MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrogt3nreg Structured version   Visualization version   GIF version

Theorem frgrogt3nreg 28761
Description: If a finite friendship graph has an order greater than 3, it cannot be 𝑘-regular for any 𝑘. (Contributed by Alexander van der Vekens, 9-Oct-2018.) (Revised by AV, 4-Jun-2021.)
Hypothesis
Ref Expression
frgrreggt1.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frgrogt3nreg ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘)
Distinct variable groups:   𝑘,𝐺   𝑘,𝑉

Proof of Theorem frgrogt3nreg
StepHypRef Expression
1 simp1 1135 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 𝐺 ∈ FriendGraph )
2 simp2 1136 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 𝑉 ∈ Fin)
3 hashcl 14071 . . . . . . . . . . 11 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0)
4 0red 10978 . . . . . . . . . . . . . 14 ((♯‘𝑉) ∈ ℕ0 → 0 ∈ ℝ)
5 3re 12053 . . . . . . . . . . . . . . . . . . 19 3 ∈ ℝ
65a1i 11 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑉) ∈ ℕ0 → 3 ∈ ℝ)
7 nn0re 12242 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑉) ∈ ℕ0 → (♯‘𝑉) ∈ ℝ)
84, 6, 73jca 1127 . . . . . . . . . . . . . . . . 17 ((♯‘𝑉) ∈ ℕ0 → (0 ∈ ℝ ∧ 3 ∈ ℝ ∧ (♯‘𝑉) ∈ ℝ))
98adantr 481 . . . . . . . . . . . . . . . 16 (((♯‘𝑉) ∈ ℕ0 ∧ 3 < (♯‘𝑉)) → (0 ∈ ℝ ∧ 3 ∈ ℝ ∧ (♯‘𝑉) ∈ ℝ))
10 3pos 12078 . . . . . . . . . . . . . . . . 17 0 < 3
1110a1i 11 . . . . . . . . . . . . . . . 16 (((♯‘𝑉) ∈ ℕ0 ∧ 3 < (♯‘𝑉)) → 0 < 3)
12 simpr 485 . . . . . . . . . . . . . . . 16 (((♯‘𝑉) ∈ ℕ0 ∧ 3 < (♯‘𝑉)) → 3 < (♯‘𝑉))
13 lttr 11051 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ 3 ∈ ℝ ∧ (♯‘𝑉) ∈ ℝ) → ((0 < 3 ∧ 3 < (♯‘𝑉)) → 0 < (♯‘𝑉)))
1413imp 407 . . . . . . . . . . . . . . . 16 (((0 ∈ ℝ ∧ 3 ∈ ℝ ∧ (♯‘𝑉) ∈ ℝ) ∧ (0 < 3 ∧ 3 < (♯‘𝑉))) → 0 < (♯‘𝑉))
159, 11, 12, 14syl12anc 834 . . . . . . . . . . . . . . 15 (((♯‘𝑉) ∈ ℕ0 ∧ 3 < (♯‘𝑉)) → 0 < (♯‘𝑉))
1615ex 413 . . . . . . . . . . . . . 14 ((♯‘𝑉) ∈ ℕ0 → (3 < (♯‘𝑉) → 0 < (♯‘𝑉)))
17 ltne 11072 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ 0 < (♯‘𝑉)) → (♯‘𝑉) ≠ 0)
184, 16, 17syl6an 681 . . . . . . . . . . . . 13 ((♯‘𝑉) ∈ ℕ0 → (3 < (♯‘𝑉) → (♯‘𝑉) ≠ 0))
19 hasheq0 14078 . . . . . . . . . . . . . . 15 (𝑉 ∈ Fin → ((♯‘𝑉) = 0 ↔ 𝑉 = ∅))
2019necon3bid 2988 . . . . . . . . . . . . . 14 (𝑉 ∈ Fin → ((♯‘𝑉) ≠ 0 ↔ 𝑉 ≠ ∅))
2120biimpcd 248 . . . . . . . . . . . . 13 ((♯‘𝑉) ≠ 0 → (𝑉 ∈ Fin → 𝑉 ≠ ∅))
2218, 21syl6 35 . . . . . . . . . . . 12 ((♯‘𝑉) ∈ ℕ0 → (3 < (♯‘𝑉) → (𝑉 ∈ Fin → 𝑉 ≠ ∅)))
2322com23 86 . . . . . . . . . . 11 ((♯‘𝑉) ∈ ℕ0 → (𝑉 ∈ Fin → (3 < (♯‘𝑉) → 𝑉 ≠ ∅)))
243, 23mpcom 38 . . . . . . . . . 10 (𝑉 ∈ Fin → (3 < (♯‘𝑉) → 𝑉 ≠ ∅))
2524a1i 11 . . . . . . . . 9 (𝐺 ∈ FriendGraph → (𝑉 ∈ Fin → (3 < (♯‘𝑉) → 𝑉 ≠ ∅)))
26253imp 1110 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 𝑉 ≠ ∅)
271, 2, 263jca 1127 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅))
2827ad2antrl 725 . . . . . 6 ((𝐺 RegUSGraph 𝑘 ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) ∧ 𝑘 ∈ ℕ0)) → (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅))
29 simpl 483 . . . . . 6 ((𝐺 RegUSGraph 𝑘 ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) ∧ 𝑘 ∈ ℕ0)) → 𝐺 RegUSGraph 𝑘)
30 frgrreggt1.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
3130frgrregord13 28760 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝑘) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))
3228, 29, 31syl2anc 584 . . . . 5 ((𝐺 RegUSGraph 𝑘 ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) ∧ 𝑘 ∈ ℕ0)) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))
33 1red 10976 . . . . . . . . . . . . 13 (((♯‘𝑉) ∈ ℕ0 ∧ 3 < (♯‘𝑉)) → 1 ∈ ℝ)
345a1i 11 . . . . . . . . . . . . . 14 (((♯‘𝑉) ∈ ℕ0 ∧ 3 < (♯‘𝑉)) → 3 ∈ ℝ)
357adantr 481 . . . . . . . . . . . . . 14 (((♯‘𝑉) ∈ ℕ0 ∧ 3 < (♯‘𝑉)) → (♯‘𝑉) ∈ ℝ)
36 1lt3 12146 . . . . . . . . . . . . . . 15 1 < 3
3736a1i 11 . . . . . . . . . . . . . 14 (((♯‘𝑉) ∈ ℕ0 ∧ 3 < (♯‘𝑉)) → 1 < 3)
3833, 34, 35, 37, 12lttrd 11136 . . . . . . . . . . . . 13 (((♯‘𝑉) ∈ ℕ0 ∧ 3 < (♯‘𝑉)) → 1 < (♯‘𝑉))
3933, 38gtned 11110 . . . . . . . . . . . 12 (((♯‘𝑉) ∈ ℕ0 ∧ 3 < (♯‘𝑉)) → (♯‘𝑉) ≠ 1)
40 eqneqall 2954 . . . . . . . . . . . 12 ((♯‘𝑉) = 1 → ((♯‘𝑉) ≠ 1 → ¬ 𝐺 RegUSGraph 𝑘))
4139, 40syl5com 31 . . . . . . . . . . 11 (((♯‘𝑉) ∈ ℕ0 ∧ 3 < (♯‘𝑉)) → ((♯‘𝑉) = 1 → ¬ 𝐺 RegUSGraph 𝑘))
42 ltne 11072 . . . . . . . . . . . . 13 ((3 ∈ ℝ ∧ 3 < (♯‘𝑉)) → (♯‘𝑉) ≠ 3)
436, 42sylan 580 . . . . . . . . . . . 12 (((♯‘𝑉) ∈ ℕ0 ∧ 3 < (♯‘𝑉)) → (♯‘𝑉) ≠ 3)
44 eqneqall 2954 . . . . . . . . . . . 12 ((♯‘𝑉) = 3 → ((♯‘𝑉) ≠ 3 → ¬ 𝐺 RegUSGraph 𝑘))
4543, 44syl5com 31 . . . . . . . . . . 11 (((♯‘𝑉) ∈ ℕ0 ∧ 3 < (♯‘𝑉)) → ((♯‘𝑉) = 3 → ¬ 𝐺 RegUSGraph 𝑘))
4641, 45jaod 856 . . . . . . . . . 10 (((♯‘𝑉) ∈ ℕ0 ∧ 3 < (♯‘𝑉)) → (((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3) → ¬ 𝐺 RegUSGraph 𝑘))
4746ex 413 . . . . . . . . 9 ((♯‘𝑉) ∈ ℕ0 → (3 < (♯‘𝑉) → (((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3) → ¬ 𝐺 RegUSGraph 𝑘)))
483, 47syl 17 . . . . . . . 8 (𝑉 ∈ Fin → (3 < (♯‘𝑉) → (((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3) → ¬ 𝐺 RegUSGraph 𝑘)))
4948a1i 11 . . . . . . 7 (𝐺 ∈ FriendGraph → (𝑉 ∈ Fin → (3 < (♯‘𝑉) → (((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3) → ¬ 𝐺 RegUSGraph 𝑘))))
50493imp 1110 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → (((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3) → ¬ 𝐺 RegUSGraph 𝑘))
5150ad2antrl 725 . . . . 5 ((𝐺 RegUSGraph 𝑘 ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) ∧ 𝑘 ∈ ℕ0)) → (((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3) → ¬ 𝐺 RegUSGraph 𝑘))
5232, 51mpd 15 . . . 4 ((𝐺 RegUSGraph 𝑘 ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) ∧ 𝑘 ∈ ℕ0)) → ¬ 𝐺 RegUSGraph 𝑘)
5352ex 413 . . 3 (𝐺 RegUSGraph 𝑘 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) ∧ 𝑘 ∈ ℕ0) → ¬ 𝐺 RegUSGraph 𝑘))
54 ax-1 6 . . 3 𝐺 RegUSGraph 𝑘 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) ∧ 𝑘 ∈ ℕ0) → ¬ 𝐺 RegUSGraph 𝑘))
5553, 54pm2.61i 182 . 2 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) ∧ 𝑘 ∈ ℕ0) → ¬ 𝐺 RegUSGraph 𝑘)
5655ralrimiva 3103 1 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  c0 4256   class class class wbr 5074  cfv 6433  Fincfn 8733  cr 10870  0cc0 10871  1c1 10872   < clt 11009  3c3 12029  0cn0 12233  chash 14044  Vtxcvtx 27366   RegUSGraph crusgr 27923   FriendGraph cfrgr 28622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-ac2 10219  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-ac 9872  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-rp 12731  df-xadd 12849  df-ico 13085  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-reps 14482  df-csh 14502  df-s2 14561  df-s3 14562  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-dvds 15964  df-gcd 16202  df-prm 16377  df-phi 16467  df-vtx 27368  df-iedg 27369  df-edg 27418  df-uhgr 27428  df-ushgr 27429  df-upgr 27452  df-umgr 27453  df-uspgr 27520  df-usgr 27521  df-fusgr 27684  df-nbgr 27700  df-vtxdg 27833  df-rgr 27924  df-rusgr 27925  df-wlks 27966  df-wlkson 27967  df-trls 28060  df-trlson 28061  df-pths 28084  df-spths 28085  df-pthson 28086  df-spthson 28087  df-wwlks 28195  df-wwlksn 28196  df-wwlksnon 28197  df-wspthsn 28198  df-wspthsnon 28199  df-clwwlk 28346  df-clwwlkn 28389  df-clwwlknon 28452  df-conngr 28551  df-frgr 28623
This theorem is referenced by:  friendshipgt3  28762
  Copyright terms: Public domain W3C validator