MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmulc2 Structured version   Visualization version   GIF version

Theorem mbfmulc2 24732
Description: A complex constant times a measurable function is measurable. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
mbfmulc2.1 (𝜑𝐶 ∈ ℂ)
mbfmulc2.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
mbfmulc2.3 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
Assertion
Ref Expression
mbfmulc2 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem mbfmulc2
StepHypRef Expression
1 mbfmulc2.3 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
2 mbfmulc2.2 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑉)
31, 2mbfdm2 24706 . . . . 5 (𝜑𝐴 ∈ dom vol)
4 mbfmulc2.1 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
54recld 14833 . . . . . . . 8 (𝜑 → (ℜ‘𝐶) ∈ ℝ)
65adantr 480 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘𝐶) ∈ ℝ)
76recnd 10934 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐶) ∈ ℂ)
81, 2mbfmptcl 24705 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
98recld 14833 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
109recnd 10934 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℂ)
117, 10mulcld 10926 . . . . 5 ((𝜑𝑥𝐴) → ((ℜ‘𝐶) · (ℜ‘𝐵)) ∈ ℂ)
12 ovexd 7290 . . . . 5 ((𝜑𝑥𝐴) → (-(ℑ‘𝐶) · (ℑ‘𝐵)) ∈ V)
13 fconstmpt 5640 . . . . . . 7 (𝐴 × {(ℜ‘𝐶)}) = (𝑥𝐴 ↦ (ℜ‘𝐶))
1413a1i 11 . . . . . 6 (𝜑 → (𝐴 × {(ℜ‘𝐶)}) = (𝑥𝐴 ↦ (ℜ‘𝐶)))
15 eqidd 2739 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) = (𝑥𝐴 ↦ (ℜ‘𝐵)))
163, 6, 9, 14, 15offval2 7531 . . . . 5 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) = (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℜ‘𝐵))))
174imcld 14834 . . . . . . . 8 (𝜑 → (ℑ‘𝐶) ∈ ℝ)
1817renegcld 11332 . . . . . . 7 (𝜑 → -(ℑ‘𝐶) ∈ ℝ)
1918adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → -(ℑ‘𝐶) ∈ ℝ)
208imcld 14834 . . . . . 6 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
21 fconstmpt 5640 . . . . . . 7 (𝐴 × {-(ℑ‘𝐶)}) = (𝑥𝐴 ↦ -(ℑ‘𝐶))
2221a1i 11 . . . . . 6 (𝜑 → (𝐴 × {-(ℑ‘𝐶)}) = (𝑥𝐴 ↦ -(ℑ‘𝐶)))
23 eqidd 2739 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) = (𝑥𝐴 ↦ (ℑ‘𝐵)))
243, 19, 20, 22, 23offval2 7531 . . . . 5 (𝜑 → ((𝐴 × {-(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) = (𝑥𝐴 ↦ (-(ℑ‘𝐶) · (ℑ‘𝐵))))
253, 11, 12, 16, 24offval2 7531 . . . 4 (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∘f + ((𝐴 × {-(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵)))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵)))))
2617adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐴) → (ℑ‘𝐶) ∈ ℝ)
2726recnd 10934 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘𝐶) ∈ ℂ)
2820recnd 10934 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℂ)
2927, 28mulcld 10926 . . . . . . 7 ((𝜑𝑥𝐴) → ((ℑ‘𝐶) · (ℑ‘𝐵)) ∈ ℂ)
3011, 29negsubd 11268 . . . . . 6 ((𝜑𝑥𝐴) → (((ℜ‘𝐶) · (ℜ‘𝐵)) + -((ℑ‘𝐶) · (ℑ‘𝐵))) = (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵))))
3127, 28mulneg1d 11358 . . . . . . 7 ((𝜑𝑥𝐴) → (-(ℑ‘𝐶) · (ℑ‘𝐵)) = -((ℑ‘𝐶) · (ℑ‘𝐵)))
3231oveq2d 7271 . . . . . 6 ((𝜑𝑥𝐴) → (((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵))) = (((ℜ‘𝐶) · (ℜ‘𝐵)) + -((ℑ‘𝐶) · (ℑ‘𝐵))))
334adantr 480 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
3433, 8remuld 14857 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘(𝐶 · 𝐵)) = (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵))))
3530, 32, 343eqtr4d 2788 . . . . 5 ((𝜑𝑥𝐴) → (((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵))) = (ℜ‘(𝐶 · 𝐵)))
3635mpteq2dva 5170 . . . 4 (𝜑 → (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵)))) = (𝑥𝐴 ↦ (ℜ‘(𝐶 · 𝐵))))
3725, 36eqtrd 2778 . . 3 (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∘f + ((𝐴 × {-(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵)))) = (𝑥𝐴 ↦ (ℜ‘(𝐶 · 𝐵))))
388ismbfcn2 24707 . . . . . . 7 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)))
391, 38mpbid 231 . . . . . 6 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn))
4039simpld 494 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn)
4110fmpttd 6971 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)):𝐴⟶ℂ)
4240, 5, 41mbfmulc2re 24717 . . . 4 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∈ MblFn)
4339simprd 495 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)
4428fmpttd 6971 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)):𝐴⟶ℂ)
4543, 18, 44mbfmulc2re 24717 . . . 4 (𝜑 → ((𝐴 × {-(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∈ MblFn)
4642, 45mbfadd 24730 . . 3 (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∘f + ((𝐴 × {-(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵)))) ∈ MblFn)
4737, 46eqeltrrd 2840 . 2 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐶 · 𝐵))) ∈ MblFn)
48 ovexd 7290 . . . . 5 ((𝜑𝑥𝐴) → ((ℜ‘𝐶) · (ℑ‘𝐵)) ∈ V)
49 ovexd 7290 . . . . 5 ((𝜑𝑥𝐴) → ((ℑ‘𝐶) · (ℜ‘𝐵)) ∈ V)
503, 6, 20, 14, 23offval2 7531 . . . . 5 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) = (𝑥𝐴 ↦ ((ℜ‘𝐶) · (ℑ‘𝐵))))
51 fconstmpt 5640 . . . . . . 7 (𝐴 × {(ℑ‘𝐶)}) = (𝑥𝐴 ↦ (ℑ‘𝐶))
5251a1i 11 . . . . . 6 (𝜑 → (𝐴 × {(ℑ‘𝐶)}) = (𝑥𝐴 ↦ (ℑ‘𝐶)))
533, 26, 9, 52, 15offval2 7531 . . . . 5 (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) = (𝑥𝐴 ↦ ((ℑ‘𝐶) · (ℜ‘𝐵))))
543, 48, 49, 50, 53offval2 7531 . . . 4 (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∘f + ((𝐴 × {(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵)))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵)))))
5533, 8immuld 14858 . . . . 5 ((𝜑𝑥𝐴) → (ℑ‘(𝐶 · 𝐵)) = (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵))))
5655mpteq2dva 5170 . . . 4 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐶 · 𝐵))) = (𝑥𝐴 ↦ (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵)))))
5754, 56eqtr4d 2781 . . 3 (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∘f + ((𝐴 × {(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵)))) = (𝑥𝐴 ↦ (ℑ‘(𝐶 · 𝐵))))
5843, 5, 44mbfmulc2re 24717 . . . 4 (𝜑 → ((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∈ MblFn)
5940, 17, 41mbfmulc2re 24717 . . . 4 (𝜑 → ((𝐴 × {(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵))) ∈ MblFn)
6058, 59mbfadd 24730 . . 3 (𝜑 → (((𝐴 × {(ℜ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℑ‘𝐵))) ∘f + ((𝐴 × {(ℑ‘𝐶)}) ∘f · (𝑥𝐴 ↦ (ℜ‘𝐵)))) ∈ MblFn)
6157, 60eqeltrrd 2840 . 2 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐶 · 𝐵))) ∈ MblFn)
6233, 8mulcld 10926 . . 3 ((𝜑𝑥𝐴) → (𝐶 · 𝐵) ∈ ℂ)
6362ismbfcn2 24707 . 2 (𝜑 → ((𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘(𝐶 · 𝐵))) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘(𝐶 · 𝐵))) ∈ MblFn)))
6447, 61, 63mpbir2and 709 1 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  {csn 4558  cmpt 5153   × cxp 5578  dom cdm 5580  cfv 6418  (class class class)co 7255  f cof 7509  cc 10800  cr 10801   + caddc 10805   · cmul 10807  cmin 11135  -cneg 11136  cre 14736  cim 14737  volcvol 24532  MblFncmbf 24683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xadd 12778  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-xmet 20503  df-met 20504  df-ovol 24533  df-vol 24534  df-mbf 24688
This theorem is referenced by:  iblmulc2  24900
  Copyright terms: Public domain W3C validator