| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppndvlem12 | Structured version Visualization version GIF version | ||
| Description: Lemma for knoppndv 36495. (Contributed by Asger C. Ipsen, 29-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| Ref | Expression |
|---|---|
| knoppndvlem12.c | ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) |
| knoppndvlem12.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| knoppndvlem12.1 | ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) |
| Ref | Expression |
|---|---|
| knoppndvlem12 | ⊢ (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1red 11151 | . . . 4 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 2 | 2re 12236 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 3 | 2 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℝ) |
| 4 | knoppndvlem12.n | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 5 | nnre 12169 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
| 6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 7 | 3, 6 | remulcld 11180 | . . . . . 6 ⊢ (𝜑 → (2 · 𝑁) ∈ ℝ) |
| 8 | knoppndvlem12.c | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) | |
| 9 | 8 | knoppndvlem3 36475 | . . . . . . . . 9 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1)) |
| 10 | 9 | simpld 494 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 11 | 10 | recnd 11178 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 12 | 11 | abscld 15381 | . . . . . 6 ⊢ (𝜑 → (abs‘𝐶) ∈ ℝ) |
| 13 | 7, 12 | remulcld 11180 | . . . . 5 ⊢ (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ) |
| 14 | 1lt2 12328 | . . . . . 6 ⊢ 1 < 2 | |
| 15 | 14 | a1i 11 | . . . . 5 ⊢ (𝜑 → 1 < 2) |
| 16 | 2t1e2 12320 | . . . . . . . . 9 ⊢ (2 · 1) = 2 | |
| 17 | 16 | eqcomi 2738 | . . . . . . . 8 ⊢ 2 = (2 · 1) |
| 18 | 17 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 2 = (2 · 1)) |
| 19 | 6, 12 | remulcld 11180 | . . . . . . . 8 ⊢ (𝜑 → (𝑁 · (abs‘𝐶)) ∈ ℝ) |
| 20 | 2rp 12932 | . . . . . . . . 9 ⊢ 2 ∈ ℝ+ | |
| 21 | 20 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 2 ∈ ℝ+) |
| 22 | knoppndvlem12.1 | . . . . . . . 8 ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) | |
| 23 | 1, 19, 21, 22 | ltmul2dd 13027 | . . . . . . 7 ⊢ (𝜑 → (2 · 1) < (2 · (𝑁 · (abs‘𝐶)))) |
| 24 | 18, 23 | eqbrtrd 5124 | . . . . . 6 ⊢ (𝜑 → 2 < (2 · (𝑁 · (abs‘𝐶)))) |
| 25 | 3 | recnd 11178 | . . . . . . . 8 ⊢ (𝜑 → 2 ∈ ℂ) |
| 26 | 6 | recnd 11178 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 27 | 12 | recnd 11178 | . . . . . . . 8 ⊢ (𝜑 → (abs‘𝐶) ∈ ℂ) |
| 28 | 25, 26, 27 | mulassd 11173 | . . . . . . 7 ⊢ (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) = (2 · (𝑁 · (abs‘𝐶)))) |
| 29 | 28 | eqcomd 2735 | . . . . . 6 ⊢ (𝜑 → (2 · (𝑁 · (abs‘𝐶))) = ((2 · 𝑁) · (abs‘𝐶))) |
| 30 | 24, 29 | breqtrd 5128 | . . . . 5 ⊢ (𝜑 → 2 < ((2 · 𝑁) · (abs‘𝐶))) |
| 31 | 1, 3, 13, 15, 30 | lttrd 11311 | . . . 4 ⊢ (𝜑 → 1 < ((2 · 𝑁) · (abs‘𝐶))) |
| 32 | 1, 31 | jca 511 | . . 3 ⊢ (𝜑 → (1 ∈ ℝ ∧ 1 < ((2 · 𝑁) · (abs‘𝐶)))) |
| 33 | ltne 11247 | . . 3 ⊢ ((1 ∈ ℝ ∧ 1 < ((2 · 𝑁) · (abs‘𝐶))) → ((2 · 𝑁) · (abs‘𝐶)) ≠ 1) | |
| 34 | 32, 33 | syl 17 | . 2 ⊢ (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ≠ 1) |
| 35 | 1p1e2 12282 | . . . . 5 ⊢ (1 + 1) = 2 | |
| 36 | 35 | a1i 11 | . . . 4 ⊢ (𝜑 → (1 + 1) = 2) |
| 37 | 36, 30 | eqbrtrd 5124 | . . 3 ⊢ (𝜑 → (1 + 1) < ((2 · 𝑁) · (abs‘𝐶))) |
| 38 | 1, 1, 13 | ltaddsubd 11754 | . . 3 ⊢ (𝜑 → ((1 + 1) < ((2 · 𝑁) · (abs‘𝐶)) ↔ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))) |
| 39 | 37, 38 | mpbid 232 | . 2 ⊢ (𝜑 → 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)) |
| 40 | 34, 39 | jca 511 | 1 ⊢ (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ℝcr 11043 1c1 11045 + caddc 11047 · cmul 11049 < clt 11184 − cmin 11381 -cneg 11382 ℕcn 12162 2c2 12217 ℝ+crp 12927 (,)cioo 13282 abscabs 15176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-ioo 13286 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 |
| This theorem is referenced by: knoppndvlem14 36486 knoppndvlem15 36487 knoppndvlem17 36489 knoppndvlem20 36492 |
| Copyright terms: Public domain | W3C validator |