MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmulc2 Structured version   Visualization version   GIF version

Theorem mbfmulc2 23983
Description: A complex constant times a measurable function is measurable. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
mbfmulc2.1 (𝜑𝐶 ∈ ℂ)
mbfmulc2.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
mbfmulc2.3 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
Assertion
Ref Expression
mbfmulc2 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem mbfmulc2
StepHypRef Expression
1 mbfmulc2.3 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
2 mbfmulc2.2 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑉)
31, 2mbfdm2 23957 . . . . 5 (𝜑𝐴 ∈ dom vol)
4 mbfmulc2.1 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
54recld 14413 . . . . . . . 8 (𝜑 → (ℜ‘𝐶) ∈ ℝ)
65adantr 473 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘𝐶) ∈ ℝ)
76recnd 10467 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐶) ∈ ℂ)
81, 2mbfmptcl 23956 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
98recld 14413 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
109recnd 10467 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℂ)
117, 10mulcld 10459 . . . . 5 ((𝜑𝑥𝐴) → ((ℜ‘𝐶) · (ℜ‘𝐵)) ∈ ℂ)
12 ovexd 7009 . . . . 5 ((𝜑𝑥𝐴) → (-(ℑ‘𝐶) · (ℑ‘𝐵)) ∈ V)
13 fconstmpt 5461 . . . . . . 7 (𝐴 × {(ℜ‘𝐶)}) = (𝑥𝐴 ↦ (ℜ‘𝐶))
1413a1i 11 . . . . . 6 (𝜑 → (𝐴 × {(ℜ‘𝐶)}) = (𝑥𝐴 ↦ (ℜ‘𝐶)))
15 eqidd 2774 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) = (𝑥𝐴 ↦ (ℜ‘𝐵)))
163, 6, 9, 14, 15offval2 7243 . . . . 5 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℜ‘𝐵))) = (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℜ‘𝐵))))
174imcld 14414 . . . . . . . 8 (𝜑 → (ℑ‘𝐶) ∈ ℝ)
1817renegcld 10867 . . . . . . 7 (𝜑 → -(ℑ‘𝐶) ∈ ℝ)
1918adantr 473 . . . . . 6 ((𝜑𝑥𝐴) → -(ℑ‘𝐶) ∈ ℝ)
208imcld 14414 . . . . . 6 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
21 fconstmpt 5461 . . . . . . 7 (𝐴 × {-(ℑ‘𝐶)}) = (𝑥𝐴 ↦ -(ℑ‘𝐶))
2221a1i 11 . . . . . 6 (𝜑 → (𝐴 × {-(ℑ‘𝐶)}) = (𝑥𝐴 ↦ -(ℑ‘𝐶)))
23 eqidd 2774 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) = (𝑥𝐴 ↦ (ℑ‘𝐵)))
243, 19, 20, 22, 23offval2 7243 . . . . 5 (𝜑 → ((𝐴 × {-(ℑ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℑ‘𝐵))) = (𝑥𝐴 ↦ (-(ℑ‘𝐶) · (ℑ‘𝐵))))
253, 11, 12, 16, 24offval2 7243 . . . 4 (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∘𝑓 + ((𝐴 × {-(ℑ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℑ‘𝐵)))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵)))))
2617adantr 473 . . . . . . . . 9 ((𝜑𝑥𝐴) → (ℑ‘𝐶) ∈ ℝ)
2726recnd 10467 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘𝐶) ∈ ℂ)
2820recnd 10467 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℂ)
2927, 28mulcld 10459 . . . . . . 7 ((𝜑𝑥𝐴) → ((ℑ‘𝐶) · (ℑ‘𝐵)) ∈ ℂ)
3011, 29negsubd 10803 . . . . . 6 ((𝜑𝑥𝐴) → (((ℜ‘𝐶) · (ℜ‘𝐵)) + -((ℑ‘𝐶) · (ℑ‘𝐵))) = (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵))))
3127, 28mulneg1d 10893 . . . . . . 7 ((𝜑𝑥𝐴) → (-(ℑ‘𝐶) · (ℑ‘𝐵)) = -((ℑ‘𝐶) · (ℑ‘𝐵)))
3231oveq2d 6991 . . . . . 6 ((𝜑𝑥𝐴) → (((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵))) = (((ℜ‘𝐶) · (ℜ‘𝐵)) + -((ℑ‘𝐶) · (ℑ‘𝐵))))
334adantr 473 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
3433, 8remuld 14437 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘(𝐶 · 𝐵)) = (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵))))
3530, 32, 343eqtr4d 2819 . . . . 5 ((𝜑𝑥𝐴) → (((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵))) = (ℜ‘(𝐶 · 𝐵)))
3635mpteq2dva 5019 . . . 4 (𝜑 → (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵)))) = (𝑥𝐴 ↦ (ℜ‘(𝐶 · 𝐵))))
3725, 36eqtrd 2809 . . 3 (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∘𝑓 + ((𝐴 × {-(ℑ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℑ‘𝐵)))) = (𝑥𝐴 ↦ (ℜ‘(𝐶 · 𝐵))))
388ismbfcn2 23958 . . . . . . 7 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)))
391, 38mpbid 224 . . . . . 6 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn))
4039simpld 487 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn)
4110fmpttd 6701 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)):𝐴⟶ℂ)
4240, 5, 41mbfmulc2re 23968 . . . 4 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∈ MblFn)
4339simprd 488 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)
4428fmpttd 6701 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)):𝐴⟶ℂ)
4543, 18, 44mbfmulc2re 23968 . . . 4 (𝜑 → ((𝐴 × {-(ℑ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∈ MblFn)
4642, 45mbfadd 23981 . . 3 (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∘𝑓 + ((𝐴 × {-(ℑ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℑ‘𝐵)))) ∈ MblFn)
4737, 46eqeltrrd 2862 . 2 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐶 · 𝐵))) ∈ MblFn)
48 ovexd 7009 . . . . 5 ((𝜑𝑥𝐴) → ((ℜ‘𝐶) · (ℑ‘𝐵)) ∈ V)
49 ovexd 7009 . . . . 5 ((𝜑𝑥𝐴) → ((ℑ‘𝐶) · (ℜ‘𝐵)) ∈ V)
503, 6, 20, 14, 23offval2 7243 . . . . 5 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℑ‘𝐵))) = (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℑ‘𝐵))))
51 fconstmpt 5461 . . . . . . 7 (𝐴 × {(ℑ‘𝐶)}) = (𝑥𝐴 ↦ (ℑ‘𝐶))
5251a1i 11 . . . . . 6 (𝜑 → (𝐴 × {(ℑ‘𝐶)}) = (𝑥𝐴 ↦ (ℑ‘𝐶)))
533, 26, 9, 52, 15offval2 7243 . . . . 5 (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℜ‘𝐵))) = (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℜ‘𝐵))))
543, 48, 49, 50, 53offval2 7243 . . . 4 (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∘𝑓 + ((𝐴 × {(ℑ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℜ‘𝐵)))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵)))))
5533, 8immuld 14438 . . . . 5 ((𝜑𝑥𝐴) → (ℑ‘(𝐶 · 𝐵)) = (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵))))
5655mpteq2dva 5019 . . . 4 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐶 · 𝐵))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵)))))
5754, 56eqtr4d 2812 . . 3 (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∘𝑓 + ((𝐴 × {(ℑ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℜ‘𝐵)))) = (𝑥𝐴 ↦ (ℑ‘(𝐶 · 𝐵))))
5843, 5, 44mbfmulc2re 23968 . . . 4 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∈ MblFn)
5940, 17, 41mbfmulc2re 23968 . . . 4 (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∈ MblFn)
6058, 59mbfadd 23981 . . 3 (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∘𝑓 + ((𝐴 × {(ℑ‘𝐶)}) ∘𝑓 · (𝑥𝐴 ↦ (ℜ‘𝐵)))) ∈ MblFn)
6157, 60eqeltrrd 2862 . 2 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐶 · 𝐵))) ∈ MblFn)
6233, 8mulcld 10459 . . 3 ((𝜑𝑥𝐴) → (𝐶 · 𝐵) ∈ ℂ)
6362ismbfcn2 23958 . 2 (𝜑 → ((𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘(𝐶 · 𝐵))) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘(𝐶 · 𝐵))) ∈ MblFn)))
6447, 61, 63mpbir2and 701 1 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1508  wcel 2051  Vcvv 3410  {csn 4436  cmpt 5005   × cxp 5402  dom cdm 5404  cfv 6186  (class class class)co 6975  𝑓 cof 7224  cc 10332  cr 10333   + caddc 10337   · cmul 10339  cmin 10669  -cneg 10670  cre 14316  cim 14317  volcvol 23783  MblFncmbf 23934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-rep 5046  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-inf2 8897  ax-cc 9654  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411  ax-pre-sup 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-int 4747  df-iun 4791  df-disj 4895  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-se 5364  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-isom 6195  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-of 7226  df-om 7396  df-1st 7500  df-2nd 7501  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-1o 7904  df-2o 7905  df-oadd 7908  df-omul 7909  df-er 8088  df-map 8207  df-pm 8208  df-en 8306  df-dom 8307  df-sdom 8308  df-fin 8309  df-sup 8700  df-inf 8701  df-oi 8768  df-dju 9123  df-card 9161  df-acn 9164  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-div 11098  df-nn 11439  df-2 11502  df-3 11503  df-n0 11707  df-z 11793  df-uz 12058  df-q 12162  df-rp 12204  df-xadd 12324  df-ioo 12557  df-ioc 12558  df-ico 12559  df-icc 12560  df-fz 12708  df-fzo 12849  df-fl 12976  df-seq 13184  df-exp 13244  df-hash 13505  df-cj 14318  df-re 14319  df-im 14320  df-sqrt 14454  df-abs 14455  df-clim 14705  df-rlim 14706  df-sum 14903  df-xmet 20256  df-met 20257  df-ovol 23784  df-vol 23785  df-mbf 23939
This theorem is referenced by:  iblmulc2  24150
  Copyright terms: Public domain W3C validator