MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cosbnd Structured version   Visualization version   GIF version

Theorem cosbnd 16213
Description: The cosine of a real number lies between -1 and 1. Equation 18 of [Gleason] p. 311. (Contributed by NM, 16-Jan-2006.)
Assertion
Ref Expression
cosbnd (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1))

Proof of Theorem cosbnd
StepHypRef Expression
1 resincl 16172 . . . . . 6 (𝐴 ∈ ℝ → (sin‘𝐴) ∈ ℝ)
21sqge0d 14173 . . . . 5 (𝐴 ∈ ℝ → 0 ≤ ((sin‘𝐴)↑2))
3 recoscl 16173 . . . . . . 7 (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ)
43resqcld 14161 . . . . . 6 (𝐴 ∈ ℝ → ((cos‘𝐴)↑2) ∈ ℝ)
51resqcld 14161 . . . . . 6 (𝐴 ∈ ℝ → ((sin‘𝐴)↑2) ∈ ℝ)
64, 5addge02d 11849 . . . . 5 (𝐴 ∈ ℝ → (0 ≤ ((sin‘𝐴)↑2) ↔ ((cos‘𝐴)↑2) ≤ (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2))))
72, 6mpbid 232 . . . 4 (𝐴 ∈ ℝ → ((cos‘𝐴)↑2) ≤ (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)))
8 recn 11242 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
9 sincossq 16208 . . . . . 6 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
108, 9syl 17 . . . . 5 (𝐴 ∈ ℝ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
11 sq1 14230 . . . . 5 (1↑2) = 1
1210, 11eqtr4di 2792 . . . 4 (𝐴 ∈ ℝ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (1↑2))
137, 12breqtrd 5173 . . 3 (𝐴 ∈ ℝ → ((cos‘𝐴)↑2) ≤ (1↑2))
14 1re 11258 . . . . . 6 1 ∈ ℝ
15 0le1 11783 . . . . . 6 0 ≤ 1
16 lenegsq 15355 . . . . . 6 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ≤ 1) → (((cos‘𝐴) ≤ 1 ∧ -(cos‘𝐴) ≤ 1) ↔ ((cos‘𝐴)↑2) ≤ (1↑2)))
1714, 15, 16mp3an23 1452 . . . . 5 ((cos‘𝐴) ∈ ℝ → (((cos‘𝐴) ≤ 1 ∧ -(cos‘𝐴) ≤ 1) ↔ ((cos‘𝐴)↑2) ≤ (1↑2)))
18 lenegcon1 11764 . . . . . . 7 (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (-(cos‘𝐴) ≤ 1 ↔ -1 ≤ (cos‘𝐴)))
1914, 18mpan2 691 . . . . . 6 ((cos‘𝐴) ∈ ℝ → (-(cos‘𝐴) ≤ 1 ↔ -1 ≤ (cos‘𝐴)))
2019anbi2d 630 . . . . 5 ((cos‘𝐴) ∈ ℝ → (((cos‘𝐴) ≤ 1 ∧ -(cos‘𝐴) ≤ 1) ↔ ((cos‘𝐴) ≤ 1 ∧ -1 ≤ (cos‘𝐴))))
2117, 20bitr3d 281 . . . 4 ((cos‘𝐴) ∈ ℝ → (((cos‘𝐴)↑2) ≤ (1↑2) ↔ ((cos‘𝐴) ≤ 1 ∧ -1 ≤ (cos‘𝐴))))
223, 21syl 17 . . 3 (𝐴 ∈ ℝ → (((cos‘𝐴)↑2) ≤ (1↑2) ↔ ((cos‘𝐴) ≤ 1 ∧ -1 ≤ (cos‘𝐴))))
2313, 22mpbid 232 . 2 (𝐴 ∈ ℝ → ((cos‘𝐴) ≤ 1 ∧ -1 ≤ (cos‘𝐴)))
2423ancomd 461 1 (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105   class class class wbr 5147  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155  cle 11293  -cneg 11490  2c2 12318  cexp 14098  sincsin 16095  cosccos 16096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-ico 13389  df-fz 13544  df-fzo 13691  df-fl 13828  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102
This theorem is referenced by:  cosbnd2  16215  cos02pilt1  26582  sin2h  37596  cos2h  37597  tan2h  37598  abscosbd  45228
  Copyright terms: Public domain W3C validator