Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem12 Structured version   Visualization version   GIF version

Theorem knoppndvlem12 33864
Description: Lemma for knoppndv 33875. (Contributed by Asger C. Ipsen, 29-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem12.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem12.n (𝜑𝑁 ∈ ℕ)
knoppndvlem12.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
Assertion
Ref Expression
knoppndvlem12 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))

Proof of Theorem knoppndvlem12
StepHypRef Expression
1 1red 10644 . . . 4 (𝜑 → 1 ∈ ℝ)
2 2re 11714 . . . . . 6 2 ∈ ℝ
32a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ)
4 knoppndvlem12.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
5 nnre 11647 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
64, 5syl 17 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
73, 6remulcld 10673 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℝ)
8 knoppndvlem12.c . . . . . . . . . 10 (𝜑𝐶 ∈ (-1(,)1))
98knoppndvlem3 33855 . . . . . . . . 9 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
109simpld 497 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
1110recnd 10671 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
1211abscld 14798 . . . . . 6 (𝜑 → (abs‘𝐶) ∈ ℝ)
137, 12remulcld 10673 . . . . 5 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
14 1lt2 11811 . . . . . 6 1 < 2
1514a1i 11 . . . . 5 (𝜑 → 1 < 2)
16 2t1e2 11803 . . . . . . . . 9 (2 · 1) = 2
1716eqcomi 2832 . . . . . . . 8 2 = (2 · 1)
1817a1i 11 . . . . . . 7 (𝜑 → 2 = (2 · 1))
196, 12remulcld 10673 . . . . . . . 8 (𝜑 → (𝑁 · (abs‘𝐶)) ∈ ℝ)
20 2rp 12397 . . . . . . . . 9 2 ∈ ℝ+
2120a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℝ+)
22 knoppndvlem12.1 . . . . . . . 8 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
231, 19, 21, 22ltmul2dd 12490 . . . . . . 7 (𝜑 → (2 · 1) < (2 · (𝑁 · (abs‘𝐶))))
2418, 23eqbrtrd 5090 . . . . . 6 (𝜑 → 2 < (2 · (𝑁 · (abs‘𝐶))))
253recnd 10671 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
266recnd 10671 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
2712recnd 10671 . . . . . . . 8 (𝜑 → (abs‘𝐶) ∈ ℂ)
2825, 26, 27mulassd 10666 . . . . . . 7 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) = (2 · (𝑁 · (abs‘𝐶))))
2928eqcomd 2829 . . . . . 6 (𝜑 → (2 · (𝑁 · (abs‘𝐶))) = ((2 · 𝑁) · (abs‘𝐶)))
3024, 29breqtrd 5094 . . . . 5 (𝜑 → 2 < ((2 · 𝑁) · (abs‘𝐶)))
311, 3, 13, 15, 30lttrd 10803 . . . 4 (𝜑 → 1 < ((2 · 𝑁) · (abs‘𝐶)))
321, 31jca 514 . . 3 (𝜑 → (1 ∈ ℝ ∧ 1 < ((2 · 𝑁) · (abs‘𝐶))))
33 ltne 10739 . . 3 ((1 ∈ ℝ ∧ 1 < ((2 · 𝑁) · (abs‘𝐶))) → ((2 · 𝑁) · (abs‘𝐶)) ≠ 1)
3432, 33syl 17 . 2 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ≠ 1)
35 1p1e2 11765 . . . . 5 (1 + 1) = 2
3635a1i 11 . . . 4 (𝜑 → (1 + 1) = 2)
3736, 30eqbrtrd 5090 . . 3 (𝜑 → (1 + 1) < ((2 · 𝑁) · (abs‘𝐶)))
381, 1, 13ltaddsubd 11242 . . 3 (𝜑 → ((1 + 1) < ((2 · 𝑁) · (abs‘𝐶)) ↔ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
3937, 38mpbid 234 . 2 (𝜑 → 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))
4034, 39jca 514 1 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018   class class class wbr 5068  cfv 6357  (class class class)co 7158  cr 10538  1c1 10540   + caddc 10542   · cmul 10544   < clt 10677  cmin 10872  -cneg 10873  cn 11640  2c2 11695  +crp 12392  (,)cioo 12741  abscabs 14595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-ioo 12745  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597
This theorem is referenced by:  knoppndvlem14  33866  knoppndvlem15  33867  knoppndvlem17  33869  knoppndvlem20  33872
  Copyright terms: Public domain W3C validator