| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppndvlem12 | Structured version Visualization version GIF version | ||
| Description: Lemma for knoppndv 36552. (Contributed by Asger C. Ipsen, 29-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| Ref | Expression |
|---|---|
| knoppndvlem12.c | ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) |
| knoppndvlem12.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| knoppndvlem12.1 | ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) |
| Ref | Expression |
|---|---|
| knoppndvlem12 | ⊢ (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1red 11236 | . . . 4 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 2 | 2re 12314 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 3 | 2 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℝ) |
| 4 | knoppndvlem12.n | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 5 | nnre 12247 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
| 6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 7 | 3, 6 | remulcld 11265 | . . . . . 6 ⊢ (𝜑 → (2 · 𝑁) ∈ ℝ) |
| 8 | knoppndvlem12.c | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) | |
| 9 | 8 | knoppndvlem3 36532 | . . . . . . . . 9 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1)) |
| 10 | 9 | simpld 494 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 11 | 10 | recnd 11263 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 12 | 11 | abscld 15455 | . . . . . 6 ⊢ (𝜑 → (abs‘𝐶) ∈ ℝ) |
| 13 | 7, 12 | remulcld 11265 | . . . . 5 ⊢ (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ) |
| 14 | 1lt2 12411 | . . . . . 6 ⊢ 1 < 2 | |
| 15 | 14 | a1i 11 | . . . . 5 ⊢ (𝜑 → 1 < 2) |
| 16 | 2t1e2 12403 | . . . . . . . . 9 ⊢ (2 · 1) = 2 | |
| 17 | 16 | eqcomi 2744 | . . . . . . . 8 ⊢ 2 = (2 · 1) |
| 18 | 17 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 2 = (2 · 1)) |
| 19 | 6, 12 | remulcld 11265 | . . . . . . . 8 ⊢ (𝜑 → (𝑁 · (abs‘𝐶)) ∈ ℝ) |
| 20 | 2rp 13013 | . . . . . . . . 9 ⊢ 2 ∈ ℝ+ | |
| 21 | 20 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 2 ∈ ℝ+) |
| 22 | knoppndvlem12.1 | . . . . . . . 8 ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) | |
| 23 | 1, 19, 21, 22 | ltmul2dd 13107 | . . . . . . 7 ⊢ (𝜑 → (2 · 1) < (2 · (𝑁 · (abs‘𝐶)))) |
| 24 | 18, 23 | eqbrtrd 5141 | . . . . . 6 ⊢ (𝜑 → 2 < (2 · (𝑁 · (abs‘𝐶)))) |
| 25 | 3 | recnd 11263 | . . . . . . . 8 ⊢ (𝜑 → 2 ∈ ℂ) |
| 26 | 6 | recnd 11263 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 27 | 12 | recnd 11263 | . . . . . . . 8 ⊢ (𝜑 → (abs‘𝐶) ∈ ℂ) |
| 28 | 25, 26, 27 | mulassd 11258 | . . . . . . 7 ⊢ (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) = (2 · (𝑁 · (abs‘𝐶)))) |
| 29 | 28 | eqcomd 2741 | . . . . . 6 ⊢ (𝜑 → (2 · (𝑁 · (abs‘𝐶))) = ((2 · 𝑁) · (abs‘𝐶))) |
| 30 | 24, 29 | breqtrd 5145 | . . . . 5 ⊢ (𝜑 → 2 < ((2 · 𝑁) · (abs‘𝐶))) |
| 31 | 1, 3, 13, 15, 30 | lttrd 11396 | . . . 4 ⊢ (𝜑 → 1 < ((2 · 𝑁) · (abs‘𝐶))) |
| 32 | 1, 31 | jca 511 | . . 3 ⊢ (𝜑 → (1 ∈ ℝ ∧ 1 < ((2 · 𝑁) · (abs‘𝐶)))) |
| 33 | ltne 11332 | . . 3 ⊢ ((1 ∈ ℝ ∧ 1 < ((2 · 𝑁) · (abs‘𝐶))) → ((2 · 𝑁) · (abs‘𝐶)) ≠ 1) | |
| 34 | 32, 33 | syl 17 | . 2 ⊢ (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ≠ 1) |
| 35 | 1p1e2 12365 | . . . . 5 ⊢ (1 + 1) = 2 | |
| 36 | 35 | a1i 11 | . . . 4 ⊢ (𝜑 → (1 + 1) = 2) |
| 37 | 36, 30 | eqbrtrd 5141 | . . 3 ⊢ (𝜑 → (1 + 1) < ((2 · 𝑁) · (abs‘𝐶))) |
| 38 | 1, 1, 13 | ltaddsubd 11837 | . . 3 ⊢ (𝜑 → ((1 + 1) < ((2 · 𝑁) · (abs‘𝐶)) ↔ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))) |
| 39 | 37, 38 | mpbid 232 | . 2 ⊢ (𝜑 → 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)) |
| 40 | 34, 39 | jca 511 | 1 ⊢ (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 1c1 11130 + caddc 11132 · cmul 11134 < clt 11269 − cmin 11466 -cneg 11467 ℕcn 12240 2c2 12295 ℝ+crp 13008 (,)cioo 13362 abscabs 15253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-ioo 13366 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 |
| This theorem is referenced by: knoppndvlem14 36543 knoppndvlem15 36544 knoppndvlem17 36546 knoppndvlem20 36549 |
| Copyright terms: Public domain | W3C validator |