MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ubmelm1fzo Structured version   Visualization version   GIF version

Theorem ubmelm1fzo 13700
Description: The result of subtracting 1 and an integer of a half-open range of nonnegative integers from the upper bound of this range is contained in this range. (Contributed by AV, 23-Mar-2018.) (Revised by AV, 30-Oct-2018.)
Assertion
Ref Expression
ubmelm1fzo (𝐾 ∈ (0..^𝑁) → ((𝑁𝐾) − 1) ∈ (0..^𝑁))

Proof of Theorem ubmelm1fzo
StepHypRef Expression
1 elfzo0 13637 . 2 (𝐾 ∈ (0..^𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
2 nnz 12526 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
32adantr 480 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ ℤ)
4 nn0z 12530 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
54adantl 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℤ)
63, 5zsubcld 12619 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝑁𝐾) ∈ ℤ)
76ancoms 458 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (𝑁𝐾) ∈ ℤ)
8 peano2zm 12552 . . . . . 6 ((𝑁𝐾) ∈ ℤ → ((𝑁𝐾) − 1) ∈ ℤ)
97, 8syl 17 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((𝑁𝐾) − 1) ∈ ℤ)
1093adant3 1132 . . . 4 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝑁𝐾) − 1) ∈ ℤ)
11 simp3 1138 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → 𝐾 < 𝑁)
124, 2anim12i 613 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
13123adant3 1132 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
14 znnsub 12555 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 ↔ (𝑁𝐾) ∈ ℕ))
1513, 14syl 17 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝐾 < 𝑁 ↔ (𝑁𝐾) ∈ ℕ))
1611, 15mpbid 232 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝑁𝐾) ∈ ℕ)
17 nnm1ge0 12578 . . . . 5 ((𝑁𝐾) ∈ ℕ → 0 ≤ ((𝑁𝐾) − 1))
1816, 17syl 17 . . . 4 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → 0 ≤ ((𝑁𝐾) − 1))
19 elnn0z 12518 . . . 4 (((𝑁𝐾) − 1) ∈ ℕ0 ↔ (((𝑁𝐾) − 1) ∈ ℤ ∧ 0 ≤ ((𝑁𝐾) − 1)))
2010, 18, 19sylanbrc 583 . . 3 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝑁𝐾) − 1) ∈ ℕ0)
21 simp2 1137 . . 3 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → 𝑁 ∈ ℕ)
22 nncn 12170 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2322adantl 481 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
24 nn0cn 12428 . . . . . . 7 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
2524adantr 480 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 𝐾 ∈ ℂ)
26 1cnd 11145 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 1 ∈ ℂ)
2723, 25, 26subsub4d 11540 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((𝑁𝐾) − 1) = (𝑁 − (𝐾 + 1)))
28 nn0p1gt0 12447 . . . . . . 7 (𝐾 ∈ ℕ0 → 0 < (𝐾 + 1))
2928adantr 480 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 0 < (𝐾 + 1))
30 nn0re 12427 . . . . . . . 8 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
31 peano2re 11323 . . . . . . . 8 (𝐾 ∈ ℝ → (𝐾 + 1) ∈ ℝ)
3230, 31syl 17 . . . . . . 7 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℝ)
33 nnre 12169 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
34 ltsubpos 11646 . . . . . . 7 (((𝐾 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < (𝐾 + 1) ↔ (𝑁 − (𝐾 + 1)) < 𝑁))
3532, 33, 34syl2an 596 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (0 < (𝐾 + 1) ↔ (𝑁 − (𝐾 + 1)) < 𝑁))
3629, 35mpbid 232 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (𝑁 − (𝐾 + 1)) < 𝑁)
3727, 36eqbrtrd 5124 . . . 4 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((𝑁𝐾) − 1) < 𝑁)
38373adant3 1132 . . 3 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝑁𝐾) − 1) < 𝑁)
39 elfzo0 13637 . . 3 (((𝑁𝐾) − 1) ∈ (0..^𝑁) ↔ (((𝑁𝐾) − 1) ∈ ℕ0𝑁 ∈ ℕ ∧ ((𝑁𝐾) − 1) < 𝑁))
4020, 21, 38, 39syl3anbrc 1344 . 2 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝑁𝐾) − 1) ∈ (0..^𝑁))
411, 40sylbi 217 1 (𝐾 ∈ (0..^𝑁) → ((𝑁𝐾) − 1) ∈ (0..^𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109   class class class wbr 5102  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   < clt 11184  cle 11185  cmin 11381  cn 12162  0cn0 12418  cz 12505  ..^cfzo 13591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592
This theorem is referenced by:  repswrevw  14728  cshwidxm1  14748  pwdif  15810  revpfxsfxrev  35076  revwlk  35085
  Copyright terms: Public domain W3C validator