Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrogt3nreg Structured version   Visualization version   GIF version

Theorem frgrogt3nreg 28189
 Description: If a finite friendship graph has an order greater than 3, it cannot be 𝑘-regular for any 𝑘. (Contributed by Alexander van der Vekens, 9-Oct-2018.) (Revised by AV, 4-Jun-2021.)
Hypothesis
Ref Expression
frgrreggt1.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frgrogt3nreg ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘)
Distinct variable groups:   𝑘,𝐺   𝑘,𝑉

Proof of Theorem frgrogt3nreg
StepHypRef Expression
1 simp1 1133 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 𝐺 ∈ FriendGraph )
2 simp2 1134 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 𝑉 ∈ Fin)
3 hashcl 13715 . . . . . . . . . . 11 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0)
4 0red 10635 . . . . . . . . . . . . . 14 ((♯‘𝑉) ∈ ℕ0 → 0 ∈ ℝ)
5 3re 11707 . . . . . . . . . . . . . . . . . . 19 3 ∈ ℝ
65a1i 11 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑉) ∈ ℕ0 → 3 ∈ ℝ)
7 nn0re 11896 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑉) ∈ ℕ0 → (♯‘𝑉) ∈ ℝ)
84, 6, 73jca 1125 . . . . . . . . . . . . . . . . 17 ((♯‘𝑉) ∈ ℕ0 → (0 ∈ ℝ ∧ 3 ∈ ℝ ∧ (♯‘𝑉) ∈ ℝ))
98adantr 484 . . . . . . . . . . . . . . . 16 (((♯‘𝑉) ∈ ℕ0 ∧ 3 < (♯‘𝑉)) → (0 ∈ ℝ ∧ 3 ∈ ℝ ∧ (♯‘𝑉) ∈ ℝ))
10 3pos 11732 . . . . . . . . . . . . . . . . 17 0 < 3
1110a1i 11 . . . . . . . . . . . . . . . 16 (((♯‘𝑉) ∈ ℕ0 ∧ 3 < (♯‘𝑉)) → 0 < 3)
12 simpr 488 . . . . . . . . . . . . . . . 16 (((♯‘𝑉) ∈ ℕ0 ∧ 3 < (♯‘𝑉)) → 3 < (♯‘𝑉))
13 lttr 10708 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ 3 ∈ ℝ ∧ (♯‘𝑉) ∈ ℝ) → ((0 < 3 ∧ 3 < (♯‘𝑉)) → 0 < (♯‘𝑉)))
1413imp 410 . . . . . . . . . . . . . . . 16 (((0 ∈ ℝ ∧ 3 ∈ ℝ ∧ (♯‘𝑉) ∈ ℝ) ∧ (0 < 3 ∧ 3 < (♯‘𝑉))) → 0 < (♯‘𝑉))
159, 11, 12, 14syl12anc 835 . . . . . . . . . . . . . . 15 (((♯‘𝑉) ∈ ℕ0 ∧ 3 < (♯‘𝑉)) → 0 < (♯‘𝑉))
1615ex 416 . . . . . . . . . . . . . 14 ((♯‘𝑉) ∈ ℕ0 → (3 < (♯‘𝑉) → 0 < (♯‘𝑉)))
17 ltne 10728 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ 0 < (♯‘𝑉)) → (♯‘𝑉) ≠ 0)
184, 16, 17syl6an 683 . . . . . . . . . . . . 13 ((♯‘𝑉) ∈ ℕ0 → (3 < (♯‘𝑉) → (♯‘𝑉) ≠ 0))
19 hasheq0 13722 . . . . . . . . . . . . . . 15 (𝑉 ∈ Fin → ((♯‘𝑉) = 0 ↔ 𝑉 = ∅))
2019necon3bid 3031 . . . . . . . . . . . . . 14 (𝑉 ∈ Fin → ((♯‘𝑉) ≠ 0 ↔ 𝑉 ≠ ∅))
2120biimpcd 252 . . . . . . . . . . . . 13 ((♯‘𝑉) ≠ 0 → (𝑉 ∈ Fin → 𝑉 ≠ ∅))
2218, 21syl6 35 . . . . . . . . . . . 12 ((♯‘𝑉) ∈ ℕ0 → (3 < (♯‘𝑉) → (𝑉 ∈ Fin → 𝑉 ≠ ∅)))
2322com23 86 . . . . . . . . . . 11 ((♯‘𝑉) ∈ ℕ0 → (𝑉 ∈ Fin → (3 < (♯‘𝑉) → 𝑉 ≠ ∅)))
243, 23mpcom 38 . . . . . . . . . 10 (𝑉 ∈ Fin → (3 < (♯‘𝑉) → 𝑉 ≠ ∅))
2524a1i 11 . . . . . . . . 9 (𝐺 ∈ FriendGraph → (𝑉 ∈ Fin → (3 < (♯‘𝑉) → 𝑉 ≠ ∅)))
26253imp 1108 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → 𝑉 ≠ ∅)
271, 2, 263jca 1125 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅))
2827ad2antrl 727 . . . . . 6 ((𝐺 RegUSGraph 𝑘 ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) ∧ 𝑘 ∈ ℕ0)) → (𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅))
29 simpl 486 . . . . . 6 ((𝐺 RegUSGraph 𝑘 ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) ∧ 𝑘 ∈ ℕ0)) → 𝐺 RegUSGraph 𝑘)
30 frgrreggt1.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
3130frgrregord13 28188 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝑘) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))
3228, 29, 31syl2anc 587 . . . . 5 ((𝐺 RegUSGraph 𝑘 ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) ∧ 𝑘 ∈ ℕ0)) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))
33 1red 10633 . . . . . . . . . . . . 13 (((♯‘𝑉) ∈ ℕ0 ∧ 3 < (♯‘𝑉)) → 1 ∈ ℝ)
345a1i 11 . . . . . . . . . . . . . 14 (((♯‘𝑉) ∈ ℕ0 ∧ 3 < (♯‘𝑉)) → 3 ∈ ℝ)
357adantr 484 . . . . . . . . . . . . . 14 (((♯‘𝑉) ∈ ℕ0 ∧ 3 < (♯‘𝑉)) → (♯‘𝑉) ∈ ℝ)
36 1lt3 11800 . . . . . . . . . . . . . . 15 1 < 3
3736a1i 11 . . . . . . . . . . . . . 14 (((♯‘𝑉) ∈ ℕ0 ∧ 3 < (♯‘𝑉)) → 1 < 3)
3833, 34, 35, 37, 12lttrd 10792 . . . . . . . . . . . . 13 (((♯‘𝑉) ∈ ℕ0 ∧ 3 < (♯‘𝑉)) → 1 < (♯‘𝑉))
3933, 38gtned 10766 . . . . . . . . . . . 12 (((♯‘𝑉) ∈ ℕ0 ∧ 3 < (♯‘𝑉)) → (♯‘𝑉) ≠ 1)
40 eqneqall 2998 . . . . . . . . . . . 12 ((♯‘𝑉) = 1 → ((♯‘𝑉) ≠ 1 → ¬ 𝐺 RegUSGraph 𝑘))
4139, 40syl5com 31 . . . . . . . . . . 11 (((♯‘𝑉) ∈ ℕ0 ∧ 3 < (♯‘𝑉)) → ((♯‘𝑉) = 1 → ¬ 𝐺 RegUSGraph 𝑘))
42 ltne 10728 . . . . . . . . . . . . 13 ((3 ∈ ℝ ∧ 3 < (♯‘𝑉)) → (♯‘𝑉) ≠ 3)
436, 42sylan 583 . . . . . . . . . . . 12 (((♯‘𝑉) ∈ ℕ0 ∧ 3 < (♯‘𝑉)) → (♯‘𝑉) ≠ 3)
44 eqneqall 2998 . . . . . . . . . . . 12 ((♯‘𝑉) = 3 → ((♯‘𝑉) ≠ 3 → ¬ 𝐺 RegUSGraph 𝑘))
4543, 44syl5com 31 . . . . . . . . . . 11 (((♯‘𝑉) ∈ ℕ0 ∧ 3 < (♯‘𝑉)) → ((♯‘𝑉) = 3 → ¬ 𝐺 RegUSGraph 𝑘))
4641, 45jaod 856 . . . . . . . . . 10 (((♯‘𝑉) ∈ ℕ0 ∧ 3 < (♯‘𝑉)) → (((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3) → ¬ 𝐺 RegUSGraph 𝑘))
4746ex 416 . . . . . . . . 9 ((♯‘𝑉) ∈ ℕ0 → (3 < (♯‘𝑉) → (((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3) → ¬ 𝐺 RegUSGraph 𝑘)))
483, 47syl 17 . . . . . . . 8 (𝑉 ∈ Fin → (3 < (♯‘𝑉) → (((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3) → ¬ 𝐺 RegUSGraph 𝑘)))
4948a1i 11 . . . . . . 7 (𝐺 ∈ FriendGraph → (𝑉 ∈ Fin → (3 < (♯‘𝑉) → (((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3) → ¬ 𝐺 RegUSGraph 𝑘))))
50493imp 1108 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → (((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3) → ¬ 𝐺 RegUSGraph 𝑘))
5150ad2antrl 727 . . . . 5 ((𝐺 RegUSGraph 𝑘 ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) ∧ 𝑘 ∈ ℕ0)) → (((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3) → ¬ 𝐺 RegUSGraph 𝑘))
5232, 51mpd 15 . . . 4 ((𝐺 RegUSGraph 𝑘 ∧ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) ∧ 𝑘 ∈ ℕ0)) → ¬ 𝐺 RegUSGraph 𝑘)
5352ex 416 . . 3 (𝐺 RegUSGraph 𝑘 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) ∧ 𝑘 ∈ ℕ0) → ¬ 𝐺 RegUSGraph 𝑘))
54 ax-1 6 . . 3 𝐺 RegUSGraph 𝑘 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) ∧ 𝑘 ∈ ℕ0) → ¬ 𝐺 RegUSGraph 𝑘))
5553, 54pm2.61i 185 . 2 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) ∧ 𝑘 ∈ ℕ0) → ¬ 𝐺 RegUSGraph 𝑘)
5655ralrimiva 3149 1 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (♯‘𝑉)) → ∀𝑘 ∈ ℕ0 ¬ 𝐺 RegUSGraph 𝑘)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106  ∅c0 4243   class class class wbr 5030  ‘cfv 6324  Fincfn 8494  ℝcr 10527  0cc0 10528  1c1 10529   < clt 10666  3c3 11683  ℕ0cn0 11887  ♯chash 13688  Vtxcvtx 26796   RegUSGraph crusgr 27353   FriendGraph cfrgr 28050 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-inf2 9090  ax-ac2 9876  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605  ax-pre-sup 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7563  df-1st 7673  df-2nd 7674  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-2o 8088  df-oadd 8091  df-er 8274  df-ec 8276  df-qs 8280  df-map 8393  df-pm 8394  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-sup 8892  df-inf 8893  df-oi 8960  df-dju 9316  df-card 9354  df-ac 9529  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-div 11289  df-nn 11628  df-2 11690  df-3 11691  df-n0 11888  df-xnn0 11958  df-z 11972  df-uz 12234  df-rp 12380  df-xadd 12498  df-ico 12734  df-fz 12888  df-fzo 13031  df-fl 13159  df-mod 13235  df-seq 13367  df-exp 13428  df-hash 13689  df-word 13860  df-lsw 13908  df-concat 13916  df-s1 13943  df-substr 13996  df-pfx 14026  df-reps 14124  df-csh 14144  df-s2 14203  df-s3 14204  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-dvds 15602  df-gcd 15836  df-prm 16008  df-phi 16095  df-vtx 26798  df-iedg 26799  df-edg 26848  df-uhgr 26858  df-ushgr 26859  df-upgr 26882  df-umgr 26883  df-uspgr 26950  df-usgr 26951  df-fusgr 27114  df-nbgr 27130  df-vtxdg 27263  df-rgr 27354  df-rusgr 27355  df-wlks 27396  df-wlkson 27397  df-trls 27489  df-trlson 27490  df-pths 27512  df-spths 27513  df-pthson 27514  df-spthson 27515  df-wwlks 27623  df-wwlksn 27624  df-wwlksnon 27625  df-wspthsn 27626  df-wspthsnon 27627  df-clwwlk 27774  df-clwwlkn 27817  df-clwwlknon 27880  df-conngr 27979  df-frgr 28051 This theorem is referenced by:  friendshipgt3  28190
 Copyright terms: Public domain W3C validator