![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ubmelfzo | Structured version Visualization version GIF version |
Description: If an integer in a 1-based finite set of sequential integers is subtracted from the upper bound of this finite set of sequential integers, the result is contained in a half-open range of nonnegative integers with the same upper bound. (Contributed by AV, 18-Mar-2018.) (Revised by AV, 30-Oct-2018.) |
Ref | Expression |
---|---|
ubmelfzo | ⊢ (𝐾 ∈ (1...𝑁) → (𝑁 − 𝐾) ∈ (0..^𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1169 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → 𝐾 ≤ 𝑁) | |
2 | nnnn0 11587 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0) | |
3 | nnnn0 11587 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
4 | 2, 3 | anim12i 607 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) |
5 | 4 | 3adant3 1163 | . . . . 5 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) |
6 | nn0sub 11631 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝐾 ≤ 𝑁 ↔ (𝑁 − 𝐾) ∈ ℕ0)) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → (𝐾 ≤ 𝑁 ↔ (𝑁 − 𝐾) ∈ ℕ0)) |
8 | 1, 7 | mpbid 224 | . . 3 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → (𝑁 − 𝐾) ∈ ℕ0) |
9 | simp2 1168 | . . 3 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → 𝑁 ∈ ℕ) | |
10 | nngt0 11346 | . . . . 5 ⊢ (𝐾 ∈ ℕ → 0 < 𝐾) | |
11 | 10 | 3ad2ant1 1164 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → 0 < 𝐾) |
12 | nnre 11321 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℝ) | |
13 | nnre 11321 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
14 | 12, 13 | anim12i 607 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
15 | 14 | 3adant3 1163 | . . . . 5 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → (𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
16 | ltsubpos 10813 | . . . . 5 ⊢ ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝐾 ↔ (𝑁 − 𝐾) < 𝑁)) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → (0 < 𝐾 ↔ (𝑁 − 𝐾) < 𝑁)) |
18 | 11, 17 | mpbid 224 | . . 3 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → (𝑁 − 𝐾) < 𝑁) |
19 | 8, 9, 18 | 3jca 1159 | . 2 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → ((𝑁 − 𝐾) ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ (𝑁 − 𝐾) < 𝑁)) |
20 | elfz1b 12662 | . 2 ⊢ (𝐾 ∈ (1...𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁)) | |
21 | elfzo0 12763 | . 2 ⊢ ((𝑁 − 𝐾) ∈ (0..^𝑁) ↔ ((𝑁 − 𝐾) ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ (𝑁 − 𝐾) < 𝑁)) | |
22 | 19, 20, 21 | 3imtr4i 284 | 1 ⊢ (𝐾 ∈ (1...𝑁) → (𝑁 − 𝐾) ∈ (0..^𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∧ w3a 1108 ∈ wcel 2157 class class class wbr 4844 (class class class)co 6879 ℝcr 10224 0cc0 10225 1c1 10226 < clt 10364 ≤ cle 10365 − cmin 10557 ℕcn 11313 ℕ0cn0 11579 ...cfz 12579 ..^cfzo 12719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-cnex 10281 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-om 7301 df-1st 7402 df-2nd 7403 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-er 7983 df-en 8197 df-dom 8198 df-sdom 8199 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-nn 11314 df-n0 11580 df-z 11666 df-uz 11930 df-fz 12580 df-fzo 12720 |
This theorem is referenced by: cshwidxm 13892 crctcshwlkn0lem6 27065 dlwwlknondlwlknonf1olem1 27733 dlwwlknonclwlknonf1olem1OLD 27734 |
Copyright terms: Public domain | W3C validator |