Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem12 Structured version   Visualization version   GIF version

Theorem knoppndvlem12 36489
Description: Lemma for knoppndv 36500. (Contributed by Asger C. Ipsen, 29-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem12.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem12.n (𝜑𝑁 ∈ ℕ)
knoppndvlem12.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
Assertion
Ref Expression
knoppndvlem12 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))

Proof of Theorem knoppndvlem12
StepHypRef Expression
1 1red 11291 . . . 4 (𝜑 → 1 ∈ ℝ)
2 2re 12367 . . . . . 6 2 ∈ ℝ
32a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ)
4 knoppndvlem12.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
5 nnre 12300 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
64, 5syl 17 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
73, 6remulcld 11320 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℝ)
8 knoppndvlem12.c . . . . . . . . . 10 (𝜑𝐶 ∈ (-1(,)1))
98knoppndvlem3 36480 . . . . . . . . 9 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
109simpld 494 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
1110recnd 11318 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
1211abscld 15485 . . . . . 6 (𝜑 → (abs‘𝐶) ∈ ℝ)
137, 12remulcld 11320 . . . . 5 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
14 1lt2 12464 . . . . . 6 1 < 2
1514a1i 11 . . . . 5 (𝜑 → 1 < 2)
16 2t1e2 12456 . . . . . . . . 9 (2 · 1) = 2
1716eqcomi 2749 . . . . . . . 8 2 = (2 · 1)
1817a1i 11 . . . . . . 7 (𝜑 → 2 = (2 · 1))
196, 12remulcld 11320 . . . . . . . 8 (𝜑 → (𝑁 · (abs‘𝐶)) ∈ ℝ)
20 2rp 13062 . . . . . . . . 9 2 ∈ ℝ+
2120a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℝ+)
22 knoppndvlem12.1 . . . . . . . 8 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
231, 19, 21, 22ltmul2dd 13155 . . . . . . 7 (𝜑 → (2 · 1) < (2 · (𝑁 · (abs‘𝐶))))
2418, 23eqbrtrd 5188 . . . . . 6 (𝜑 → 2 < (2 · (𝑁 · (abs‘𝐶))))
253recnd 11318 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
266recnd 11318 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
2712recnd 11318 . . . . . . . 8 (𝜑 → (abs‘𝐶) ∈ ℂ)
2825, 26, 27mulassd 11313 . . . . . . 7 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) = (2 · (𝑁 · (abs‘𝐶))))
2928eqcomd 2746 . . . . . 6 (𝜑 → (2 · (𝑁 · (abs‘𝐶))) = ((2 · 𝑁) · (abs‘𝐶)))
3024, 29breqtrd 5192 . . . . 5 (𝜑 → 2 < ((2 · 𝑁) · (abs‘𝐶)))
311, 3, 13, 15, 30lttrd 11451 . . . 4 (𝜑 → 1 < ((2 · 𝑁) · (abs‘𝐶)))
321, 31jca 511 . . 3 (𝜑 → (1 ∈ ℝ ∧ 1 < ((2 · 𝑁) · (abs‘𝐶))))
33 ltne 11387 . . 3 ((1 ∈ ℝ ∧ 1 < ((2 · 𝑁) · (abs‘𝐶))) → ((2 · 𝑁) · (abs‘𝐶)) ≠ 1)
3432, 33syl 17 . 2 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ≠ 1)
35 1p1e2 12418 . . . . 5 (1 + 1) = 2
3635a1i 11 . . . 4 (𝜑 → (1 + 1) = 2)
3736, 30eqbrtrd 5188 . . 3 (𝜑 → (1 + 1) < ((2 · 𝑁) · (abs‘𝐶)))
381, 1, 13ltaddsubd 11890 . . 3 (𝜑 → ((1 + 1) < ((2 · 𝑁) · (abs‘𝐶)) ↔ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
3937, 38mpbid 232 . 2 (𝜑 → 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))
4034, 39jca 511 1 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  cr 11183  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cmin 11520  -cneg 11521  cn 12293  2c2 12348  +crp 13057  (,)cioo 13407  abscabs 15283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ioo 13411  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285
This theorem is referenced by:  knoppndvlem14  36491  knoppndvlem15  36492  knoppndvlem17  36494  knoppndvlem20  36497
  Copyright terms: Public domain W3C validator