MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmulc2 Structured version   Visualization version   GIF version

Theorem mbfmulc2 24827
Description: A complex constant times a measurable function is measurable. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
mbfmulc2.1 (𝜑𝐶 ∈ ℂ)
mbfmulc2.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
mbfmulc2.3 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
Assertion
Ref Expression
mbfmulc2 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem mbfmulc2
StepHypRef Expression
1 mbfmulc2.3 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
2 mbfmulc2.2 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑉)
31, 2mbfdm2 24801 . . . . 5 (𝜑𝐴 ∈ dom vol)
4 mbfmulc2.1 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
54recld 14905 . . . . . . . 8 (𝜑 → (ℜ‘𝐶) ∈ ℝ)
65adantr 481 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘𝐶) ∈ ℝ)
76recnd 11003 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐶) ∈ ℂ)
81, 2mbfmptcl 24800 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
98recld 14905 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
109recnd 11003 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℂ)
117, 10mulcld 10995 . . . . 5 ((𝜑𝑥𝐴) → ((ℜ‘𝐶) · (ℜ‘𝐵)) ∈ ℂ)
12 ovexd 7310 . . . . 5 ((𝜑𝑥𝐴) → (-(ℑ‘𝐶) · (ℑ‘𝐵)) ∈ V)
13 fconstmpt 5649 . . . . . . 7 (𝐴 × {(ℜ‘𝐶)}) = (𝑥𝐴 ↦ (ℜ‘𝐶))
1413a1i 11 . . . . . 6 (𝜑 → (𝐴 × {(ℜ‘𝐶)}) = (𝑥𝐴 ↦ (ℜ‘𝐶)))
15 eqidd 2739 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) = (𝑥𝐴 ↦ (ℜ‘𝐵)))
163, 6, 9, 14, 15offval2 7553 . . . . 5 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) = (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℜ‘𝐵))))
174imcld 14906 . . . . . . . 8 (𝜑 → (ℑ‘𝐶) ∈ ℝ)
1817renegcld 11402 . . . . . . 7 (𝜑 → -(ℑ‘𝐶) ∈ ℝ)
1918adantr 481 . . . . . 6 ((𝜑𝑥𝐴) → -(ℑ‘𝐶) ∈ ℝ)
208imcld 14906 . . . . . 6 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
21 fconstmpt 5649 . . . . . . 7 (𝐴 × {-(ℑ‘𝐶)}) = (𝑥𝐴 ↦ -(ℑ‘𝐶))
2221a1i 11 . . . . . 6 (𝜑 → (𝐴 × {-(ℑ‘𝐶)}) = (𝑥𝐴 ↦ -(ℑ‘𝐶)))
23 eqidd 2739 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) = (𝑥𝐴 ↦ (ℑ‘𝐵)))
243, 19, 20, 22, 23offval2 7553 . . . . 5 (𝜑 → ((𝐴 × {-(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) = (𝑥𝐴 ↦ (-(ℑ‘𝐶) · (ℑ‘𝐵))))
253, 11, 12, 16, 24offval2 7553 . . . 4 (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∘f + ((𝐴 × {-(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵)))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵)))))
2617adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐴) → (ℑ‘𝐶) ∈ ℝ)
2726recnd 11003 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘𝐶) ∈ ℂ)
2820recnd 11003 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℂ)
2927, 28mulcld 10995 . . . . . . 7 ((𝜑𝑥𝐴) → ((ℑ‘𝐶) · (ℑ‘𝐵)) ∈ ℂ)
3011, 29negsubd 11338 . . . . . 6 ((𝜑𝑥𝐴) → (((ℜ‘𝐶) · (ℜ‘𝐵)) + -((ℑ‘𝐶) · (ℑ‘𝐵))) = (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵))))
3127, 28mulneg1d 11428 . . . . . . 7 ((𝜑𝑥𝐴) → (-(ℑ‘𝐶) · (ℑ‘𝐵)) = -((ℑ‘𝐶) · (ℑ‘𝐵)))
3231oveq2d 7291 . . . . . 6 ((𝜑𝑥𝐴) → (((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵))) = (((ℜ‘𝐶) · (ℜ‘𝐵)) + -((ℑ‘𝐶) · (ℑ‘𝐵))))
334adantr 481 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
3433, 8remuld 14929 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘(𝐶 · 𝐵)) = (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵))))
3530, 32, 343eqtr4d 2788 . . . . 5 ((𝜑𝑥𝐴) → (((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵))) = (ℜ‘(𝐶 · 𝐵)))
3635mpteq2dva 5174 . . . 4 (𝜑 → (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵)))) = (𝑥𝐴 ↦ (ℜ‘(𝐶 · 𝐵))))
3725, 36eqtrd 2778 . . 3 (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∘f + ((𝐴 × {-(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵)))) = (𝑥𝐴 ↦ (ℜ‘(𝐶 · 𝐵))))
388ismbfcn2 24802 . . . . . . 7 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)))
391, 38mpbid 231 . . . . . 6 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn))
4039simpld 495 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn)
4110fmpttd 6989 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)):𝐴⟶ℂ)
4240, 5, 41mbfmulc2re 24812 . . . 4 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∈ MblFn)
4339simprd 496 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)
4428fmpttd 6989 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)):𝐴⟶ℂ)
4543, 18, 44mbfmulc2re 24812 . . . 4 (𝜑 → ((𝐴 × {-(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∈ MblFn)
4642, 45mbfadd 24825 . . 3 (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∘f + ((𝐴 × {-(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵)))) ∈ MblFn)
4737, 46eqeltrrd 2840 . 2 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐶 · 𝐵))) ∈ MblFn)
48 ovexd 7310 . . . . 5 ((𝜑𝑥𝐴) → ((ℜ‘𝐶) · (ℑ‘𝐵)) ∈ V)
49 ovexd 7310 . . . . 5 ((𝜑𝑥𝐴) → ((ℑ‘𝐶) · (ℜ‘𝐵)) ∈ V)
503, 6, 20, 14, 23offval2 7553 . . . . 5 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) = (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℑ‘𝐵))))
51 fconstmpt 5649 . . . . . . 7 (𝐴 × {(ℑ‘𝐶)}) = (𝑥𝐴 ↦ (ℑ‘𝐶))
5251a1i 11 . . . . . 6 (𝜑 → (𝐴 × {(ℑ‘𝐶)}) = (𝑥𝐴 ↦ (ℑ‘𝐶)))
533, 26, 9, 52, 15offval2 7553 . . . . 5 (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) = (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℜ‘𝐵))))
543, 48, 49, 50, 53offval2 7553 . . . 4 (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∘f + ((𝐴 × {(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵)))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵)))))
5533, 8immuld 14930 . . . . 5 ((𝜑𝑥𝐴) → (ℑ‘(𝐶 · 𝐵)) = (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵))))
5655mpteq2dva 5174 . . . 4 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐶 · 𝐵))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵)))))
5754, 56eqtr4d 2781 . . 3 (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∘f + ((𝐴 × {(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵)))) = (𝑥𝐴 ↦ (ℑ‘(𝐶 · 𝐵))))
5843, 5, 44mbfmulc2re 24812 . . . 4 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∈ MblFn)
5940, 17, 41mbfmulc2re 24812 . . . 4 (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∈ MblFn)
6058, 59mbfadd 24825 . . 3 (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∘f + ((𝐴 × {(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵)))) ∈ MblFn)
6157, 60eqeltrrd 2840 . 2 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐶 · 𝐵))) ∈ MblFn)
6233, 8mulcld 10995 . . 3 ((𝜑𝑥𝐴) → (𝐶 · 𝐵) ∈ ℂ)
6362ismbfcn2 24802 . 2 (𝜑 → ((𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘(𝐶 · 𝐵))) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘(𝐶 · 𝐵))) ∈ MblFn)))
6447, 61, 63mpbir2and 710 1 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  {csn 4561  cmpt 5157   × cxp 5587  dom cdm 5589  cfv 6433  (class class class)co 7275  f cof 7531  cc 10869  cr 10870   + caddc 10874   · cmul 10876  cmin 11205  -cneg 11206  cre 14808  cim 14809  volcvol 24627  MblFncmbf 24778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xadd 12849  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-xmet 20590  df-met 20591  df-ovol 24628  df-vol 24629  df-mbf 24783
This theorem is referenced by:  iblmulc2  24995
  Copyright terms: Public domain W3C validator