 1 | sqge0d 14187 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 0 ≤ ((sin‘𝐴)↑2)) |
3 | recoscl 16189 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ) | |
4 | 3 | resqcld 14175 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → ((cos‘𝐴)↑2) ∈ ℝ) |
5 | 1 | resqcld 14175 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → ((sin‘𝐴)↑2) ∈ ℝ) |
6 | 4, 5 | addge02d 11879 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (0 ≤ ((sin‘𝐴)↑2) ↔ ((cos‘𝐴)↑2) ≤ (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)))) |
7 | 2, 6 | mpbid 232 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((cos‘𝐴)↑2) ≤ (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2))) |
8 | recn 11274 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
9 | sincossq 16224 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) |
11 | sq1 14244 | . . . . 5 ⊢ (1↑2) = 1 | |
12 | 10, 11 | eqtr4di 2798 | . . . 4 ⊢ (𝐴 ∈ ℝ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (1↑2)) |
13 | 7, 12 | breqtrd 5192 | . . 3 ⊢ (𝐴 ∈ ℝ → ((cos‘𝐴)↑2) ≤ (1↑2)) |
14 | 1re 11290 | . . . . . 6 ⊢ 1 ∈ ℝ | |
15 | 0le1 11813 | . . . . . 6 ⊢ 0 ≤ 1 | |
16 | lenegsq 15369 | . . . . . 6 ⊢ (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ≤ 1) → (((cos‘𝐴) ≤ 1 ∧ -(cos‘𝐴) ≤ 1) ↔ ((cos‘𝐴)↑2) ≤ (1↑2))) | |
17 | 14, 15, 16 | mp3an23 1453 | . . . . 5 ⊢ ((cos‘𝐴) ∈ ℝ → (((cos‘𝐴) ≤ 1 ∧ -(cos‘𝐴) ≤ 1) ↔ ((cos‘𝐴)↑2) ≤ (1↑2))) |
18 | lenegcon1 11794 | . . . . . . 7 ⊢ (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (-(cos‘𝐴) ≤ 1 ↔ -1 ≤ (cos‘𝐴))) | |
19 | 14, 18 | mpan2 690 | . . . . . 6 ⊢ ((cos‘𝐴) ∈ ℝ → (-(cos‘𝐴) ≤ 1 ↔ -1 ≤ (cos‘𝐴))) |
20 | 19 | anbi2d 629 | . . . . 5 ⊢ ((cos‘𝐴) ∈ ℝ → (((cos‘𝐴) ≤ 1 ∧ -(cos‘𝐴) ≤ 1) ↔ ((cos‘𝐴) ≤ 1 ∧ -1 ≤ (cos‘𝐴)))) |
21 | 17, 20 | bitr3d 281 | . . . 4 ⊢ ((cos‘𝐴) ∈ ℝ → (((cos‘𝐴)↑2) ≤ (1↑2) ↔ ((cos‘𝐴) ≤ 1 ∧ -1 ≤ (cos‘𝐴)))) |
22 | 3, 21 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ → (((cos‘𝐴)↑2) ≤ (1↑2) ↔ ((cos‘𝐴) ≤ 1 ∧ -1 ≤ (cos‘𝐴)))) |
23 | 13, 22 | mpbid 232 | . 2 ⊢ (𝐴 ∈ ℝ → ((cos‘𝐴) ≤ 1 ∧ -1 ≤ (cos‘𝐴))) |
24 | 23 | ancomd 461 | 1 ⊢ (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 ≤ cle 11325 -cneg 11521 2c2 12348 ↑cexp 14112 sincsin 16111 cosccos 16112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-ico 13413 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-fac 14323 df-bc 14352 df-hash 14380 df-shft 15116 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-sum 15735 df-ef 16115 df-sin 16117 df-cos 16118 |
This theorem is referenced by: cosbnd2 16231 cos02pilt1 26586 sin2h 37570 cos2h 37571 tan2h 37572 abscosbd 45193 |
Copyright terms: Public domain | W3C validator |