| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppndvlem12 | Structured version Visualization version GIF version | ||
| Description: Lemma for knoppndv 36650. (Contributed by Asger C. Ipsen, 29-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| Ref | Expression |
|---|---|
| knoppndvlem12.c | ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) |
| knoppndvlem12.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| knoppndvlem12.1 | ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) |
| Ref | Expression |
|---|---|
| knoppndvlem12 | ⊢ (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1red 11124 | . . . 4 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 2 | 2re 12210 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 3 | 2 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℝ) |
| 4 | knoppndvlem12.n | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 5 | nnre 12143 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
| 6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 7 | 3, 6 | remulcld 11153 | . . . . . 6 ⊢ (𝜑 → (2 · 𝑁) ∈ ℝ) |
| 8 | knoppndvlem12.c | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) | |
| 9 | 8 | knoppndvlem3 36630 | . . . . . . . . 9 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1)) |
| 10 | 9 | simpld 494 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 11 | 10 | recnd 11151 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 12 | 11 | abscld 15353 | . . . . . 6 ⊢ (𝜑 → (abs‘𝐶) ∈ ℝ) |
| 13 | 7, 12 | remulcld 11153 | . . . . 5 ⊢ (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ) |
| 14 | 1lt2 12302 | . . . . . 6 ⊢ 1 < 2 | |
| 15 | 14 | a1i 11 | . . . . 5 ⊢ (𝜑 → 1 < 2) |
| 16 | 2t1e2 12294 | . . . . . . . . 9 ⊢ (2 · 1) = 2 | |
| 17 | 16 | eqcomi 2742 | . . . . . . . 8 ⊢ 2 = (2 · 1) |
| 18 | 17 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 2 = (2 · 1)) |
| 19 | 6, 12 | remulcld 11153 | . . . . . . . 8 ⊢ (𝜑 → (𝑁 · (abs‘𝐶)) ∈ ℝ) |
| 20 | 2rp 12901 | . . . . . . . . 9 ⊢ 2 ∈ ℝ+ | |
| 21 | 20 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 2 ∈ ℝ+) |
| 22 | knoppndvlem12.1 | . . . . . . . 8 ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) | |
| 23 | 1, 19, 21, 22 | ltmul2dd 12996 | . . . . . . 7 ⊢ (𝜑 → (2 · 1) < (2 · (𝑁 · (abs‘𝐶)))) |
| 24 | 18, 23 | eqbrtrd 5117 | . . . . . 6 ⊢ (𝜑 → 2 < (2 · (𝑁 · (abs‘𝐶)))) |
| 25 | 3 | recnd 11151 | . . . . . . . 8 ⊢ (𝜑 → 2 ∈ ℂ) |
| 26 | 6 | recnd 11151 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 27 | 12 | recnd 11151 | . . . . . . . 8 ⊢ (𝜑 → (abs‘𝐶) ∈ ℂ) |
| 28 | 25, 26, 27 | mulassd 11146 | . . . . . . 7 ⊢ (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) = (2 · (𝑁 · (abs‘𝐶)))) |
| 29 | 28 | eqcomd 2739 | . . . . . 6 ⊢ (𝜑 → (2 · (𝑁 · (abs‘𝐶))) = ((2 · 𝑁) · (abs‘𝐶))) |
| 30 | 24, 29 | breqtrd 5121 | . . . . 5 ⊢ (𝜑 → 2 < ((2 · 𝑁) · (abs‘𝐶))) |
| 31 | 1, 3, 13, 15, 30 | lttrd 11285 | . . . 4 ⊢ (𝜑 → 1 < ((2 · 𝑁) · (abs‘𝐶))) |
| 32 | 1, 31 | jca 511 | . . 3 ⊢ (𝜑 → (1 ∈ ℝ ∧ 1 < ((2 · 𝑁) · (abs‘𝐶)))) |
| 33 | ltne 11221 | . . 3 ⊢ ((1 ∈ ℝ ∧ 1 < ((2 · 𝑁) · (abs‘𝐶))) → ((2 · 𝑁) · (abs‘𝐶)) ≠ 1) | |
| 34 | 32, 33 | syl 17 | . 2 ⊢ (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ≠ 1) |
| 35 | 1p1e2 12256 | . . . . 5 ⊢ (1 + 1) = 2 | |
| 36 | 35 | a1i 11 | . . . 4 ⊢ (𝜑 → (1 + 1) = 2) |
| 37 | 36, 30 | eqbrtrd 5117 | . . 3 ⊢ (𝜑 → (1 + 1) < ((2 · 𝑁) · (abs‘𝐶))) |
| 38 | 1, 1, 13 | ltaddsubd 11728 | . . 3 ⊢ (𝜑 → ((1 + 1) < ((2 · 𝑁) · (abs‘𝐶)) ↔ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))) |
| 39 | 37, 38 | mpbid 232 | . 2 ⊢ (𝜑 → 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)) |
| 40 | 34, 39 | jca 511 | 1 ⊢ (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 ℝcr 11016 1c1 11018 + caddc 11020 · cmul 11022 < clt 11157 − cmin 11355 -cneg 11356 ℕcn 12136 2c2 12191 ℝ+crp 12896 (,)cioo 13252 abscabs 15148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9337 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-n0 12393 df-z 12480 df-uz 12743 df-rp 12897 df-ioo 13256 df-seq 13916 df-exp 13976 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 |
| This theorem is referenced by: knoppndvlem14 36641 knoppndvlem15 36642 knoppndvlem17 36644 knoppndvlem20 36647 |
| Copyright terms: Public domain | W3C validator |