Proof of Theorem mbfmulc2
Step | Hyp | Ref
| Expression |
1 | | mbfmulc2.3 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
2 | | mbfmulc2.2 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
3 | 1, 2 | mbfdm2 24401 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ dom vol) |
4 | | mbfmulc2.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ ℂ) |
5 | 4 | recld 14655 |
. . . . . . . 8
⊢ (𝜑 → (ℜ‘𝐶) ∈
ℝ) |
6 | 5 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐶) ∈ ℝ) |
7 | 6 | recnd 10759 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐶) ∈ ℂ) |
8 | 1, 2 | mbfmptcl 24400 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
9 | 8 | recld 14655 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐵) ∈ ℝ) |
10 | 9 | recnd 10759 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐵) ∈ ℂ) |
11 | 7, 10 | mulcld 10751 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((ℜ‘𝐶) · (ℜ‘𝐵)) ∈ ℂ) |
12 | | ovexd 7217 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (-(ℑ‘𝐶) · (ℑ‘𝐵)) ∈ V) |
13 | | fconstmpt 5595 |
. . . . . . 7
⊢ (𝐴 × {(ℜ‘𝐶)}) = (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐶)) |
14 | 13 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝐴 × {(ℜ‘𝐶)}) = (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐶))) |
15 | | eqidd 2740 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) = (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵))) |
16 | 3, 6, 9, 14, 15 | offval2 7456 |
. . . . 5
⊢ (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵))) = (𝑥 ∈ 𝐴 ↦ ((ℜ‘𝐶) · (ℜ‘𝐵)))) |
17 | 4 | imcld 14656 |
. . . . . . . 8
⊢ (𝜑 → (ℑ‘𝐶) ∈
ℝ) |
18 | 17 | renegcld 11157 |
. . . . . . 7
⊢ (𝜑 → -(ℑ‘𝐶) ∈
ℝ) |
19 | 18 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℑ‘𝐶) ∈ ℝ) |
20 | 8 | imcld 14656 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐵) ∈ ℝ) |
21 | | fconstmpt 5595 |
. . . . . . 7
⊢ (𝐴 × {-(ℑ‘𝐶)}) = (𝑥 ∈ 𝐴 ↦ -(ℑ‘𝐶)) |
22 | 21 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝐴 × {-(ℑ‘𝐶)}) = (𝑥 ∈ 𝐴 ↦ -(ℑ‘𝐶))) |
23 | | eqidd 2740 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) = (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵))) |
24 | 3, 19, 20, 22, 23 | offval2 7456 |
. . . . 5
⊢ (𝜑 → ((𝐴 × {-(ℑ‘𝐶)}) ∘f · (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵))) = (𝑥 ∈ 𝐴 ↦ (-(ℑ‘𝐶) · (ℑ‘𝐵)))) |
25 | 3, 11, 12, 16, 24 | offval2 7456 |
. . . 4
⊢ (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵))) ∘f + ((𝐴 × {-(ℑ‘𝐶)}) ∘f ·
(𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)))) = (𝑥 ∈ 𝐴 ↦ (((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵))))) |
26 | 17 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐶) ∈ ℝ) |
27 | 26 | recnd 10759 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐶) ∈ ℂ) |
28 | 20 | recnd 10759 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐵) ∈ ℂ) |
29 | 27, 28 | mulcld 10751 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((ℑ‘𝐶) · (ℑ‘𝐵)) ∈ ℂ) |
30 | 11, 29 | negsubd 11093 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((ℜ‘𝐶) · (ℜ‘𝐵)) + -((ℑ‘𝐶) · (ℑ‘𝐵))) = (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵)))) |
31 | 27, 28 | mulneg1d 11183 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (-(ℑ‘𝐶) · (ℑ‘𝐵)) = -((ℑ‘𝐶) · (ℑ‘𝐵))) |
32 | 31 | oveq2d 7198 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵))) = (((ℜ‘𝐶) · (ℜ‘𝐵)) + -((ℑ‘𝐶) · (ℑ‘𝐵)))) |
33 | 4 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
34 | 33, 8 | remuld 14679 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘(𝐶 · 𝐵)) = (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵)))) |
35 | 30, 32, 34 | 3eqtr4d 2784 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵))) = (ℜ‘(𝐶 · 𝐵))) |
36 | 35 | mpteq2dva 5135 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵)))) = (𝑥 ∈ 𝐴 ↦ (ℜ‘(𝐶 · 𝐵)))) |
37 | 25, 36 | eqtrd 2774 |
. . 3
⊢ (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵))) ∘f + ((𝐴 × {-(ℑ‘𝐶)}) ∘f ·
(𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)))) = (𝑥 ∈ 𝐴 ↦ (ℜ‘(𝐶 · 𝐵)))) |
38 | 8 | ismbfcn2 24402 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ↔ ((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn))) |
39 | 1, 38 | mpbid 235 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)) |
40 | 39 | simpld 498 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn) |
41 | 10 | fmpttd 6901 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)):𝐴⟶ℂ) |
42 | 40, 5, 41 | mbfmulc2re 24412 |
. . . 4
⊢ (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵))) ∈ MblFn) |
43 | 39 | simprd 499 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn) |
44 | 28 | fmpttd 6901 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)):𝐴⟶ℂ) |
45 | 43, 18, 44 | mbfmulc2re 24412 |
. . . 4
⊢ (𝜑 → ((𝐴 × {-(ℑ‘𝐶)}) ∘f · (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵))) ∈ MblFn) |
46 | 42, 45 | mbfadd 24425 |
. . 3
⊢ (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵))) ∘f + ((𝐴 × {-(ℑ‘𝐶)}) ∘f ·
(𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)))) ∈ MblFn) |
47 | 37, 46 | eqeltrrd 2835 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℜ‘(𝐶 · 𝐵))) ∈ MblFn) |
48 | | ovexd 7217 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((ℜ‘𝐶) · (ℑ‘𝐵)) ∈ V) |
49 | | ovexd 7217 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((ℑ‘𝐶) · (ℜ‘𝐵)) ∈ V) |
50 | 3, 6, 20, 14, 23 | offval2 7456 |
. . . . 5
⊢ (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵))) = (𝑥 ∈ 𝐴 ↦ ((ℜ‘𝐶) · (ℑ‘𝐵)))) |
51 | | fconstmpt 5595 |
. . . . . . 7
⊢ (𝐴 × {(ℑ‘𝐶)}) = (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐶)) |
52 | 51 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝐴 × {(ℑ‘𝐶)}) = (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐶))) |
53 | 3, 26, 9, 52, 15 | offval2 7456 |
. . . . 5
⊢ (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘f · (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵))) = (𝑥 ∈ 𝐴 ↦ ((ℑ‘𝐶) · (ℜ‘𝐵)))) |
54 | 3, 48, 49, 50, 53 | offval2 7456 |
. . . 4
⊢ (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵))) ∘f + ((𝐴 × {(ℑ‘𝐶)}) ∘f ·
(𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)))) = (𝑥 ∈ 𝐴 ↦ (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵))))) |
55 | 33, 8 | immuld 14680 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘(𝐶 · 𝐵)) = (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵)))) |
56 | 55 | mpteq2dva 5135 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℑ‘(𝐶 · 𝐵))) = (𝑥 ∈ 𝐴 ↦ (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵))))) |
57 | 54, 56 | eqtr4d 2777 |
. . 3
⊢ (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵))) ∘f + ((𝐴 × {(ℑ‘𝐶)}) ∘f ·
(𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)))) = (𝑥 ∈ 𝐴 ↦ (ℑ‘(𝐶 · 𝐵)))) |
58 | 43, 5, 44 | mbfmulc2re 24412 |
. . . 4
⊢ (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵))) ∈ MblFn) |
59 | 40, 17, 41 | mbfmulc2re 24412 |
. . . 4
⊢ (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘f · (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵))) ∈ MblFn) |
60 | 58, 59 | mbfadd 24425 |
. . 3
⊢ (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵))) ∘f + ((𝐴 × {(ℑ‘𝐶)}) ∘f ·
(𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)))) ∈ MblFn) |
61 | 57, 60 | eqeltrrd 2835 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℑ‘(𝐶 · 𝐵))) ∈ MblFn) |
62 | 33, 8 | mulcld 10751 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 · 𝐵) ∈ ℂ) |
63 | 62 | ismbfcn2 24402 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn ↔ ((𝑥 ∈ 𝐴 ↦ (ℜ‘(𝐶 · 𝐵))) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘(𝐶 · 𝐵))) ∈ MblFn))) |
64 | 47, 61, 63 | mpbir2and 713 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn) |