![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ubmelm1fzo | Structured version Visualization version GIF version |
Description: The result of subtracting 1 and an integer of a half-open range of nonnegative integers from the upper bound of this range is contained in this range. (Contributed by AV, 23-Mar-2018.) (Revised by AV, 30-Oct-2018.) |
Ref | Expression |
---|---|
ubmelm1fzo | ⊢ (𝐾 ∈ (0..^𝑁) → ((𝑁 − 𝐾) − 1) ∈ (0..^𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzo0 13677 | . 2 ⊢ (𝐾 ∈ (0..^𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)) | |
2 | nnz 12583 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
3 | 2 | adantr 479 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ ℤ) |
4 | nn0z 12587 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ ℤ) | |
5 | 4 | adantl 480 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℤ) |
6 | 3, 5 | zsubcld 12675 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝑁 − 𝐾) ∈ ℤ) |
7 | 6 | ancoms 457 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → (𝑁 − 𝐾) ∈ ℤ) |
8 | peano2zm 12609 | . . . . . 6 ⊢ ((𝑁 − 𝐾) ∈ ℤ → ((𝑁 − 𝐾) − 1) ∈ ℤ) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → ((𝑁 − 𝐾) − 1) ∈ ℤ) |
10 | 9 | 3adant3 1130 | . . . 4 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝑁 − 𝐾) − 1) ∈ ℤ) |
11 | simp3 1136 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → 𝐾 < 𝑁) | |
12 | 4, 2 | anim12i 611 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
13 | 12 | 3adant3 1130 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
14 | znnsub 12612 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 ↔ (𝑁 − 𝐾) ∈ ℕ)) | |
15 | 13, 14 | syl 17 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝐾 < 𝑁 ↔ (𝑁 − 𝐾) ∈ ℕ)) |
16 | 11, 15 | mpbid 231 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝑁 − 𝐾) ∈ ℕ) |
17 | nnm1ge0 12634 | . . . . 5 ⊢ ((𝑁 − 𝐾) ∈ ℕ → 0 ≤ ((𝑁 − 𝐾) − 1)) | |
18 | 16, 17 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → 0 ≤ ((𝑁 − 𝐾) − 1)) |
19 | elnn0z 12575 | . . . 4 ⊢ (((𝑁 − 𝐾) − 1) ∈ ℕ0 ↔ (((𝑁 − 𝐾) − 1) ∈ ℤ ∧ 0 ≤ ((𝑁 − 𝐾) − 1))) | |
20 | 10, 18, 19 | sylanbrc 581 | . . 3 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝑁 − 𝐾) − 1) ∈ ℕ0) |
21 | simp2 1135 | . . 3 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → 𝑁 ∈ ℕ) | |
22 | nncn 12224 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
23 | 22 | adantl 480 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ) |
24 | nn0cn 12486 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ ℂ) | |
25 | 24 | adantr 479 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℂ) |
26 | 1cnd 11213 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → 1 ∈ ℂ) | |
27 | 23, 25, 26 | subsub4d 11606 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → ((𝑁 − 𝐾) − 1) = (𝑁 − (𝐾 + 1))) |
28 | nn0p1gt0 12505 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ0 → 0 < (𝐾 + 1)) | |
29 | 28 | adantr 479 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → 0 < (𝐾 + 1)) |
30 | nn0re 12485 | . . . . . . . 8 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ ℝ) | |
31 | peano2re 11391 | . . . . . . . 8 ⊢ (𝐾 ∈ ℝ → (𝐾 + 1) ∈ ℝ) | |
32 | 30, 31 | syl 17 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℝ) |
33 | nnre 12223 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
34 | ltsubpos 11710 | . . . . . . 7 ⊢ (((𝐾 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < (𝐾 + 1) ↔ (𝑁 − (𝐾 + 1)) < 𝑁)) | |
35 | 32, 33, 34 | syl2an 594 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → (0 < (𝐾 + 1) ↔ (𝑁 − (𝐾 + 1)) < 𝑁)) |
36 | 29, 35 | mpbid 231 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → (𝑁 − (𝐾 + 1)) < 𝑁) |
37 | 27, 36 | eqbrtrd 5169 | . . . 4 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → ((𝑁 − 𝐾) − 1) < 𝑁) |
38 | 37 | 3adant3 1130 | . . 3 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝑁 − 𝐾) − 1) < 𝑁) |
39 | elfzo0 13677 | . . 3 ⊢ (((𝑁 − 𝐾) − 1) ∈ (0..^𝑁) ↔ (((𝑁 − 𝐾) − 1) ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ ((𝑁 − 𝐾) − 1) < 𝑁)) | |
40 | 20, 21, 38, 39 | syl3anbrc 1341 | . 2 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝑁 − 𝐾) − 1) ∈ (0..^𝑁)) |
41 | 1, 40 | sylbi 216 | 1 ⊢ (𝐾 ∈ (0..^𝑁) → ((𝑁 − 𝐾) − 1) ∈ (0..^𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1085 ∈ wcel 2104 class class class wbr 5147 (class class class)co 7411 ℂcc 11110 ℝcr 11111 0cc0 11112 1c1 11113 + caddc 11115 < clt 11252 ≤ cle 11253 − cmin 11448 ℕcn 12216 ℕ0cn0 12476 ℤcz 12562 ..^cfzo 13631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-fzo 13632 |
This theorem is referenced by: repswrevw 14741 cshwidxm1 14761 pwdif 15818 revpfxsfxrev 34404 revwlk 34413 |
Copyright terms: Public domain | W3C validator |