Proof of Theorem frgrogt3nreg
| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1136 |
. . . . . . . 8
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 <
(♯‘𝑉)) →
𝐺 ∈ FriendGraph
) |
| 2 | | simp2 1137 |
. . . . . . . 8
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 <
(♯‘𝑉)) →
𝑉 ∈
Fin) |
| 3 | | hashcl 14378 |
. . . . . . . . . . 11
⊢ (𝑉 ∈ Fin →
(♯‘𝑉) ∈
ℕ0) |
| 4 | | 0red 11247 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝑉)
∈ ℕ0 → 0 ∈ ℝ) |
| 5 | | 3re 12329 |
. . . . . . . . . . . . . . . . . . 19
⊢ 3 ∈
ℝ |
| 6 | 5 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢
((♯‘𝑉)
∈ ℕ0 → 3 ∈ ℝ) |
| 7 | | nn0re 12519 |
. . . . . . . . . . . . . . . . . 18
⊢
((♯‘𝑉)
∈ ℕ0 → (♯‘𝑉) ∈ ℝ) |
| 8 | 4, 6, 7 | 3jca 1128 |
. . . . . . . . . . . . . . . . 17
⊢
((♯‘𝑉)
∈ ℕ0 → (0 ∈ ℝ ∧ 3 ∈ ℝ
∧ (♯‘𝑉)
∈ ℝ)) |
| 9 | 8 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
(((♯‘𝑉)
∈ ℕ0 ∧ 3 < (♯‘𝑉)) → (0 ∈ ℝ ∧ 3 ∈
ℝ ∧ (♯‘𝑉) ∈ ℝ)) |
| 10 | | 3pos 12354 |
. . . . . . . . . . . . . . . . 17
⊢ 0 <
3 |
| 11 | 10 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢
(((♯‘𝑉)
∈ ℕ0 ∧ 3 < (♯‘𝑉)) → 0 < 3) |
| 12 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢
(((♯‘𝑉)
∈ ℕ0 ∧ 3 < (♯‘𝑉)) → 3 < (♯‘𝑉)) |
| 13 | | lttr 11320 |
. . . . . . . . . . . . . . . . 17
⊢ ((0
∈ ℝ ∧ 3 ∈ ℝ ∧ (♯‘𝑉) ∈ ℝ) → ((0 < 3 ∧ 3
< (♯‘𝑉))
→ 0 < (♯‘𝑉))) |
| 14 | 13 | imp 406 |
. . . . . . . . . . . . . . . 16
⊢ (((0
∈ ℝ ∧ 3 ∈ ℝ ∧ (♯‘𝑉) ∈ ℝ) ∧ (0 < 3 ∧ 3
< (♯‘𝑉)))
→ 0 < (♯‘𝑉)) |
| 15 | 9, 11, 12, 14 | syl12anc 836 |
. . . . . . . . . . . . . . 15
⊢
(((♯‘𝑉)
∈ ℕ0 ∧ 3 < (♯‘𝑉)) → 0 < (♯‘𝑉)) |
| 16 | 15 | ex 412 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝑉)
∈ ℕ0 → (3 < (♯‘𝑉) → 0 < (♯‘𝑉))) |
| 17 | | ltne 11341 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℝ ∧ 0 < (♯‘𝑉)) → (♯‘𝑉) ≠ 0) |
| 18 | 4, 16, 17 | syl6an 684 |
. . . . . . . . . . . . 13
⊢
((♯‘𝑉)
∈ ℕ0 → (3 < (♯‘𝑉) → (♯‘𝑉) ≠ 0)) |
| 19 | | hasheq0 14385 |
. . . . . . . . . . . . . . 15
⊢ (𝑉 ∈ Fin →
((♯‘𝑉) = 0
↔ 𝑉 =
∅)) |
| 20 | 19 | necon3bid 2975 |
. . . . . . . . . . . . . 14
⊢ (𝑉 ∈ Fin →
((♯‘𝑉) ≠ 0
↔ 𝑉 ≠
∅)) |
| 21 | 20 | biimpcd 249 |
. . . . . . . . . . . . 13
⊢
((♯‘𝑉)
≠ 0 → (𝑉 ∈ Fin
→ 𝑉 ≠
∅)) |
| 22 | 18, 21 | syl6 35 |
. . . . . . . . . . . 12
⊢
((♯‘𝑉)
∈ ℕ0 → (3 < (♯‘𝑉) → (𝑉 ∈ Fin → 𝑉 ≠ ∅))) |
| 23 | 22 | com23 86 |
. . . . . . . . . . 11
⊢
((♯‘𝑉)
∈ ℕ0 → (𝑉 ∈ Fin → (3 <
(♯‘𝑉) →
𝑉 ≠
∅))) |
| 24 | 3, 23 | mpcom 38 |
. . . . . . . . . 10
⊢ (𝑉 ∈ Fin → (3 <
(♯‘𝑉) →
𝑉 ≠
∅)) |
| 25 | 24 | a1i 11 |
. . . . . . . . 9
⊢ (𝐺 ∈ FriendGraph →
(𝑉 ∈ Fin → (3
< (♯‘𝑉)
→ 𝑉 ≠
∅))) |
| 26 | 25 | 3imp 1110 |
. . . . . . . 8
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 <
(♯‘𝑉)) →
𝑉 ≠
∅) |
| 27 | 1, 2, 26 | 3jca 1128 |
. . . . . . 7
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 <
(♯‘𝑉)) →
(𝐺 ∈ FriendGraph ∧
𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) |
| 28 | 27 | ad2antrl 728 |
. . . . . 6
⊢ ((𝐺 RegUSGraph 𝑘 ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 <
(♯‘𝑉)) ∧
𝑘 ∈
ℕ0)) → (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) |
| 29 | | simpl 482 |
. . . . . 6
⊢ ((𝐺 RegUSGraph 𝑘 ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 <
(♯‘𝑉)) ∧
𝑘 ∈
ℕ0)) → 𝐺 RegUSGraph 𝑘) |
| 30 | | frgrreggt1.v |
. . . . . . 7
⊢ 𝑉 = (Vtx‘𝐺) |
| 31 | 30 | frgrregord13 30362 |
. . . . . 6
⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝑘) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)) |
| 32 | 28, 29, 31 | syl2anc 584 |
. . . . 5
⊢ ((𝐺 RegUSGraph 𝑘 ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 <
(♯‘𝑉)) ∧
𝑘 ∈
ℕ0)) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)) |
| 33 | | 1red 11245 |
. . . . . . . . . . . . 13
⊢
(((♯‘𝑉)
∈ ℕ0 ∧ 3 < (♯‘𝑉)) → 1 ∈ ℝ) |
| 34 | 5 | a1i 11 |
. . . . . . . . . . . . . 14
⊢
(((♯‘𝑉)
∈ ℕ0 ∧ 3 < (♯‘𝑉)) → 3 ∈ ℝ) |
| 35 | 7 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((♯‘𝑉)
∈ ℕ0 ∧ 3 < (♯‘𝑉)) → (♯‘𝑉) ∈ ℝ) |
| 36 | | 1lt3 12422 |
. . . . . . . . . . . . . . 15
⊢ 1 <
3 |
| 37 | 36 | a1i 11 |
. . . . . . . . . . . . . 14
⊢
(((♯‘𝑉)
∈ ℕ0 ∧ 3 < (♯‘𝑉)) → 1 < 3) |
| 38 | 33, 34, 35, 37, 12 | lttrd 11405 |
. . . . . . . . . . . . 13
⊢
(((♯‘𝑉)
∈ ℕ0 ∧ 3 < (♯‘𝑉)) → 1 < (♯‘𝑉)) |
| 39 | 33, 38 | gtned 11379 |
. . . . . . . . . . . 12
⊢
(((♯‘𝑉)
∈ ℕ0 ∧ 3 < (♯‘𝑉)) → (♯‘𝑉) ≠ 1) |
| 40 | | eqneqall 2942 |
. . . . . . . . . . . 12
⊢
((♯‘𝑉) =
1 → ((♯‘𝑉)
≠ 1 → ¬ 𝐺
RegUSGraph 𝑘)) |
| 41 | 39, 40 | syl5com 31 |
. . . . . . . . . . 11
⊢
(((♯‘𝑉)
∈ ℕ0 ∧ 3 < (♯‘𝑉)) → ((♯‘𝑉) = 1 → ¬ 𝐺 RegUSGraph 𝑘)) |
| 42 | | ltne 11341 |
. . . . . . . . . . . . 13
⊢ ((3
∈ ℝ ∧ 3 < (♯‘𝑉)) → (♯‘𝑉) ≠ 3) |
| 43 | 6, 42 | sylan 580 |
. . . . . . . . . . . 12
⊢
(((♯‘𝑉)
∈ ℕ0 ∧ 3 < (♯‘𝑉)) → (♯‘𝑉) ≠ 3) |
| 44 | | eqneqall 2942 |
. . . . . . . . . . . 12
⊢
((♯‘𝑉) =
3 → ((♯‘𝑉)
≠ 3 → ¬ 𝐺
RegUSGraph 𝑘)) |
| 45 | 43, 44 | syl5com 31 |
. . . . . . . . . . 11
⊢
(((♯‘𝑉)
∈ ℕ0 ∧ 3 < (♯‘𝑉)) → ((♯‘𝑉) = 3 → ¬ 𝐺 RegUSGraph 𝑘)) |
| 46 | 41, 45 | jaod 859 |
. . . . . . . . . 10
⊢
(((♯‘𝑉)
∈ ℕ0 ∧ 3 < (♯‘𝑉)) → (((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3) → ¬ 𝐺 RegUSGraph 𝑘)) |
| 47 | 46 | ex 412 |
. . . . . . . . 9
⊢
((♯‘𝑉)
∈ ℕ0 → (3 < (♯‘𝑉) → (((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3) → ¬ 𝐺 RegUSGraph 𝑘))) |
| 48 | 3, 47 | syl 17 |
. . . . . . . 8
⊢ (𝑉 ∈ Fin → (3 <
(♯‘𝑉) →
(((♯‘𝑉) = 1
∨ (♯‘𝑉) = 3)
→ ¬ 𝐺 RegUSGraph
𝑘))) |
| 49 | 48 | a1i 11 |
. . . . . . 7
⊢ (𝐺 ∈ FriendGraph →
(𝑉 ∈ Fin → (3
< (♯‘𝑉)
→ (((♯‘𝑉)
= 1 ∨ (♯‘𝑉)
= 3) → ¬ 𝐺
RegUSGraph 𝑘)))) |
| 50 | 49 | 3imp 1110 |
. . . . . 6
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 <
(♯‘𝑉)) →
(((♯‘𝑉) = 1
∨ (♯‘𝑉) = 3)
→ ¬ 𝐺 RegUSGraph
𝑘)) |
| 51 | 50 | ad2antrl 728 |
. . . . 5
⊢ ((𝐺 RegUSGraph 𝑘 ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 <
(♯‘𝑉)) ∧
𝑘 ∈
ℕ0)) → (((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3) → ¬ 𝐺 RegUSGraph 𝑘)) |
| 52 | 32, 51 | mpd 15 |
. . . 4
⊢ ((𝐺 RegUSGraph 𝑘 ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 <
(♯‘𝑉)) ∧
𝑘 ∈
ℕ0)) → ¬ 𝐺 RegUSGraph 𝑘) |
| 53 | 52 | ex 412 |
. . 3
⊢ (𝐺 RegUSGraph 𝑘 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 <
(♯‘𝑉)) ∧
𝑘 ∈
ℕ0) → ¬ 𝐺 RegUSGraph 𝑘)) |
| 54 | | ax-1 6 |
. . 3
⊢ (¬
𝐺 RegUSGraph 𝑘 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 <
(♯‘𝑉)) ∧
𝑘 ∈
ℕ0) → ¬ 𝐺 RegUSGraph 𝑘)) |
| 55 | 53, 54 | pm2.61i 182 |
. 2
⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 <
(♯‘𝑉)) ∧
𝑘 ∈
ℕ0) → ¬ 𝐺 RegUSGraph 𝑘) |
| 56 | 55 | ralrimiva 3133 |
1
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 <
(♯‘𝑉)) →
∀𝑘 ∈
ℕ0 ¬ 𝐺
RegUSGraph 𝑘) |