![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ubmelfzo | Structured version Visualization version GIF version |
Description: If an integer in a 1-based finite set of sequential integers is subtracted from the upper bound of this finite set of sequential integers, the result is contained in a half-open range of nonnegative integers with the same upper bound. (Contributed by AV, 18-Mar-2018.) (Revised by AV, 30-Oct-2018.) |
Ref | Expression |
---|---|
ubmelfzo | ⊢ (𝐾 ∈ (1...𝑁) → (𝑁 − 𝐾) ∈ (0..^𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1138 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → 𝐾 ≤ 𝑁) | |
2 | nnnn0 12483 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0) | |
3 | nnnn0 12483 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
4 | 2, 3 | anim12i 613 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) |
5 | 4 | 3adant3 1132 | . . . . 5 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → (𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) |
6 | nn0sub 12526 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝐾 ≤ 𝑁 ↔ (𝑁 − 𝐾) ∈ ℕ0)) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → (𝐾 ≤ 𝑁 ↔ (𝑁 − 𝐾) ∈ ℕ0)) |
8 | 1, 7 | mpbid 231 | . . 3 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → (𝑁 − 𝐾) ∈ ℕ0) |
9 | simp2 1137 | . . 3 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → 𝑁 ∈ ℕ) | |
10 | nngt0 12247 | . . . . 5 ⊢ (𝐾 ∈ ℕ → 0 < 𝐾) | |
11 | 10 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → 0 < 𝐾) |
12 | nnre 12223 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℝ) | |
13 | nnre 12223 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
14 | 12, 13 | anim12i 613 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
15 | 14 | 3adant3 1132 | . . . . 5 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → (𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ)) |
16 | ltsubpos 11710 | . . . . 5 ⊢ ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝐾 ↔ (𝑁 − 𝐾) < 𝑁)) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → (0 < 𝐾 ↔ (𝑁 − 𝐾) < 𝑁)) |
18 | 11, 17 | mpbid 231 | . . 3 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → (𝑁 − 𝐾) < 𝑁) |
19 | 8, 9, 18 | 3jca 1128 | . 2 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁) → ((𝑁 − 𝐾) ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ (𝑁 − 𝐾) < 𝑁)) |
20 | elfz1b 13574 | . 2 ⊢ (𝐾 ∈ (1...𝑁) ↔ (𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ≤ 𝑁)) | |
21 | elfzo0 13677 | . 2 ⊢ ((𝑁 − 𝐾) ∈ (0..^𝑁) ↔ ((𝑁 − 𝐾) ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ (𝑁 − 𝐾) < 𝑁)) | |
22 | 19, 20, 21 | 3imtr4i 291 | 1 ⊢ (𝐾 ∈ (1...𝑁) → (𝑁 − 𝐾) ∈ (0..^𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7411 ℝcr 11111 0cc0 11112 1c1 11113 < clt 11252 ≤ cle 11253 − cmin 11448 ℕcn 12216 ℕ0cn0 12476 ...cfz 13488 ..^cfzo 13631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-fzo 13632 |
This theorem is referenced by: cshwidxm 14762 crctcshwlkn0lem6 29324 dlwwlknondlwlknonf1olem1 29872 |
Copyright terms: Public domain | W3C validator |