MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abs2difabs Structured version   Visualization version   GIF version

Theorem abs2difabs 14686
Description: Absolute value of difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.)
Assertion
Ref Expression
abs2difabs ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴𝐵)))

Proof of Theorem abs2difabs
StepHypRef Expression
1 abs2dif 14684 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((abs‘𝐵) − (abs‘𝐴)) ≤ (abs‘(𝐵𝐴)))
21ancoms 462 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐵) − (abs‘𝐴)) ≤ (abs‘(𝐵𝐴)))
3 abscl 14630 . . . . 5 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
43recnd 10658 . . . 4 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℂ)
5 abscl 14630 . . . . 5 (𝐵 ∈ ℂ → (abs‘𝐵) ∈ ℝ)
65recnd 10658 . . . 4 (𝐵 ∈ ℂ → (abs‘𝐵) ∈ ℂ)
7 negsubdi2 10934 . . . 4 (((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐵) ∈ ℂ) → -((abs‘𝐴) − (abs‘𝐵)) = ((abs‘𝐵) − (abs‘𝐴)))
84, 6, 7syl2an 598 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -((abs‘𝐴) − (abs‘𝐵)) = ((abs‘𝐵) − (abs‘𝐴)))
9 abssub 14678 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴)))
102, 8, 93brtr4d 5062 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)))
11 abs2dif 14684 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)))
12 resubcl 10939 . . . . 5 (((abs‘𝐴) ∈ ℝ ∧ (abs‘𝐵) ∈ ℝ) → ((abs‘𝐴) − (abs‘𝐵)) ∈ ℝ)
133, 5, 12syl2an 598 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) − (abs‘𝐵)) ∈ ℝ)
14 subcl 10874 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
15 abscl 14630 . . . . 5 ((𝐴𝐵) ∈ ℂ → (abs‘(𝐴𝐵)) ∈ ℝ)
1614, 15syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴𝐵)) ∈ ℝ)
17 absle 14667 . . . 4 ((((abs‘𝐴) − (abs‘𝐵)) ∈ ℝ ∧ (abs‘(𝐴𝐵)) ∈ ℝ) → ((abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴𝐵)) ↔ (-(abs‘(𝐴𝐵)) ≤ ((abs‘𝐴) − (abs‘𝐵)) ∧ ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)))))
1813, 16, 17syl2anc 587 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴𝐵)) ↔ (-(abs‘(𝐴𝐵)) ≤ ((abs‘𝐴) − (abs‘𝐵)) ∧ ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)))))
19 lenegcon1 11133 . . . . 5 ((((abs‘𝐴) − (abs‘𝐵)) ∈ ℝ ∧ (abs‘(𝐴𝐵)) ∈ ℝ) → (-((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)) ↔ -(abs‘(𝐴𝐵)) ≤ ((abs‘𝐴) − (abs‘𝐵))))
2013, 16, 19syl2anc 587 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)) ↔ -(abs‘(𝐴𝐵)) ≤ ((abs‘𝐴) − (abs‘𝐵))))
2120anbi1d 632 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((-((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)) ∧ ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵))) ↔ (-(abs‘(𝐴𝐵)) ≤ ((abs‘𝐴) − (abs‘𝐵)) ∧ ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)))))
2218, 21bitr4d 285 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴𝐵)) ↔ (-((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)) ∧ ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)))))
2310, 11, 22mpbir2and 712 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  cle 10665  cmin 10859  -cneg 10860  abscabs 14585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587
This theorem is referenced by:  abs2difabsd  14811  abscn2  14947  abs2difabsi  33039
  Copyright terms: Public domain W3C validator