MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ibladd Structured version   Visualization version   GIF version

Theorem ibladd 25769
Description: Add two integrals over the same domain. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
itgadd.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgadd.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgadd.3 ((𝜑𝑥𝐴) → 𝐶𝑉)
itgadd.4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
Assertion
Ref Expression
ibladd (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem ibladd
StepHypRef Expression
1 itgadd.2 . . . . . . 7 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
2 eqid 2733 . . . . . . . 8 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
3 eqid 2733 . . . . . . . 8 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
4 eqid 2733 . . . . . . . 8 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
5 eqid 2733 . . . . . . . 8 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
6 itgadd.1 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵𝑉)
72, 3, 4, 5, 6iblcnlem 25737 . . . . . . 7 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) ∈ ℝ) ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) ∈ ℝ))))
81, 7mpbid 232 . . . . . 6 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) ∈ ℝ) ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) ∈ ℝ)))
98simp1d 1142 . . . . 5 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
109, 6mbfdm2 25585 . . . 4 (𝜑𝐴 ∈ dom vol)
11 itgadd.3 . . . 4 ((𝜑𝑥𝐴) → 𝐶𝑉)
12 eqidd 2734 . . . 4 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
13 eqidd 2734 . . . 4 (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐴𝐶))
1410, 6, 11, 12, 13offval2 7639 . . 3 (𝜑 → ((𝑥𝐴𝐵) ∘f + (𝑥𝐴𝐶)) = (𝑥𝐴 ↦ (𝐵 + 𝐶)))
15 itgadd.4 . . . . . 6 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
16 eqid 2733 . . . . . . 7 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐶)), (ℜ‘𝐶), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐶)), (ℜ‘𝐶), 0)))
17 eqid 2733 . . . . . . 7 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐶)), -(ℜ‘𝐶), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐶)), -(ℜ‘𝐶), 0)))
18 eqid 2733 . . . . . . 7 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐶)), (ℑ‘𝐶), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐶)), (ℑ‘𝐶), 0)))
19 eqid 2733 . . . . . . 7 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐶)), -(ℑ‘𝐶), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐶)), -(ℑ‘𝐶), 0)))
2016, 17, 18, 19, 11iblcnlem 25737 . . . . . 6 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ ((𝑥𝐴𝐶) ∈ MblFn ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐶)), (ℜ‘𝐶), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐶)), -(ℜ‘𝐶), 0))) ∈ ℝ) ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐶)), (ℑ‘𝐶), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐶)), -(ℑ‘𝐶), 0))) ∈ ℝ))))
2115, 20mpbid 232 . . . . 5 (𝜑 → ((𝑥𝐴𝐶) ∈ MblFn ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐶)), (ℜ‘𝐶), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐶)), -(ℜ‘𝐶), 0))) ∈ ℝ) ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐶)), (ℑ‘𝐶), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐶)), -(ℑ‘𝐶), 0))) ∈ ℝ)))
2221simp1d 1142 . . . 4 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
239, 22mbfadd 25609 . . 3 (𝜑 → ((𝑥𝐴𝐵) ∘f + (𝑥𝐴𝐶)) ∈ MblFn)
2414, 23eqeltrrd 2834 . 2 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn)
259, 6mbfmptcl 25584 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
2625recld 15108 . . . 4 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
2722, 11mbfmptcl 25584 . . . . 5 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
2827recld 15108 . . . 4 ((𝜑𝑥𝐴) → (ℜ‘𝐶) ∈ ℝ)
2925, 27readdd 15128 . . . 4 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 + 𝐶)) = ((ℜ‘𝐵) + (ℜ‘𝐶)))
3025ismbfcn2 25586 . . . . . 6 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)))
319, 30mpbid 232 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn))
3231simpld 494 . . . 4 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ MblFn)
3327ismbfcn2 25586 . . . . . 6 (𝜑 → ((𝑥𝐴𝐶) ∈ MblFn ↔ ((𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn)))
3422, 33mpbid 232 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn ∧ (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn))
3534simpld 494 . . . 4 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ MblFn)
368simp2d 1143 . . . . 5 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) ∈ ℝ))
3736simpld 494 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))) ∈ ℝ)
3821simp2d 1143 . . . . 5 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐶)), (ℜ‘𝐶), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐶)), -(ℜ‘𝐶), 0))) ∈ ℝ))
3938simpld 494 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐶)), (ℜ‘𝐶), 0))) ∈ ℝ)
4026, 28, 29, 32, 35, 37, 39ibladdlem 25768 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 + 𝐶))), (ℜ‘(𝐵 + 𝐶)), 0))) ∈ ℝ)
4126renegcld 11555 . . . 4 ((𝜑𝑥𝐴) → -(ℜ‘𝐵) ∈ ℝ)
4228renegcld 11555 . . . 4 ((𝜑𝑥𝐴) → -(ℜ‘𝐶) ∈ ℝ)
4329negeqd 11365 . . . . 5 ((𝜑𝑥𝐴) → -(ℜ‘(𝐵 + 𝐶)) = -((ℜ‘𝐵) + (ℜ‘𝐶)))
4426recnd 11151 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℂ)
4528recnd 11151 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐶) ∈ ℂ)
4644, 45negdid 11496 . . . . 5 ((𝜑𝑥𝐴) → -((ℜ‘𝐵) + (ℜ‘𝐶)) = (-(ℜ‘𝐵) + -(ℜ‘𝐶)))
4743, 46eqtrd 2768 . . . 4 ((𝜑𝑥𝐴) → -(ℜ‘(𝐵 + 𝐶)) = (-(ℜ‘𝐵) + -(ℜ‘𝐶)))
4826, 32mbfneg 25598 . . . 4 (𝜑 → (𝑥𝐴 ↦ -(ℜ‘𝐵)) ∈ MblFn)
4928, 35mbfneg 25598 . . . 4 (𝜑 → (𝑥𝐴 ↦ -(ℜ‘𝐶)) ∈ MblFn)
5036simprd 495 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) ∈ ℝ)
5138simprd 495 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐶)), -(ℜ‘𝐶), 0))) ∈ ℝ)
5241, 42, 47, 48, 49, 50, 51ibladdlem 25768 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘(𝐵 + 𝐶))), -(ℜ‘(𝐵 + 𝐶)), 0))) ∈ ℝ)
5340, 52jca 511 . 2 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 + 𝐶))), (ℜ‘(𝐵 + 𝐶)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘(𝐵 + 𝐶))), -(ℜ‘(𝐵 + 𝐶)), 0))) ∈ ℝ))
5425imcld 15109 . . . 4 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
5527imcld 15109 . . . 4 ((𝜑𝑥𝐴) → (ℑ‘𝐶) ∈ ℝ)
5625, 27imaddd 15129 . . . 4 ((𝜑𝑥𝐴) → (ℑ‘(𝐵 + 𝐶)) = ((ℑ‘𝐵) + (ℑ‘𝐶)))
5731simprd 495 . . . 4 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ MblFn)
5834simprd 495 . . . 4 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ MblFn)
598simp3d 1144 . . . . 5 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) ∈ ℝ))
6059simpld 494 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) ∈ ℝ)
6121simp3d 1144 . . . . 5 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐶)), (ℑ‘𝐶), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐶)), -(ℑ‘𝐶), 0))) ∈ ℝ))
6261simpld 494 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐶)), (ℑ‘𝐶), 0))) ∈ ℝ)
6354, 55, 56, 57, 58, 60, 62ibladdlem 25768 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘(𝐵 + 𝐶))), (ℑ‘(𝐵 + 𝐶)), 0))) ∈ ℝ)
6454renegcld 11555 . . . 4 ((𝜑𝑥𝐴) → -(ℑ‘𝐵) ∈ ℝ)
6555renegcld 11555 . . . 4 ((𝜑𝑥𝐴) → -(ℑ‘𝐶) ∈ ℝ)
6656negeqd 11365 . . . . 5 ((𝜑𝑥𝐴) → -(ℑ‘(𝐵 + 𝐶)) = -((ℑ‘𝐵) + (ℑ‘𝐶)))
6754recnd 11151 . . . . . 6 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℂ)
6855recnd 11151 . . . . . 6 ((𝜑𝑥𝐴) → (ℑ‘𝐶) ∈ ℂ)
6967, 68negdid 11496 . . . . 5 ((𝜑𝑥𝐴) → -((ℑ‘𝐵) + (ℑ‘𝐶)) = (-(ℑ‘𝐵) + -(ℑ‘𝐶)))
7066, 69eqtrd 2768 . . . 4 ((𝜑𝑥𝐴) → -(ℑ‘(𝐵 + 𝐶)) = (-(ℑ‘𝐵) + -(ℑ‘𝐶)))
7154, 57mbfneg 25598 . . . 4 (𝜑 → (𝑥𝐴 ↦ -(ℑ‘𝐵)) ∈ MblFn)
7255, 58mbfneg 25598 . . . 4 (𝜑 → (𝑥𝐴 ↦ -(ℑ‘𝐶)) ∈ MblFn)
7359simprd 495 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) ∈ ℝ)
7461simprd 495 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐶)), -(ℑ‘𝐶), 0))) ∈ ℝ)
7564, 65, 70, 71, 72, 73, 74ibladdlem 25768 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘(𝐵 + 𝐶))), -(ℑ‘(𝐵 + 𝐶)), 0))) ∈ ℝ)
7663, 75jca 511 . 2 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘(𝐵 + 𝐶))), (ℑ‘(𝐵 + 𝐶)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘(𝐵 + 𝐶))), -(ℑ‘(𝐵 + 𝐶)), 0))) ∈ ℝ))
77 eqid 2733 . . 3 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 + 𝐶))), (ℜ‘(𝐵 + 𝐶)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 + 𝐶))), (ℜ‘(𝐵 + 𝐶)), 0)))
78 eqid 2733 . . 3 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘(𝐵 + 𝐶))), -(ℜ‘(𝐵 + 𝐶)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘(𝐵 + 𝐶))), -(ℜ‘(𝐵 + 𝐶)), 0)))
79 eqid 2733 . . 3 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘(𝐵 + 𝐶))), (ℑ‘(𝐵 + 𝐶)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘(𝐵 + 𝐶))), (ℑ‘(𝐵 + 𝐶)), 0)))
80 eqid 2733 . . 3 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘(𝐵 + 𝐶))), -(ℑ‘(𝐵 + 𝐶)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘(𝐵 + 𝐶))), -(ℑ‘(𝐵 + 𝐶)), 0)))
81 ovexd 7390 . . 3 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) ∈ V)
8277, 78, 79, 80, 81iblcnlem 25737 . 2 (𝜑 → ((𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 + 𝐶))), (ℜ‘(𝐵 + 𝐶)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘(𝐵 + 𝐶))), -(ℜ‘(𝐵 + 𝐶)), 0))) ∈ ℝ) ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘(𝐵 + 𝐶))), (ℑ‘(𝐵 + 𝐶)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘(𝐵 + 𝐶))), -(ℑ‘(𝐵 + 𝐶)), 0))) ∈ ℝ))))
8324, 53, 76, 82mpbir3and 1343 1 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2113  Vcvv 3437  ifcif 4476   class class class wbr 5095  cmpt 5176  dom cdm 5621  cfv 6489  (class class class)co 7355  f cof 7617  cr 11016  0cc0 11017   + caddc 11020  cle 11158  -cneg 11356  cre 15011  cim 15012  volcvol 25411  MblFncmbf 25562  2citg2 25564  𝐿1cibl 25565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cc 10337  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095  ax-addf 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-ofr 7620  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-omul 8399  df-er 8631  df-map 8761  df-pm 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fi 9306  df-sup 9337  df-inf 9338  df-oi 9407  df-dju 9805  df-card 9843  df-acn 9846  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-z 12480  df-uz 12743  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ioo 13256  df-ioc 13257  df-ico 13258  df-icc 13259  df-fz 13415  df-fzo 13562  df-fl 13703  df-seq 13916  df-exp 13976  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-clim 15402  df-rlim 15403  df-sum 15601  df-rest 17333  df-topgen 17354  df-psmet 21292  df-xmet 21293  df-met 21294  df-bl 21295  df-mopn 21296  df-top 22829  df-topon 22846  df-bases 22881  df-cmp 23322  df-ovol 25412  df-vol 25413  df-mbf 25567  df-itg1 25568  df-itg2 25569  df-ibl 25570  df-0p 25618
This theorem is referenced by:  iblsub  25770  itgaddlem1  25771  itgaddlem2  25772  itgadd  25773  itgfsum  25775  itgparts  26001
  Copyright terms: Public domain W3C validator