MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abs2difabs Structured version   Visualization version   GIF version

Theorem abs2difabs 14696
Description: Absolute value of difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.)
Assertion
Ref Expression
abs2difabs ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴𝐵)))

Proof of Theorem abs2difabs
StepHypRef Expression
1 abs2dif 14694 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((abs‘𝐵) − (abs‘𝐴)) ≤ (abs‘(𝐵𝐴)))
21ancoms 462 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐵) − (abs‘𝐴)) ≤ (abs‘(𝐵𝐴)))
3 abscl 14640 . . . . 5 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
43recnd 10669 . . . 4 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℂ)
5 abscl 14640 . . . . 5 (𝐵 ∈ ℂ → (abs‘𝐵) ∈ ℝ)
65recnd 10669 . . . 4 (𝐵 ∈ ℂ → (abs‘𝐵) ∈ ℂ)
7 negsubdi2 10945 . . . 4 (((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐵) ∈ ℂ) → -((abs‘𝐴) − (abs‘𝐵)) = ((abs‘𝐵) − (abs‘𝐴)))
84, 6, 7syl2an 598 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -((abs‘𝐴) − (abs‘𝐵)) = ((abs‘𝐵) − (abs‘𝐴)))
9 abssub 14688 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴)))
102, 8, 93brtr4d 5085 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)))
11 abs2dif 14694 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)))
12 resubcl 10950 . . . . 5 (((abs‘𝐴) ∈ ℝ ∧ (abs‘𝐵) ∈ ℝ) → ((abs‘𝐴) − (abs‘𝐵)) ∈ ℝ)
133, 5, 12syl2an 598 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) − (abs‘𝐵)) ∈ ℝ)
14 subcl 10885 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
15 abscl 14640 . . . . 5 ((𝐴𝐵) ∈ ℂ → (abs‘(𝐴𝐵)) ∈ ℝ)
1614, 15syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴𝐵)) ∈ ℝ)
17 absle 14677 . . . 4 ((((abs‘𝐴) − (abs‘𝐵)) ∈ ℝ ∧ (abs‘(𝐴𝐵)) ∈ ℝ) → ((abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴𝐵)) ↔ (-(abs‘(𝐴𝐵)) ≤ ((abs‘𝐴) − (abs‘𝐵)) ∧ ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)))))
1813, 16, 17syl2anc 587 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴𝐵)) ↔ (-(abs‘(𝐴𝐵)) ≤ ((abs‘𝐴) − (abs‘𝐵)) ∧ ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)))))
19 lenegcon1 11144 . . . . 5 ((((abs‘𝐴) − (abs‘𝐵)) ∈ ℝ ∧ (abs‘(𝐴𝐵)) ∈ ℝ) → (-((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)) ↔ -(abs‘(𝐴𝐵)) ≤ ((abs‘𝐴) − (abs‘𝐵))))
2013, 16, 19syl2anc 587 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)) ↔ -(abs‘(𝐴𝐵)) ≤ ((abs‘𝐴) − (abs‘𝐵))))
2120anbi1d 632 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((-((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)) ∧ ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵))) ↔ (-(abs‘(𝐴𝐵)) ≤ ((abs‘𝐴) − (abs‘𝐵)) ∧ ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)))))
2218, 21bitr4d 285 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴𝐵)) ↔ (-((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)) ∧ ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)))))
2310, 11, 22mpbir2and 712 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115   class class class wbr 5053  cfv 6345  (class class class)co 7151  cc 10535  cr 10536  cle 10676  cmin 10870  -cneg 10871  abscabs 14595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6137  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7577  df-2nd 7687  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-er 8287  df-en 8508  df-dom 8509  df-sdom 8510  df-sup 8905  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11637  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-seq 13376  df-exp 13437  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597
This theorem is referenced by:  abs2difabsd  14821  abscn2  14957  abs2difabsi  33011
  Copyright terms: Public domain W3C validator