MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ubmelm1fzo Structured version   Visualization version   GIF version

Theorem ubmelm1fzo 13224
Description: The result of subtracting 1 and an integer of a half-open range of nonnegative integers from the upper bound of this range is contained in this range. (Contributed by AV, 23-Mar-2018.) (Revised by AV, 30-Oct-2018.)
Assertion
Ref Expression
ubmelm1fzo (𝐾 ∈ (0..^𝑁) → ((𝑁𝐾) − 1) ∈ (0..^𝑁))

Proof of Theorem ubmelm1fzo
StepHypRef Expression
1 elfzo0 13169 . 2 (𝐾 ∈ (0..^𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
2 nnz 12085 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
32adantr 484 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ ℤ)
4 nn0z 12086 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
54adantl 485 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℤ)
63, 5zsubcld 12173 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝑁𝐾) ∈ ℤ)
76ancoms 462 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (𝑁𝐾) ∈ ℤ)
8 peano2zm 12106 . . . . . 6 ((𝑁𝐾) ∈ ℤ → ((𝑁𝐾) − 1) ∈ ℤ)
97, 8syl 17 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((𝑁𝐾) − 1) ∈ ℤ)
1093adant3 1133 . . . 4 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝑁𝐾) − 1) ∈ ℤ)
11 simp3 1139 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → 𝐾 < 𝑁)
124, 2anim12i 616 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
13123adant3 1133 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
14 znnsub 12109 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 ↔ (𝑁𝐾) ∈ ℕ))
1513, 14syl 17 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝐾 < 𝑁 ↔ (𝑁𝐾) ∈ ℕ))
1611, 15mpbid 235 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝑁𝐾) ∈ ℕ)
17 nnm1ge0 12131 . . . . 5 ((𝑁𝐾) ∈ ℕ → 0 ≤ ((𝑁𝐾) − 1))
1816, 17syl 17 . . . 4 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → 0 ≤ ((𝑁𝐾) − 1))
19 elnn0z 12075 . . . 4 (((𝑁𝐾) − 1) ∈ ℕ0 ↔ (((𝑁𝐾) − 1) ∈ ℤ ∧ 0 ≤ ((𝑁𝐾) − 1)))
2010, 18, 19sylanbrc 586 . . 3 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝑁𝐾) − 1) ∈ ℕ0)
21 simp2 1138 . . 3 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → 𝑁 ∈ ℕ)
22 nncn 11724 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2322adantl 485 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
24 nn0cn 11986 . . . . . . 7 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
2524adantr 484 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 𝐾 ∈ ℂ)
26 1cnd 10714 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 1 ∈ ℂ)
2723, 25, 26subsub4d 11106 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((𝑁𝐾) − 1) = (𝑁 − (𝐾 + 1)))
28 nn0p1gt0 12005 . . . . . . 7 (𝐾 ∈ ℕ0 → 0 < (𝐾 + 1))
2928adantr 484 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 0 < (𝐾 + 1))
30 nn0re 11985 . . . . . . . 8 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
31 peano2re 10891 . . . . . . . 8 (𝐾 ∈ ℝ → (𝐾 + 1) ∈ ℝ)
3230, 31syl 17 . . . . . . 7 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℝ)
33 nnre 11723 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
34 ltsubpos 11210 . . . . . . 7 (((𝐾 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < (𝐾 + 1) ↔ (𝑁 − (𝐾 + 1)) < 𝑁))
3532, 33, 34syl2an 599 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (0 < (𝐾 + 1) ↔ (𝑁 − (𝐾 + 1)) < 𝑁))
3629, 35mpbid 235 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (𝑁 − (𝐾 + 1)) < 𝑁)
3727, 36eqbrtrd 5052 . . . 4 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((𝑁𝐾) − 1) < 𝑁)
38373adant3 1133 . . 3 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝑁𝐾) − 1) < 𝑁)
39 elfzo0 13169 . . 3 (((𝑁𝐾) − 1) ∈ (0..^𝑁) ↔ (((𝑁𝐾) − 1) ∈ ℕ0𝑁 ∈ ℕ ∧ ((𝑁𝐾) − 1) < 𝑁))
4020, 21, 38, 39syl3anbrc 1344 . 2 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝑁𝐾) − 1) ∈ (0..^𝑁))
411, 40sylbi 220 1 (𝐾 ∈ (0..^𝑁) → ((𝑁𝐾) − 1) ∈ (0..^𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088  wcel 2114   class class class wbr 5030  (class class class)co 7170  cc 10613  cr 10614  0cc0 10615  1c1 10616   + caddc 10618   < clt 10753  cle 10754  cmin 10948  cn 11716  0cn0 11976  cz 12062  ..^cfzo 13124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-n0 11977  df-z 12063  df-uz 12325  df-fz 12982  df-fzo 13125
This theorem is referenced by:  repswrevw  14238  cshwidxm1  14258  pwdif  15316  revpfxsfxrev  32648  revwlk  32657
  Copyright terms: Public domain W3C validator