| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abs2difabs | Structured version Visualization version GIF version | ||
| Description: Absolute value of difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.) |
| Ref | Expression |
|---|---|
| abs2difabs | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴 − 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abs2dif 15240 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((abs‘𝐵) − (abs‘𝐴)) ≤ (abs‘(𝐵 − 𝐴))) | |
| 2 | 1 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐵) − (abs‘𝐴)) ≤ (abs‘(𝐵 − 𝐴))) |
| 3 | abscl 15185 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
| 4 | 3 | recnd 11140 | . . . 4 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℂ) |
| 5 | abscl 15185 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (abs‘𝐵) ∈ ℝ) | |
| 6 | 5 | recnd 11140 | . . . 4 ⊢ (𝐵 ∈ ℂ → (abs‘𝐵) ∈ ℂ) |
| 7 | negsubdi2 11420 | . . . 4 ⊢ (((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐵) ∈ ℂ) → -((abs‘𝐴) − (abs‘𝐵)) = ((abs‘𝐵) − (abs‘𝐴))) | |
| 8 | 4, 6, 7 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -((abs‘𝐴) − (abs‘𝐵)) = ((abs‘𝐵) − (abs‘𝐴))) |
| 9 | abssub 15234 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) | |
| 10 | 2, 8, 9 | 3brtr4d 5123 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵))) |
| 11 | abs2dif 15240 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵))) | |
| 12 | resubcl 11425 | . . . . 5 ⊢ (((abs‘𝐴) ∈ ℝ ∧ (abs‘𝐵) ∈ ℝ) → ((abs‘𝐴) − (abs‘𝐵)) ∈ ℝ) | |
| 13 | 3, 5, 12 | syl2an 596 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) − (abs‘𝐵)) ∈ ℝ) |
| 14 | subcl 11359 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
| 15 | abscl 15185 | . . . . 5 ⊢ ((𝐴 − 𝐵) ∈ ℂ → (abs‘(𝐴 − 𝐵)) ∈ ℝ) | |
| 16 | 14, 15 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 − 𝐵)) ∈ ℝ) |
| 17 | absle 15223 | . . . 4 ⊢ ((((abs‘𝐴) − (abs‘𝐵)) ∈ ℝ ∧ (abs‘(𝐴 − 𝐵)) ∈ ℝ) → ((abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴 − 𝐵)) ↔ (-(abs‘(𝐴 − 𝐵)) ≤ ((abs‘𝐴) − (abs‘𝐵)) ∧ ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵))))) | |
| 18 | 13, 16, 17 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴 − 𝐵)) ↔ (-(abs‘(𝐴 − 𝐵)) ≤ ((abs‘𝐴) − (abs‘𝐵)) ∧ ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵))))) |
| 19 | lenegcon1 11621 | . . . . 5 ⊢ ((((abs‘𝐴) − (abs‘𝐵)) ∈ ℝ ∧ (abs‘(𝐴 − 𝐵)) ∈ ℝ) → (-((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵)) ↔ -(abs‘(𝐴 − 𝐵)) ≤ ((abs‘𝐴) − (abs‘𝐵)))) | |
| 20 | 13, 16, 19 | syl2anc 584 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵)) ↔ -(abs‘(𝐴 − 𝐵)) ≤ ((abs‘𝐴) − (abs‘𝐵)))) |
| 21 | 20 | anbi1d 631 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((-((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵)) ∧ ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵))) ↔ (-(abs‘(𝐴 − 𝐵)) ≤ ((abs‘𝐴) − (abs‘𝐵)) ∧ ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵))))) |
| 22 | 18, 21 | bitr4d 282 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴 − 𝐵)) ↔ (-((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵)) ∧ ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵))))) |
| 23 | 10, 11, 22 | mpbir2and 713 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴 − 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 ≤ cle 11147 − cmin 11344 -cneg 11345 abscabs 15141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 |
| This theorem is referenced by: abs2difabsd 15369 abscn2 15506 abs2difabsi 35725 |
| Copyright terms: Public domain | W3C validator |