MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmulc2 Structured version   Visualization version   GIF version

Theorem mbfmulc2 25562
Description: A complex constant times a measurable function is measurable. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
mbfmulc2.1 (𝜑𝐶 ∈ ℂ)
mbfmulc2.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
mbfmulc2.3 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
Assertion
Ref Expression
mbfmulc2 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem mbfmulc2
StepHypRef Expression
1 mbfmulc2.3 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
2 mbfmulc2.2 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑉)
31, 2mbfdm2 25536 . . . . 5 (𝜑𝐴 ∈ dom vol)
4 mbfmulc2.1 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
54recld 15101 . . . . . . . 8 (𝜑 → (ℜ‘𝐶) ∈ ℝ)
65adantr 480 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘𝐶) ∈ ℝ)
76recnd 11143 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐶) ∈ ℂ)
81, 2mbfmptcl 25535 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
98recld 15101 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
109recnd 11143 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℂ)
117, 10mulcld 11135 . . . . 5 ((𝜑𝑥𝐴) → ((ℜ‘𝐶) · (ℜ‘𝐵)) ∈ ℂ)
12 ovexd 7384 . . . . 5 ((𝜑𝑥𝐴) → (-(ℑ‘𝐶) · (ℑ‘𝐵)) ∈ V)
13 fconstmpt 5681 . . . . . . 7 (𝐴 × {(ℜ‘𝐶)}) = (𝑥𝐴 ↦ (ℜ‘𝐶))
1413a1i 11 . . . . . 6 (𝜑 → (𝐴 × {(ℜ‘𝐶)}) = (𝑥𝐴 ↦ (ℜ‘𝐶)))
15 eqidd 2730 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) = (𝑥𝐴 ↦ (ℜ‘𝐵)))
163, 6, 9, 14, 15offval2 7633 . . . . 5 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) = (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℜ‘𝐵))))
174imcld 15102 . . . . . . . 8 (𝜑 → (ℑ‘𝐶) ∈ ℝ)
1817renegcld 11547 . . . . . . 7 (𝜑 → -(ℑ‘𝐶) ∈ ℝ)
1918adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → -(ℑ‘𝐶) ∈ ℝ)
208imcld 15102 . . . . . 6 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
21 fconstmpt 5681 . . . . . . 7 (𝐴 × {-(ℑ‘𝐶)}) = (𝑥𝐴 ↦ -(ℑ‘𝐶))
2221a1i 11 . . . . . 6 (𝜑 → (𝐴 × {-(ℑ‘𝐶)}) = (𝑥𝐴 ↦ -(ℑ‘𝐶)))
23 eqidd 2730 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) = (𝑥𝐴 ↦ (ℑ‘𝐵)))
243, 19, 20, 22, 23offval2 7633 . . . . 5 (𝜑 → ((𝐴 × {-(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) = (𝑥𝐴 ↦ (-(ℑ‘𝐶) · (ℑ‘𝐵))))
253, 11, 12, 16, 24offval2 7633 . . . 4 (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∘f + ((𝐴 × {-(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵)))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵)))))
2617adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐴) → (ℑ‘𝐶) ∈ ℝ)
2726recnd 11143 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘𝐶) ∈ ℂ)
2820recnd 11143 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℂ)
2927, 28mulcld 11135 . . . . . . 7 ((𝜑𝑥𝐴) → ((ℑ‘𝐶) · (ℑ‘𝐵)) ∈ ℂ)
3011, 29negsubd 11481 . . . . . 6 ((𝜑𝑥𝐴) → (((ℜ‘𝐶) · (ℜ‘𝐵)) + -((ℑ‘𝐶) · (ℑ‘𝐵))) = (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵))))
3127, 28mulneg1d 11573 . . . . . . 7 ((𝜑𝑥𝐴) → (-(ℑ‘𝐶) · (ℑ‘𝐵)) = -((ℑ‘𝐶) · (ℑ‘𝐵)))
3231oveq2d 7365 . . . . . 6 ((𝜑𝑥𝐴) → (((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵))) = (((ℜ‘𝐶) · (ℜ‘𝐵)) + -((ℑ‘𝐶) · (ℑ‘𝐵))))
334adantr 480 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
3433, 8remuld 15125 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘(𝐶 · 𝐵)) = (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵))))
3530, 32, 343eqtr4d 2774 . . . . 5 ((𝜑𝑥𝐴) → (((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵))) = (ℜ‘(𝐶 · 𝐵)))
3635mpteq2dva 5185 . . . 4 (𝜑 → (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵)))) = (𝑥𝐴 ↦ (ℜ‘(𝐶 · 𝐵))))
3725, 36eqtrd 2764 . . 3 (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∘f + ((𝐴 × {-(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵)))) = (𝑥𝐴 ↦ (ℜ‘(𝐶 · 𝐵))))
388ismbfcn2 25537 . . . . . . 7 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)))
391, 38mpbid 232 . . . . . 6 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn))
4039simpld 494 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn)
4110fmpttd 7049 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)):𝐴⟶ℂ)
4240, 5, 41mbfmulc2re 25547 . . . 4 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∈ MblFn)
4339simprd 495 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)
4428fmpttd 7049 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)):𝐴⟶ℂ)
4543, 18, 44mbfmulc2re 25547 . . . 4 (𝜑 → ((𝐴 × {-(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∈ MblFn)
4642, 45mbfadd 25560 . . 3 (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∘f + ((𝐴 × {-(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵)))) ∈ MblFn)
4737, 46eqeltrrd 2829 . 2 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐶 · 𝐵))) ∈ MblFn)
48 ovexd 7384 . . . . 5 ((𝜑𝑥𝐴) → ((ℜ‘𝐶) · (ℑ‘𝐵)) ∈ V)
49 ovexd 7384 . . . . 5 ((𝜑𝑥𝐴) → ((ℑ‘𝐶) · (ℜ‘𝐵)) ∈ V)
503, 6, 20, 14, 23offval2 7633 . . . . 5 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) = (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℑ‘𝐵))))
51 fconstmpt 5681 . . . . . . 7 (𝐴 × {(ℑ‘𝐶)}) = (𝑥𝐴 ↦ (ℑ‘𝐶))
5251a1i 11 . . . . . 6 (𝜑 → (𝐴 × {(ℑ‘𝐶)}) = (𝑥𝐴 ↦ (ℑ‘𝐶)))
533, 26, 9, 52, 15offval2 7633 . . . . 5 (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) = (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℜ‘𝐵))))
543, 48, 49, 50, 53offval2 7633 . . . 4 (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∘f + ((𝐴 × {(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵)))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵)))))
5533, 8immuld 15126 . . . . 5 ((𝜑𝑥𝐴) → (ℑ‘(𝐶 · 𝐵)) = (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵))))
5655mpteq2dva 5185 . . . 4 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐶 · 𝐵))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵)))))
5754, 56eqtr4d 2767 . . 3 (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∘f + ((𝐴 × {(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵)))) = (𝑥𝐴 ↦ (ℑ‘(𝐶 · 𝐵))))
5843, 5, 44mbfmulc2re 25547 . . . 4 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∈ MblFn)
5940, 17, 41mbfmulc2re 25547 . . . 4 (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∈ MblFn)
6058, 59mbfadd 25560 . . 3 (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∘f + ((𝐴 × {(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵)))) ∈ MblFn)
6157, 60eqeltrrd 2829 . 2 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐶 · 𝐵))) ∈ MblFn)
6233, 8mulcld 11135 . . 3 ((𝜑𝑥𝐴) → (𝐶 · 𝐵) ∈ ℂ)
6362ismbfcn2 25537 . 2 (𝜑 → ((𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘(𝐶 · 𝐵))) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘(𝐶 · 𝐵))) ∈ MblFn)))
6447, 61, 63mpbir2and 713 1 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  {csn 4577  cmpt 5173   × cxp 5617  dom cdm 5619  cfv 6482  (class class class)co 7349  f cof 7611  cc 11007  cr 11008   + caddc 11012   · cmul 11014  cmin 11347  -cneg 11348  cre 15004  cim 15005  volcvol 25362  MblFncmbf 25513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cc 10329  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-acn 9838  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xadd 13015  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-xmet 21254  df-met 21255  df-ovol 25363  df-vol 25364  df-mbf 25518
This theorem is referenced by:  iblmulc2  25730
  Copyright terms: Public domain W3C validator