Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem12 Structured version   Visualization version   GIF version

Theorem knoppndvlem12 33473
Description: Lemma for knoppndv 33484. (Contributed by Asger C. Ipsen, 29-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem12.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem12.n (𝜑𝑁 ∈ ℕ)
knoppndvlem12.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
Assertion
Ref Expression
knoppndvlem12 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))

Proof of Theorem knoppndvlem12
StepHypRef Expression
1 1red 10495 . . . 4 (𝜑 → 1 ∈ ℝ)
2 2re 11565 . . . . . 6 2 ∈ ℝ
32a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ)
4 knoppndvlem12.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
5 nnre 11499 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
64, 5syl 17 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
73, 6remulcld 10524 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℝ)
8 knoppndvlem12.c . . . . . . . . . 10 (𝜑𝐶 ∈ (-1(,)1))
98knoppndvlem3 33464 . . . . . . . . 9 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
109simpld 495 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
1110recnd 10522 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
1211abscld 14634 . . . . . 6 (𝜑 → (abs‘𝐶) ∈ ℝ)
137, 12remulcld 10524 . . . . 5 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
14 1lt2 11662 . . . . . 6 1 < 2
1514a1i 11 . . . . 5 (𝜑 → 1 < 2)
16 2t1e2 11654 . . . . . . . . 9 (2 · 1) = 2
1716eqcomi 2806 . . . . . . . 8 2 = (2 · 1)
1817a1i 11 . . . . . . 7 (𝜑 → 2 = (2 · 1))
196, 12remulcld 10524 . . . . . . . 8 (𝜑 → (𝑁 · (abs‘𝐶)) ∈ ℝ)
20 2rp 12248 . . . . . . . . 9 2 ∈ ℝ+
2120a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℝ+)
22 knoppndvlem12.1 . . . . . . . 8 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
231, 19, 21, 22ltmul2dd 12341 . . . . . . 7 (𝜑 → (2 · 1) < (2 · (𝑁 · (abs‘𝐶))))
2418, 23eqbrtrd 4990 . . . . . 6 (𝜑 → 2 < (2 · (𝑁 · (abs‘𝐶))))
253recnd 10522 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
266recnd 10522 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
2712recnd 10522 . . . . . . . 8 (𝜑 → (abs‘𝐶) ∈ ℂ)
2825, 26, 27mulassd 10517 . . . . . . 7 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) = (2 · (𝑁 · (abs‘𝐶))))
2928eqcomd 2803 . . . . . 6 (𝜑 → (2 · (𝑁 · (abs‘𝐶))) = ((2 · 𝑁) · (abs‘𝐶)))
3024, 29breqtrd 4994 . . . . 5 (𝜑 → 2 < ((2 · 𝑁) · (abs‘𝐶)))
311, 3, 13, 15, 30lttrd 10654 . . . 4 (𝜑 → 1 < ((2 · 𝑁) · (abs‘𝐶)))
321, 31jca 512 . . 3 (𝜑 → (1 ∈ ℝ ∧ 1 < ((2 · 𝑁) · (abs‘𝐶))))
33 ltne 10590 . . 3 ((1 ∈ ℝ ∧ 1 < ((2 · 𝑁) · (abs‘𝐶))) → ((2 · 𝑁) · (abs‘𝐶)) ≠ 1)
3432, 33syl 17 . 2 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ≠ 1)
35 1p1e2 11616 . . . . 5 (1 + 1) = 2
3635a1i 11 . . . 4 (𝜑 → (1 + 1) = 2)
3736, 30eqbrtrd 4990 . . 3 (𝜑 → (1 + 1) < ((2 · 𝑁) · (abs‘𝐶)))
381, 1, 13ltaddsubd 11094 . . 3 (𝜑 → ((1 + 1) < ((2 · 𝑁) · (abs‘𝐶)) ↔ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
3937, 38mpbid 233 . 2 (𝜑 → 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))
4034, 39jca 512 1 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1525  wcel 2083  wne 2986   class class class wbr 4968  cfv 6232  (class class class)co 7023  cr 10389  1c1 10391   + caddc 10393   · cmul 10395   < clt 10528  cmin 10723  -cneg 10724  cn 11492  2c2 11546  +crp 12243  (,)cioo 12592  abscabs 14431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-er 8146  df-en 8365  df-dom 8366  df-sdom 8367  df-sup 8759  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-3 11555  df-n0 11752  df-z 11836  df-uz 12098  df-rp 12244  df-ioo 12596  df-seq 13224  df-exp 13284  df-cj 14296  df-re 14297  df-im 14298  df-sqrt 14432  df-abs 14433
This theorem is referenced by:  knoppndvlem14  33475  knoppndvlem15  33476  knoppndvlem17  33478  knoppndvlem20  33481
  Copyright terms: Public domain W3C validator