Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem12 Structured version   Visualization version   GIF version

Theorem knoppndvlem12 34703
Description: Lemma for knoppndv 34714. (Contributed by Asger C. Ipsen, 29-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem12.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem12.n (𝜑𝑁 ∈ ℕ)
knoppndvlem12.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
Assertion
Ref Expression
knoppndvlem12 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))

Proof of Theorem knoppndvlem12
StepHypRef Expression
1 1red 10976 . . . 4 (𝜑 → 1 ∈ ℝ)
2 2re 12047 . . . . . 6 2 ∈ ℝ
32a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ)
4 knoppndvlem12.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
5 nnre 11980 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
64, 5syl 17 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
73, 6remulcld 11005 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℝ)
8 knoppndvlem12.c . . . . . . . . . 10 (𝜑𝐶 ∈ (-1(,)1))
98knoppndvlem3 34694 . . . . . . . . 9 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
109simpld 495 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
1110recnd 11003 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
1211abscld 15148 . . . . . 6 (𝜑 → (abs‘𝐶) ∈ ℝ)
137, 12remulcld 11005 . . . . 5 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
14 1lt2 12144 . . . . . 6 1 < 2
1514a1i 11 . . . . 5 (𝜑 → 1 < 2)
16 2t1e2 12136 . . . . . . . . 9 (2 · 1) = 2
1716eqcomi 2747 . . . . . . . 8 2 = (2 · 1)
1817a1i 11 . . . . . . 7 (𝜑 → 2 = (2 · 1))
196, 12remulcld 11005 . . . . . . . 8 (𝜑 → (𝑁 · (abs‘𝐶)) ∈ ℝ)
20 2rp 12735 . . . . . . . . 9 2 ∈ ℝ+
2120a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℝ+)
22 knoppndvlem12.1 . . . . . . . 8 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
231, 19, 21, 22ltmul2dd 12828 . . . . . . 7 (𝜑 → (2 · 1) < (2 · (𝑁 · (abs‘𝐶))))
2418, 23eqbrtrd 5096 . . . . . 6 (𝜑 → 2 < (2 · (𝑁 · (abs‘𝐶))))
253recnd 11003 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
266recnd 11003 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
2712recnd 11003 . . . . . . . 8 (𝜑 → (abs‘𝐶) ∈ ℂ)
2825, 26, 27mulassd 10998 . . . . . . 7 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) = (2 · (𝑁 · (abs‘𝐶))))
2928eqcomd 2744 . . . . . 6 (𝜑 → (2 · (𝑁 · (abs‘𝐶))) = ((2 · 𝑁) · (abs‘𝐶)))
3024, 29breqtrd 5100 . . . . 5 (𝜑 → 2 < ((2 · 𝑁) · (abs‘𝐶)))
311, 3, 13, 15, 30lttrd 11136 . . . 4 (𝜑 → 1 < ((2 · 𝑁) · (abs‘𝐶)))
321, 31jca 512 . . 3 (𝜑 → (1 ∈ ℝ ∧ 1 < ((2 · 𝑁) · (abs‘𝐶))))
33 ltne 11072 . . 3 ((1 ∈ ℝ ∧ 1 < ((2 · 𝑁) · (abs‘𝐶))) → ((2 · 𝑁) · (abs‘𝐶)) ≠ 1)
3432, 33syl 17 . 2 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ≠ 1)
35 1p1e2 12098 . . . . 5 (1 + 1) = 2
3635a1i 11 . . . 4 (𝜑 → (1 + 1) = 2)
3736, 30eqbrtrd 5096 . . 3 (𝜑 → (1 + 1) < ((2 · 𝑁) · (abs‘𝐶)))
381, 1, 13ltaddsubd 11575 . . 3 (𝜑 → ((1 + 1) < ((2 · 𝑁) · (abs‘𝐶)) ↔ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
3937, 38mpbid 231 . 2 (𝜑 → 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))
4034, 39jca 512 1 (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cmin 11205  -cneg 11206  cn 11973  2c2 12028  +crp 12730  (,)cioo 13079  abscabs 14945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ioo 13083  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947
This theorem is referenced by:  knoppndvlem14  34705  knoppndvlem15  34706  knoppndvlem17  34708  knoppndvlem20  34711
  Copyright terms: Public domain W3C validator