Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ubmelfzo | Structured version Visualization version GIF version |
Description: If an integer in a 1-based finite set of sequential integers is subtracted from the upper bound of this finite set of sequential integers, the result is contained in a half-open range of nonnegative integers with the same upper bound. (Contributed by AV, 18-Mar-2018.) (Revised by AV, 30-Oct-2018.) |
Ref | Expression |
---|---|
ubmelfzo | ⊢ (𝐾 ∈ (1...𝑁) → (𝑁 − 𝐾) ∈ (0..^𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1137 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → 𝐾 ≤ 𝑁) | |
2 | nnnn0 12240 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0) | |
3 | nnnn0 12240 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
4 | 2, 3 | anim12i 613 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) |
5 | 4 | 3adant3 1131 | . . . . 5 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) |
6 | nn0sub 12283 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝐾 ≤ 𝑁 ↔ (𝑁 − 𝐾) ∈ ℕ0)) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → (𝐾 ≤ 𝑁 ↔ (𝑁 − 𝐾) ∈ ℕ0)) |
8 | 1, 7 | mpbid 231 | . . 3 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → (𝑁 − 𝐾) ∈ ℕ0) |
9 | simp2 1136 | . . 3 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → 𝑁 ∈ ℕ) | |
10 | nngt0 12004 | . . . . 5 ⊢ (𝐾 ∈ ℕ → 0 < 𝐾) | |
11 | 10 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → 0 < 𝐾) |
12 | nnre 11980 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℝ) | |
13 | nnre 11980 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
14 | 12, 13 | anim12i 613 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
15 | 14 | 3adant3 1131 | . . . . 5 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → (𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
16 | ltsubpos 11467 | . . . . 5 ⊢ ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝐾 ↔ (𝑁 − 𝐾) < 𝑁)) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → (0 < 𝐾 ↔ (𝑁 − 𝐾) < 𝑁)) |
18 | 11, 17 | mpbid 231 | . . 3 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → (𝑁 − 𝐾) < 𝑁) |
19 | 8, 9, 18 | 3jca 1127 | . 2 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → ((𝑁 − 𝐾) ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ (𝑁 − 𝐾) < 𝑁)) |
20 | elfz1b 13325 | . 2 ⊢ (𝐾 ∈ (1...𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁)) | |
21 | elfzo0 13428 | . 2 ⊢ ((𝑁 − 𝐾) ∈ (0..^𝑁) ↔ ((𝑁 − 𝐾) ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ (𝑁 − 𝐾) < 𝑁)) | |
22 | 19, 20, 21 | 3imtr4i 292 | 1 ⊢ (𝐾 ∈ (1...𝑁) → (𝑁 − 𝐾) ∈ (0..^𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 class class class wbr 5074 (class class class)co 7275 ℝcr 10870 0cc0 10871 1c1 10872 < clt 11009 ≤ cle 11010 − cmin 11205 ℕcn 11973 ℕ0cn0 12233 ...cfz 13239 ..^cfzo 13382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 |
This theorem is referenced by: cshwidxm 14521 crctcshwlkn0lem6 28180 dlwwlknondlwlknonf1olem1 28728 |
Copyright terms: Public domain | W3C validator |