Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppndvlem12 | Structured version Visualization version GIF version |
Description: Lemma for knoppndv 34714. (Contributed by Asger C. Ipsen, 29-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
Ref | Expression |
---|---|
knoppndvlem12.c | ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) |
knoppndvlem12.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
knoppndvlem12.1 | ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) |
Ref | Expression |
---|---|
knoppndvlem12 | ⊢ (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1red 10976 | . . . 4 ⊢ (𝜑 → 1 ∈ ℝ) | |
2 | 2re 12047 | . . . . . 6 ⊢ 2 ∈ ℝ | |
3 | 2 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℝ) |
4 | knoppndvlem12.n | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
5 | nnre 11980 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
6 | 4, 5 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
7 | 3, 6 | remulcld 11005 | . . . . . 6 ⊢ (𝜑 → (2 · 𝑁) ∈ ℝ) |
8 | knoppndvlem12.c | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) | |
9 | 8 | knoppndvlem3 34694 | . . . . . . . . 9 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1)) |
10 | 9 | simpld 495 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
11 | 10 | recnd 11003 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
12 | 11 | abscld 15148 | . . . . . 6 ⊢ (𝜑 → (abs‘𝐶) ∈ ℝ) |
13 | 7, 12 | remulcld 11005 | . . . . 5 ⊢ (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ) |
14 | 1lt2 12144 | . . . . . 6 ⊢ 1 < 2 | |
15 | 14 | a1i 11 | . . . . 5 ⊢ (𝜑 → 1 < 2) |
16 | 2t1e2 12136 | . . . . . . . . 9 ⊢ (2 · 1) = 2 | |
17 | 16 | eqcomi 2747 | . . . . . . . 8 ⊢ 2 = (2 · 1) |
18 | 17 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 2 = (2 · 1)) |
19 | 6, 12 | remulcld 11005 | . . . . . . . 8 ⊢ (𝜑 → (𝑁 · (abs‘𝐶)) ∈ ℝ) |
20 | 2rp 12735 | . . . . . . . . 9 ⊢ 2 ∈ ℝ+ | |
21 | 20 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 2 ∈ ℝ+) |
22 | knoppndvlem12.1 | . . . . . . . 8 ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) | |
23 | 1, 19, 21, 22 | ltmul2dd 12828 | . . . . . . 7 ⊢ (𝜑 → (2 · 1) < (2 · (𝑁 · (abs‘𝐶)))) |
24 | 18, 23 | eqbrtrd 5096 | . . . . . 6 ⊢ (𝜑 → 2 < (2 · (𝑁 · (abs‘𝐶)))) |
25 | 3 | recnd 11003 | . . . . . . . 8 ⊢ (𝜑 → 2 ∈ ℂ) |
26 | 6 | recnd 11003 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
27 | 12 | recnd 11003 | . . . . . . . 8 ⊢ (𝜑 → (abs‘𝐶) ∈ ℂ) |
28 | 25, 26, 27 | mulassd 10998 | . . . . . . 7 ⊢ (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) = (2 · (𝑁 · (abs‘𝐶)))) |
29 | 28 | eqcomd 2744 | . . . . . 6 ⊢ (𝜑 → (2 · (𝑁 · (abs‘𝐶))) = ((2 · 𝑁) · (abs‘𝐶))) |
30 | 24, 29 | breqtrd 5100 | . . . . 5 ⊢ (𝜑 → 2 < ((2 · 𝑁) · (abs‘𝐶))) |
31 | 1, 3, 13, 15, 30 | lttrd 11136 | . . . 4 ⊢ (𝜑 → 1 < ((2 · 𝑁) · (abs‘𝐶))) |
32 | 1, 31 | jca 512 | . . 3 ⊢ (𝜑 → (1 ∈ ℝ ∧ 1 < ((2 · 𝑁) · (abs‘𝐶)))) |
33 | ltne 11072 | . . 3 ⊢ ((1 ∈ ℝ ∧ 1 < ((2 · 𝑁) · (abs‘𝐶))) → ((2 · 𝑁) · (abs‘𝐶)) ≠ 1) | |
34 | 32, 33 | syl 17 | . 2 ⊢ (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ≠ 1) |
35 | 1p1e2 12098 | . . . . 5 ⊢ (1 + 1) = 2 | |
36 | 35 | a1i 11 | . . . 4 ⊢ (𝜑 → (1 + 1) = 2) |
37 | 36, 30 | eqbrtrd 5096 | . . 3 ⊢ (𝜑 → (1 + 1) < ((2 · 𝑁) · (abs‘𝐶))) |
38 | 1, 1, 13 | ltaddsubd 11575 | . . 3 ⊢ (𝜑 → ((1 + 1) < ((2 · 𝑁) · (abs‘𝐶)) ↔ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))) |
39 | 37, 38 | mpbid 231 | . 2 ⊢ (𝜑 → 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1)) |
40 | 34, 39 | jca 512 | 1 ⊢ (𝜑 → (((2 · 𝑁) · (abs‘𝐶)) ≠ 1 ∧ 1 < (((2 · 𝑁) · (abs‘𝐶)) − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 1c1 10872 + caddc 10874 · cmul 10876 < clt 11009 − cmin 11205 -cneg 11206 ℕcn 11973 2c2 12028 ℝ+crp 12730 (,)cioo 13079 abscabs 14945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-ioo 13083 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 |
This theorem is referenced by: knoppndvlem14 34705 knoppndvlem15 34706 knoppndvlem17 34708 knoppndvlem20 34711 |
Copyright terms: Public domain | W3C validator |