Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem12 Structured version   Visualization version   GIF version

Theorem knoppndvlem12 36518
Description: Lemma for knoppndv 36529. (Contributed by Asger C. Ipsen, 29-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem12.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem12.n (𝜑𝑁 ∈ ℕ)
knoppndvlem12.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
Assertion
Ref Expression
knoppndvlem12 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))

Proof of Theorem knoppndvlem12
StepHypRef Expression
1 1red 11182 . . . 4 (𝜑 → 1 ∈ ℝ)
2 2re 12267 . . . . . 6 2 ∈ ℝ
32a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ)
4 knoppndvlem12.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
5 nnre 12200 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
64, 5syl 17 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
73, 6remulcld 11211 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℝ)
8 knoppndvlem12.c . . . . . . . . . 10 (𝜑𝐶 ∈ (-1(,)1))
98knoppndvlem3 36509 . . . . . . . . 9 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
109simpld 494 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
1110recnd 11209 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
1211abscld 15412 . . . . . 6 (𝜑 → (abs‘𝐶) ∈ ℝ)
137, 12remulcld 11211 . . . . 5 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
14 1lt2 12359 . . . . . 6 1 < 2
1514a1i 11 . . . . 5 (𝜑 → 1 < 2)
16 2t1e2 12351 . . . . . . . . 9 (2 · 1) = 2
1716eqcomi 2739 . . . . . . . 8 2 = (2 · 1)
1817a1i 11 . . . . . . 7 (𝜑 → 2 = (2 · 1))
196, 12remulcld 11211 . . . . . . . 8 (𝜑 → (𝑁 · (abs‘𝐶)) ∈ ℝ)
20 2rp 12963 . . . . . . . . 9 2 ∈ ℝ+
2120a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℝ+)
22 knoppndvlem12.1 . . . . . . . 8 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
231, 19, 21, 22ltmul2dd 13058 . . . . . . 7 (𝜑 → (2 · 1) < (2 · (𝑁 · (abs‘𝐶))))
2418, 23eqbrtrd 5132 . . . . . 6 (𝜑 → 2 < (2 · (𝑁 · (abs‘𝐶))))
253recnd 11209 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
266recnd 11209 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
2712recnd 11209 . . . . . . . 8 (𝜑 → (abs‘𝐶) ∈ ℂ)
2825, 26, 27mulassd 11204 . . . . . . 7 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) = (2 · (𝑁 · (abs‘𝐶))))
2928eqcomd 2736 . . . . . 6 (𝜑 → (2 · (𝑁 · (abs‘𝐶))) = ((2 · 𝑁) · (abs‘𝐶)))
3024, 29breqtrd 5136 . . . . 5 (𝜑 → 2 < ((2 · 𝑁) · (abs‘𝐶)))
311, 3, 13, 15, 30lttrd 11342 . . . 4 (𝜑 → 1 < ((2 · 𝑁) · (abs‘𝐶)))
321, 31jca 511 . . 3 (𝜑 → (1 ∈ ℝ ∧ 1 < ((2 · 𝑁) · (abs‘𝐶))))
33 ltne 11278 . . 3 ((1 ∈ ℝ ∧ 1 < ((2 · 𝑁) · (abs‘𝐶))) → ((2 · 𝑁) · (abs‘𝐶)) ≠ 1)
3432, 33syl 17 . 2 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ≠ 1)
35 1p1e2 12313 . . . . 5 (1 + 1) = 2
3635a1i 11 . . . 4 (𝜑 → (1 + 1) = 2)
3736, 30eqbrtrd 5132 . . 3 (𝜑 → (1 + 1) < ((2 · 𝑁) · (abs‘𝐶)))
381, 1, 13ltaddsubd 11785 . . 3 (𝜑 → ((1 + 1) < ((2 · 𝑁) · (abs‘𝐶)) ↔ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
3937, 38mpbid 232 . 2 (𝜑 → 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))
4034, 39jca 511 1 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  cfv 6514  (class class class)co 7390  cr 11074  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cmin 11412  -cneg 11413  cn 12193  2c2 12248  +crp 12958  (,)cioo 13313  abscabs 15207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ioo 13317  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209
This theorem is referenced by:  knoppndvlem14  36520  knoppndvlem15  36521  knoppndvlem17  36523  knoppndvlem20  36526
  Copyright terms: Public domain W3C validator