![]() |
Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppndvlem12 | Structured version Visualization version GIF version |
Description: Lemma for knoppndv 35399. (Contributed by Asger C. Ipsen, 29-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
Ref | Expression |
---|---|
knoppndvlem12.c | ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) |
knoppndvlem12.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
knoppndvlem12.1 | ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) |
Ref | Expression |
---|---|
knoppndvlem12 | ⊢ (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1red 11212 | . . . 4 ⊢ (𝜑 → 1 ∈ ℝ) | |
2 | 2re 12283 | . . . . . 6 ⊢ 2 ∈ ℝ | |
3 | 2 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℝ) |
4 | knoppndvlem12.n | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
5 | nnre 12216 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
7 | 3, 6 | remulcld 11241 | . . . . . 6 ⊢ (𝜑 → (2 · 𝑁) ∈ ℝ) |
8 | knoppndvlem12.c | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) | |
9 | 8 | knoppndvlem3 35379 | . . . . . . . . 9 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1)) |
10 | 9 | simpld 496 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
11 | 10 | recnd 11239 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
12 | 11 | abscld 15380 | . . . . . 6 ⊢ (𝜑 → (abs‘𝐶) ∈ ℝ) |
13 | 7, 12 | remulcld 11241 | . . . . 5 ⊢ (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ) |
14 | 1lt2 12380 | . . . . . 6 ⊢ 1 < 2 | |
15 | 14 | a1i 11 | . . . . 5 ⊢ (𝜑 → 1 < 2) |
16 | 2t1e2 12372 | . . . . . . . . 9 ⊢ (2 · 1) = 2 | |
17 | 16 | eqcomi 2742 | . . . . . . . 8 ⊢ 2 = (2 · 1) |
18 | 17 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 2 = (2 · 1)) |
19 | 6, 12 | remulcld 11241 | . . . . . . . 8 ⊢ (𝜑 → (𝑁 · (abs‘𝐶)) ∈ ℝ) |
20 | 2rp 12976 | . . . . . . . . 9 ⊢ 2 ∈ ℝ+ | |
21 | 20 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 2 ∈ ℝ+) |
22 | knoppndvlem12.1 | . . . . . . . 8 ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) | |
23 | 1, 19, 21, 22 | ltmul2dd 13069 | . . . . . . 7 ⊢ (𝜑 → (2 · 1) < (2 · (𝑁 · (abs‘𝐶)))) |
24 | 18, 23 | eqbrtrd 5170 | . . . . . 6 ⊢ (𝜑 → 2 < (2 · (𝑁 · (abs‘𝐶)))) |
25 | 3 | recnd 11239 | . . . . . . . 8 ⊢ (𝜑 → 2 ∈ ℂ) |
26 | 6 | recnd 11239 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
27 | 12 | recnd 11239 | . . . . . . . 8 ⊢ (𝜑 → (abs‘𝐶) ∈ ℂ) |
28 | 25, 26, 27 | mulassd 11234 | . . . . . . 7 ⊢ (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) = (2 · (𝑁 · (abs‘𝐶)))) |
29 | 28 | eqcomd 2739 | . . . . . 6 ⊢ (𝜑 → (2 · (𝑁 · (abs‘𝐶))) = ((2 · 𝑁) · (abs‘𝐶))) |
30 | 24, 29 | breqtrd 5174 | . . . . 5 ⊢ (𝜑 → 2 < ((2 · 𝑁) · (abs‘𝐶))) |
31 | 1, 3, 13, 15, 30 | lttrd 11372 | . . . 4 ⊢ (𝜑 → 1 < ((2 · 𝑁) · (abs‘𝐶))) |
32 | 1, 31 | jca 513 | . . 3 ⊢ (𝜑 → (1 ∈ ℝ ∧ 1 < ((2 · 𝑁) · (abs‘𝐶)))) |
33 | ltne 11308 | . . 3 ⊢ ((1 ∈ ℝ ∧ 1 < ((2 · 𝑁) · (abs‘𝐶))) → ((2 · 𝑁) · (abs‘𝐶)) ≠ 1) | |
34 | 32, 33 | syl 17 | . 2 ⊢ (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ≠ 1) |
35 | 1p1e2 12334 | . . . . 5 ⊢ (1 + 1) = 2 | |
36 | 35 | a1i 11 | . . . 4 ⊢ (𝜑 → (1 + 1) = 2) |
37 | 36, 30 | eqbrtrd 5170 | . . 3 ⊢ (𝜑 → (1 + 1) < ((2 · 𝑁) · (abs‘𝐶))) |
38 | 1, 1, 13 | ltaddsubd 11811 | . . 3 ⊢ (𝜑 → ((1 + 1) < ((2 · 𝑁) · (abs‘𝐶)) ↔ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))) |
39 | 37, 38 | mpbid 231 | . 2 ⊢ (𝜑 → 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)) |
40 | 34, 39 | jca 513 | 1 ⊢ (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 class class class wbr 5148 ‘cfv 6541 (class class class)co 7406 ℝcr 11106 1c1 11108 + caddc 11110 · cmul 11112 < clt 11245 − cmin 11441 -cneg 11442 ℕcn 12209 2c2 12264 ℝ+crp 12971 (,)cioo 13321 abscabs 15178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7362 df-ov 7409 df-oprab 7410 df-mpo 7411 df-om 7853 df-1st 7972 df-2nd 7973 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-sup 9434 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-n0 12470 df-z 12556 df-uz 12820 df-rp 12972 df-ioo 13325 df-seq 13964 df-exp 14025 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 |
This theorem is referenced by: knoppndvlem14 35390 knoppndvlem15 35391 knoppndvlem17 35393 knoppndvlem20 35396 |
Copyright terms: Public domain | W3C validator |