![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ubmelm1fzo | Structured version Visualization version GIF version |
Description: The result of subtracting 1 and an integer of a half-open range of nonnegative integers from the upper bound of this range is contained in this range. (Contributed by AV, 23-Mar-2018.) (Revised by AV, 30-Oct-2018.) |
Ref | Expression |
---|---|
ubmelm1fzo | ⊢ (𝐾 ∈ (0..^𝑁) → ((𝑁 − 𝐾) − 1) ∈ (0..^𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzo0 13678 | . 2 ⊢ (𝐾 ∈ (0..^𝑁) ↔ (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)) | |
2 | nnz 12584 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
3 | 2 | adantr 480 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ ℤ) |
4 | nn0z 12588 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ ℤ) | |
5 | 4 | adantl 481 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℤ) |
6 | 3, 5 | zsubcld 12676 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝑁 − 𝐾) ∈ ℤ) |
7 | 6 | ancoms 458 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → (𝑁 − 𝐾) ∈ ℤ) |
8 | peano2zm 12610 | . . . . . 6 ⊢ ((𝑁 − 𝐾) ∈ ℤ → ((𝑁 − 𝐾) − 1) ∈ ℤ) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → ((𝑁 − 𝐾) − 1) ∈ ℤ) |
10 | 9 | 3adant3 1131 | . . . 4 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝑁 − 𝐾) − 1) ∈ ℤ) |
11 | simp3 1137 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → 𝐾 < 𝑁) | |
12 | 4, 2 | anim12i 612 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
13 | 12 | 3adant3 1131 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
14 | znnsub 12613 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 ↔ (𝑁 − 𝐾) ∈ ℕ)) | |
15 | 13, 14 | syl 17 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝐾 < 𝑁 ↔ (𝑁 − 𝐾) ∈ ℕ)) |
16 | 11, 15 | mpbid 231 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝑁 − 𝐾) ∈ ℕ) |
17 | nnm1ge0 12635 | . . . . 5 ⊢ ((𝑁 − 𝐾) ∈ ℕ → 0 ≤ ((𝑁 − 𝐾) − 1)) | |
18 | 16, 17 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → 0 ≤ ((𝑁 − 𝐾) − 1)) |
19 | elnn0z 12576 | . . . 4 ⊢ (((𝑁 − 𝐾) − 1) ∈ ℕ0 ↔ (((𝑁 − 𝐾) − 1) ∈ ℤ ∧ 0 ≤ ((𝑁 − 𝐾) − 1))) | |
20 | 10, 18, 19 | sylanbrc 582 | . . 3 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝑁 − 𝐾) − 1) ∈ ℕ0) |
21 | simp2 1136 | . . 3 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → 𝑁 ∈ ℕ) | |
22 | nncn 12225 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
23 | 22 | adantl 481 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ) |
24 | nn0cn 12487 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ ℂ) | |
25 | 24 | adantr 480 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℂ) |
26 | 1cnd 11214 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → 1 ∈ ℂ) | |
27 | 23, 25, 26 | subsub4d 11607 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → ((𝑁 − 𝐾) − 1) = (𝑁 − (𝐾 + 1))) |
28 | nn0p1gt0 12506 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ0 → 0 < (𝐾 + 1)) | |
29 | 28 | adantr 480 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → 0 < (𝐾 + 1)) |
30 | nn0re 12486 | . . . . . . . 8 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ ℝ) | |
31 | peano2re 11392 | . . . . . . . 8 ⊢ (𝐾 ∈ ℝ → (𝐾 + 1) ∈ ℝ) | |
32 | 30, 31 | syl 17 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℝ) |
33 | nnre 12224 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
34 | ltsubpos 11711 | . . . . . . 7 ⊢ (((𝐾 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < (𝐾 + 1) ↔ (𝑁 − (𝐾 + 1)) < 𝑁)) | |
35 | 32, 33, 34 | syl2an 595 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → (0 < (𝐾 + 1) ↔ (𝑁 − (𝐾 + 1)) < 𝑁)) |
36 | 29, 35 | mpbid 231 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → (𝑁 − (𝐾 + 1)) < 𝑁) |
37 | 27, 36 | eqbrtrd 5170 | . . . 4 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → ((𝑁 − 𝐾) − 1) < 𝑁) |
38 | 37 | 3adant3 1131 | . . 3 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝑁 − 𝐾) − 1) < 𝑁) |
39 | elfzo0 13678 | . . 3 ⊢ (((𝑁 − 𝐾) − 1) ∈ (0..^𝑁) ↔ (((𝑁 − 𝐾) − 1) ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ ((𝑁 − 𝐾) − 1) < 𝑁)) | |
40 | 20, 21, 38, 39 | syl3anbrc 1342 | . 2 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝑁 − 𝐾) − 1) ∈ (0..^𝑁)) |
41 | 1, 40 | sylbi 216 | 1 ⊢ (𝐾 ∈ (0..^𝑁) → ((𝑁 − 𝐾) − 1) ∈ (0..^𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2105 class class class wbr 5148 (class class class)co 7412 ℂcc 11112 ℝcr 11113 0cc0 11114 1c1 11115 + caddc 11117 < clt 11253 ≤ cle 11254 − cmin 11449 ℕcn 12217 ℕ0cn0 12477 ℤcz 12563 ..^cfzo 13632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-fzo 13633 |
This theorem is referenced by: repswrevw 14742 cshwidxm1 14762 pwdif 15819 revpfxsfxrev 34405 revwlk 34414 |
Copyright terms: Public domain | W3C validator |