MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmulc2 Structured version   Visualization version   GIF version

Theorem mbfmulc2 25564
Description: A complex constant times a measurable function is measurable. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
mbfmulc2.1 (𝜑𝐶 ∈ ℂ)
mbfmulc2.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
mbfmulc2.3 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
Assertion
Ref Expression
mbfmulc2 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem mbfmulc2
StepHypRef Expression
1 mbfmulc2.3 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
2 mbfmulc2.2 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑉)
31, 2mbfdm2 25538 . . . . 5 (𝜑𝐴 ∈ dom vol)
4 mbfmulc2.1 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
54recld 15160 . . . . . . . 8 (𝜑 → (ℜ‘𝐶) ∈ ℝ)
65adantr 480 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘𝐶) ∈ ℝ)
76recnd 11202 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐶) ∈ ℂ)
81, 2mbfmptcl 25537 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
98recld 15160 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
109recnd 11202 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℂ)
117, 10mulcld 11194 . . . . 5 ((𝜑𝑥𝐴) → ((ℜ‘𝐶) · (ℜ‘𝐵)) ∈ ℂ)
12 ovexd 7422 . . . . 5 ((𝜑𝑥𝐴) → (-(ℑ‘𝐶) · (ℑ‘𝐵)) ∈ V)
13 fconstmpt 5700 . . . . . . 7 (𝐴 × {(ℜ‘𝐶)}) = (𝑥𝐴 ↦ (ℜ‘𝐶))
1413a1i 11 . . . . . 6 (𝜑 → (𝐴 × {(ℜ‘𝐶)}) = (𝑥𝐴 ↦ (ℜ‘𝐶)))
15 eqidd 2730 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) = (𝑥𝐴 ↦ (ℜ‘𝐵)))
163, 6, 9, 14, 15offval2 7673 . . . . 5 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) = (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℜ‘𝐵))))
174imcld 15161 . . . . . . . 8 (𝜑 → (ℑ‘𝐶) ∈ ℝ)
1817renegcld 11605 . . . . . . 7 (𝜑 → -(ℑ‘𝐶) ∈ ℝ)
1918adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → -(ℑ‘𝐶) ∈ ℝ)
208imcld 15161 . . . . . 6 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
21 fconstmpt 5700 . . . . . . 7 (𝐴 × {-(ℑ‘𝐶)}) = (𝑥𝐴 ↦ -(ℑ‘𝐶))
2221a1i 11 . . . . . 6 (𝜑 → (𝐴 × {-(ℑ‘𝐶)}) = (𝑥𝐴 ↦ -(ℑ‘𝐶)))
23 eqidd 2730 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) = (𝑥𝐴 ↦ (ℑ‘𝐵)))
243, 19, 20, 22, 23offval2 7673 . . . . 5 (𝜑 → ((𝐴 × {-(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) = (𝑥𝐴 ↦ (-(ℑ‘𝐶) · (ℑ‘𝐵))))
253, 11, 12, 16, 24offval2 7673 . . . 4 (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∘f + ((𝐴 × {-(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵)))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵)))))
2617adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐴) → (ℑ‘𝐶) ∈ ℝ)
2726recnd 11202 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘𝐶) ∈ ℂ)
2820recnd 11202 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℂ)
2927, 28mulcld 11194 . . . . . . 7 ((𝜑𝑥𝐴) → ((ℑ‘𝐶) · (ℑ‘𝐵)) ∈ ℂ)
3011, 29negsubd 11539 . . . . . 6 ((𝜑𝑥𝐴) → (((ℜ‘𝐶) · (ℜ‘𝐵)) + -((ℑ‘𝐶) · (ℑ‘𝐵))) = (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵))))
3127, 28mulneg1d 11631 . . . . . . 7 ((𝜑𝑥𝐴) → (-(ℑ‘𝐶) · (ℑ‘𝐵)) = -((ℑ‘𝐶) · (ℑ‘𝐵)))
3231oveq2d 7403 . . . . . 6 ((𝜑𝑥𝐴) → (((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵))) = (((ℜ‘𝐶) · (ℜ‘𝐵)) + -((ℑ‘𝐶) · (ℑ‘𝐵))))
334adantr 480 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
3433, 8remuld 15184 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘(𝐶 · 𝐵)) = (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵))))
3530, 32, 343eqtr4d 2774 . . . . 5 ((𝜑𝑥𝐴) → (((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵))) = (ℜ‘(𝐶 · 𝐵)))
3635mpteq2dva 5200 . . . 4 (𝜑 → (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵)))) = (𝑥𝐴 ↦ (ℜ‘(𝐶 · 𝐵))))
3725, 36eqtrd 2764 . . 3 (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∘f + ((𝐴 × {-(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵)))) = (𝑥𝐴 ↦ (ℜ‘(𝐶 · 𝐵))))
388ismbfcn2 25539 . . . . . . 7 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)))
391, 38mpbid 232 . . . . . 6 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn))
4039simpld 494 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn)
4110fmpttd 7087 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)):𝐴⟶ℂ)
4240, 5, 41mbfmulc2re 25549 . . . 4 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∈ MblFn)
4339simprd 495 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)
4428fmpttd 7087 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)):𝐴⟶ℂ)
4543, 18, 44mbfmulc2re 25549 . . . 4 (𝜑 → ((𝐴 × {-(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∈ MblFn)
4642, 45mbfadd 25562 . . 3 (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∘f + ((𝐴 × {-(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵)))) ∈ MblFn)
4737, 46eqeltrrd 2829 . 2 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐶 · 𝐵))) ∈ MblFn)
48 ovexd 7422 . . . . 5 ((𝜑𝑥𝐴) → ((ℜ‘𝐶) · (ℑ‘𝐵)) ∈ V)
49 ovexd 7422 . . . . 5 ((𝜑𝑥𝐴) → ((ℑ‘𝐶) · (ℜ‘𝐵)) ∈ V)
503, 6, 20, 14, 23offval2 7673 . . . . 5 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) = (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℑ‘𝐵))))
51 fconstmpt 5700 . . . . . . 7 (𝐴 × {(ℑ‘𝐶)}) = (𝑥𝐴 ↦ (ℑ‘𝐶))
5251a1i 11 . . . . . 6 (𝜑 → (𝐴 × {(ℑ‘𝐶)}) = (𝑥𝐴 ↦ (ℑ‘𝐶)))
533, 26, 9, 52, 15offval2 7673 . . . . 5 (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) = (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℜ‘𝐵))))
543, 48, 49, 50, 53offval2 7673 . . . 4 (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∘f + ((𝐴 × {(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵)))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵)))))
5533, 8immuld 15185 . . . . 5 ((𝜑𝑥𝐴) → (ℑ‘(𝐶 · 𝐵)) = (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵))))
5655mpteq2dva 5200 . . . 4 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐶 · 𝐵))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵)))))
5754, 56eqtr4d 2767 . . 3 (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∘f + ((𝐴 × {(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵)))) = (𝑥𝐴 ↦ (ℑ‘(𝐶 · 𝐵))))
5843, 5, 44mbfmulc2re 25549 . . . 4 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∈ MblFn)
5940, 17, 41mbfmulc2re 25549 . . . 4 (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∈ MblFn)
6058, 59mbfadd 25562 . . 3 (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∘f + ((𝐴 × {(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵)))) ∈ MblFn)
6157, 60eqeltrrd 2829 . 2 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐶 · 𝐵))) ∈ MblFn)
6233, 8mulcld 11194 . . 3 ((𝜑𝑥𝐴) → (𝐶 · 𝐵) ∈ ℂ)
6362ismbfcn2 25539 . 2 (𝜑 → ((𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘(𝐶 · 𝐵))) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘(𝐶 · 𝐵))) ∈ MblFn)))
6447, 61, 63mpbir2and 713 1 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  {csn 4589  cmpt 5188   × cxp 5636  dom cdm 5638  cfv 6511  (class class class)co 7387  f cof 7651  cc 11066  cr 11067   + caddc 11071   · cmul 11073  cmin 11405  -cneg 11406  cre 15063  cim 15064  volcvol 25364  MblFncmbf 25515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xadd 13073  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-xmet 21257  df-met 21258  df-ovol 25365  df-vol 25366  df-mbf 25520
This theorem is referenced by:  iblmulc2  25732
  Copyright terms: Public domain W3C validator